
Confidence Aware Inverse Constrained Reinforcement Learning

Sriram Ganapathi Subramanian 1 Guiliang Liu 2 Mohammed Elmahgiubi 3 Kasra Rezaee 3 Pascal Poupart 4 1

Abstract
In coming up with solutions to real-world prob-
lems, humans implicitly adhere to constraints that
are too numerous and complex to be specified
completely. However, reinforcement learning
(RL) agents need these constraints to learn the
correct optimal policy in these settings. The field
of Inverse Constraint Reinforcement Learning
(ICRL) deals with this problem and provides al-
gorithms that aim to estimate the constraints from
expert demonstrations collected offline. Practi-
tioners prefer to know a measure of confidence in
the estimated constraints, before deciding to use
these constraints, which allows them to only use
the constraints that satisfy a desired level of confi-
dence. However, prior works do not allow users
to provide the desired level of confidence for the
inferred constraints. This work provides a princi-
pled ICRL method that can take a confidence level
with a set of expert demonstrations and outputs
a constraint that is at least as constraining as the
true underlying constraint with the desired level
of confidence. Further, unlike previous methods,
this method allows a user to know if the num-
ber of expert trajectories is insufficient to learn
a constraint with a desired level of confidence,
and therefore collect more expert trajectories as
required to simultaneously learn constraints with
the desired level of confidence and a policy that
achieves the desired level of performance.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) has
seen large successes in a variety of computer games like

1Vector Institute for Artificial Intelligence, Toronto, Canada
2School of Data Science, The Chinese University of Hong Kong,
Shenzhen, Guangdong, 518172, P.R. China 3Huawei Technolo-
gies Canada 4Cheriton School of Computer Science, University of
Waterloo, Canada. Correspondence to: Sriram Ganapathi Subra-
manian <sriram.subramanian@vectorinstitute.ai>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Atari (Mnih et al., 2015) and StarCraft (Vinyals et al., 2019),
and more recently in real-world environments like recom-
mender systems (Afsar et al., 2022) and robotics (Zhao et al.,
2020). Traditionally in RL, agents are allowed to explore
the entire state and action space to learn the optimal policy.
However, in many real-world environments, considerations
of safety and feasibility prevent an exploring agent from
visiting all states and actions (Dulac-Arnold et al., 2021;
Ray et al., 2019). This observation led to the development
of constrained reinforcement learning (CRL) (Liu et al.,
2021) where the policy is constrained to remain within the
bounds of a set of constraint functions that limit the states
and/or actions that an agent can explore in the environment.
However, it is hard for human designers to fully specify all
constraints in complex real-world environments. Alterna-
tively, it is possible to obtain expert demonstrations. For
example, in autonomous driving, it is far easier to obtain
demonstrations from expert human drivers that illustrate the
optimal behavior in different road and weather conditions.
Using these demonstrations, the agent will need to infer
the underlying constraints that the expert follows to ensure
smoothness, comfort and safety.

The field of Inverse Constrained Reinforcement Learning
(ICRL) (Malik et al., 2021) aims to solve the problem of
learning the underlying constraints from expert demonstra-
tions. This is a new field of research where the algorithms
have a structure of alternating between updating a constraint
function and learning a policy that satisfies its current con-
straint estimate (see Figure 1a). While several recent works
introduce strong algorithms for ICRL (Malik et al., 2021;
Liu et al., 2023; Gaurav et al., 2023; Qiao et al., 2023; Liu &
Zhu, 2023; 2024; Xu & Liu, 2024), these methods estimate
only the constraint function, but do not provide an esti-
mate of the confidence in the learned constraint. Intuitively,
agents will be more confident in the learned constraint if
there is a greater number of expert trajectories demonstrat-
ing behavior that follows such a constraint. In this paper, we
provide an algorithm, called confidence-aware ICRL (CA-
ICRL) that uses a confidence estimate along with learning
the constraint itself. The algorithm will accept a desired
confidence and learn a constraint that is at-least as con-
straining as the ground truth constraint with the provided
confidence. Humans and/or agents can choose to learn ap-
propriate constraints based on their risk profiles. Also, this

1

Confidence Aware Inverse Constrained Reinforcement Learning

(a) Inverse Constrained RL (b) Confidence Aware - Inverse Constrained RL

Figure 1: A figure showing the architectures of ICRL and CA-ICRL

allows for the identification of high-confidence constraints
for learning optimal policies. Additionally, CA-ICRL can
also be used to decide if more expert trajectories need to
be collected based on the desired levels of confidence in
constraint and the desired performance. The architecture
of this approach is given in Figure 1b, where the algorithm
iterates between updating a forward policy and updating its
estimate of constraints like the vanilla ICRL approach, and
in addition using the confidence to select the constraint. An
elaborate discussion of prior works in ICRL is available in
Appendix B.

2. Background
We describe the fundamentals of constrained reinforcement
learning (CRL) and inverse constrained reinforcement learn-
ing (ICRL) in this section.

2.1. Constrained Reinforcement Learning

The CRL approach solves the constrained Markov decision
process (CMDP) (Altman, 1999), which aims to learn an op-
timal policy that maximizes discounted cumulative rewards
while ensuring that the agent satisfies a set of safety con-
straints. The CMDP can be seen as an extension of the stan-
dard Markov decision process (MDP) ⟨S,A, PT , PR, µ, γ⟩
(Sutton & Barto, 2018), with a constraint set C. Here S
represents the state space, A represents the action space,
PT (s

′|s, a) indicates the probability of transitioning to state
s′ after executing action a in state s, PR(r|s, a) indicates
the probability of earning reward r in state s when execut-
ing action a, µ(s) is the probabilty that the initial state is s,
and γ ∈ [0, 1) represents the discount factor. We will also
use r̄(s, a) = EPR

[r|s, a] to denote the expected reward
of a state-action pair. Actions are chosen according to a
stochastic policy π(a|s) ∈ [0, 1] that indicates the probabil-
ity with which action a is chosen in state s. The field of RL
tries to find an optimal policy π∗ that maximizes expected

discounted cumulative rewards.

π∗ = argmax
π

EPπ
[r̄(τ)] (1)

Here τ = (s0, a0, s1, a1, s2, a2, ...) denotes
a trajectory of state-action pairs, Pπ(τ) =
µ(s0)

∏∞
t=0 π(at|st)PT (st+1|st, at) denotes the

probability that policy π will yield trajectory τ and
r̄(τ) =

∑∞
t=0 r̄(st, at) is the expected cumulative reward

of trajectory τ . In the maximum entropy framework, an
additional entropy term H(Pπ) = −

∫
τ
Pπ(τ) logPπ(τ)

is added to the expected rewards. This term encourages
stochasticity in action choices which provides a form of
regularization and some degree of exploration.

π∗
maxent = argmax

π
EPπ

[r̄(τ)] + βH(Pπ) (2)

In many application domains, policies must satisfy
constraints that can be incorporated in a Constrained
Markov decision process CMDP represented as
⟨S,A, PT , PR, µ, γ, C⟩, which extends the MDP with
a constraint set C = {(PC,i, ϵi)}mi=1, where PC,i(c|s, a)
denotes the probability that cost c is incurred in state s
and action a in accordance with the ith constraint, and
ϵi is an upper bound on expected cumulative costs in
the ith constraint. It is often convenient to refer to the
expected cost of a state-action pair c̄i(s, a) = EPC,i

[c|s, a]
and a trajectory c̄i(τ) =

∑∞
t=0 c̄i(st, at) when defining a

constraint EPπ [c̄i(τ)] ≤ ϵi. Note that this type of constraint
is generally ’soft’ since it is possible that the cumulative
cost of some trajectories exceeds the threshold ϵi as long as
the expected cumulative cost remains bounded by ϵi. ’Hard’
constraints (i.e., when all trajectories must individually
have a cost bounded by ϵi) can still be encoded for example
by setting ϵi = 0 and making sure that costs are always
non-negative.

The goal of constrained reinforcement learning (CRL) is to
find an optimal policy that maximizes expected cumulative

2

Confidence Aware Inverse Constrained Reinforcement Learning

rewards subject to bounds on expected cumulative costs.

π∗ = argmax
π

EPπ [r̄(τ)] (3)

such that EPπ
[c̄i(τ)] ≤ ϵi ∀i

Similarly, in the maximum entropy framework, an optimal
policy π∗

maxent is obtained by maximizing expected rewards
with an entropy bonus subject to bounds on expected costs.

π∗
maxent = argmax

π
EPπ

[r̄(τ)] + βH(Pπ) (4)

such that EPπ
[c̄i(τ)] ≤ ϵi ∀i

2.2. Inverse Constrained Reinforcement Learning

In several applications, it is difficult to specify all the con-
straints required to find the most suitable optimal policy.
However, it may be possible to obtain expert demonstra-
tions that adhere to these underlying constraints. Hence, the
goal in inverse constrained reinforcement learning (ICRL)
(Malik et al., 2021) is to make use of expert trajectories
D = {τj}nj=1 to recover the constraints. The ICRL frame-
work is analogous to but differs from the relatively well-
known inverse reinforcement learning (IRL) (Ng et al.,
2000) framework. While IRL learns the reward function of
an unconstrained MDP from expert demonstrations, ICRL
learns the constraints in a constrained MDP under the as-
sumption that the reward function r̄ is available.

Several related prior works (Malik et al., 2021; Liu et al.,
2023) in ICRL recommend the use of the maximum entropy
framework (Wu, 2012). In the case of hard constraints, the
likelihood that an optimal policy π∗

maxent will generate a
trajectory τ is proportional to the exponential of the rewards
times an indicator 1(c̄i(τ) ≤ ϵi ∀i). This is equal to 1 when
the trajectory satisfies all constraints and 0 otherwise (Malik
et al., 2021):

Pπ∗
maxent

(τ) =
exp(βr̄(τ))1(c̄i(τ) ≤ ϵi ∀i)

Z(c̄i)
(5)

where Z(c̄i) =

∫
τ

exp(βr̄(τ))1(c̄i(τ) ≤ ϵi ∀i)dτ

If we replace the feasibility indicator 1(c̄i(τ) ≤ ϵi ∀i) by
a differentiable neural network ϕ(τ) with a sigmoid output
and optimize its parameters to maximize the likelihood of
the expert demonstrations D, we can learn an approximate
feasibility indicator. Using this network, we will denote
Z(ϕ) for Z(c̄i).

ϕ∗(τ) = argmax
ϕ

∏
τ∈D

exp(βr̄(τ))ϕ(τ)

Z(ϕ)
(6)

In practice, ϕ(τ) =
∏

t ϕ(st, at) is often decomposed into a
product of feasibility factors ϕ(st, at) for state-action pairs
(Malik et al., 2021). In the case of a single hard constraint,

we can then set c̄(s, a) = 1 − ϕ(s, a) and ϵ = 0 to ob-
tain an equivalent constraint in the standard form. This
equivalence holds as long as ϕ(s, a) ∈ {0, 1}. In practice,
since ϕ(s, a) ∈ (0, 1) (sigmoid outputs are never exactly
0 or 1), ϵ is typically set slightly above 0. In the case of
soft constraints, we can interpret ϕ(τ) as an estimate of the
probability that τ will be considered feasible (Liu et al.,
2023).

Hence inverse constraint learning boils down to optimiz-
ing Eq. 6 which is done iteratively by alternating between
forward control and constraint update (Malik et al., 2021).

1. Forward control: π∗ = argmaxπ EPπ
[r̄(τ)] +

βH(Pπ) such that EPπ
[ϕ(τ)] ≤ ϵ (Ray et al., 2019;

Gaurav et al., 2023)

2. Constraint update: ϕ ← ϕ + ∇ϕ[
∑

τ∈D βr̄(τ)) +
log ϕ(τ) − logZ(ϕ)] where the estimation of Z(ϕ)
depends on π∗ (Malik et al., 2021)

Instead of estimating ϕ(τ) by maximum likelihood based
on (6), one can also use Bayesian learning to estimate a
posterior distribution P (ϕ|D) based on the set D of expert
trajectories by multiplying a suitable prior by the likelihood
of each expert trajectory in Equation 5 (Glazier et al., 2021;
Papadimitriou et al., 2022; Liu et al., 2023). However, since
the resulting posterior does not have a closed form, it is
projected in a tractable family of distributions (Liu et al.,
2023) and the mean constraint is returned as a point estimate.

3. Confidence Aware Inverse Constrained
Reinforcement Learning

As stated previously, we have two objectives in this paper.
The first objective is inferring a constraint conditioned on
a desirable confidence level. Once such a constraint is in-
ferred, the second objective consists of determining whether
the number of expert trajectories used to infer the constraint
is sufficient. In this section, we present the CA-ICRL algo-
rithm, which is a principled ICRL algorithm that aims to
satisfy both the stated objectives. For the first objective, the
inputs consist of a set of expert trajectories that are assumed
to be optimal in terms of maximizing rewards while satis-
fying some unknown underlying constraint, and a desired
confidence level. The output consists of a constraint that
is at least as constraining as the true underlying constraint
with probability greater than or equal to the desired confi-
dence level. For the second objective, the inputs consist of
a constraint conditioned on a desired confidence level, and
a desired reward level for an optimal policy that satisfies the
constraint. The output is a Yes/No decision that indicates
whether the number of expert trajectories are sufficient to
find such a constraint that satisfies the desired confidence
level and an associated policy that meets the desired reward

3

Confidence Aware Inverse Constrained Reinforcement Learning

level. When the number of expert trajectories are deemed
insufficient, additional expert trajectories can be collected
and added to the set of expert trajectories, based on which
a looser constraint (that is still more constraining than the
unknown underlying constraint with probability at least as
great as a desired confidence level) can be inferred. The
process of collecting more expert trajectories and updating
the inferred constraint continues until the number of expert
trajectories is deemed sufficient.

3.1. Objective 1: Inferring a constraint conditioned on a
confidence level

In Figure 2 we provide an outline for the solution of our
first objective that relates to inferring a confidence-aware
constraint from a set of expert trajectories. In prior methods
(Glazier et al., 2021; Papadimitriou et al., 2022; Liu et al.,
2023), the distribution over constraints is used to compute
an expectation over feasibility constraints E[ϕ(τ)] = ϕ(τ).
The resulting mean constraint ϕ does not reflect any no-
tion of confidence. Hence there is no guarantee that the
mean constraint is at least as constraining as the unknown
underlying constraint. Furthermore, the mean lacks sen-
sitivity to the number of expert trajectories. Normally, as
the number of expert trajectories increases, we should be
able to increase our confidence that a constraint is at least
as constraining as the unknown underlying constraint. Al-
ternatively, for a given confidence level, as we increase the
number of trajectories, we should be able to infer a looser
constraint that is still at least as constraining as the unknown
constraint. Our solution achieves these objectives, but these
were not possible in previous methods.

To ease the understanding, let’s start with an illustrative ex-
ample. Consider a lane change scenario in autonomous driv-
ing. Let τ = (s0, a0, s1, a1, . . . , sn, an) be a human driver
trajectory where st is the state at time step t, which includes
the position and velocity of the ego car and surrounding cars.
Similarly, at is the action at time step t, which includes the
acceleration and steering of the ego car. Let ϕ(τ) ∈ [0, 1]
be the fraction of people who would judge the trajectory
τ as safe. More precisely, ϕ(τ) =

∏
t ϕ(st, at) could be

decomposed into a product of feasibility factors ϕ(st, at)
indicating the fraction of people who would judge the state-
action pair at time t as safe. Note that ϕ(τ) does not have
to decompose into a product. This is simply an example
for the case when the safety of a trajectory can be judged
based on each state-action pair. More generally, ϕ(τ) can
be any function that returns the probability that someone
would judge τ as safe.

Let P (ϕ(τ)) = beta(ϕ(τ)|α) be the distribution over the
fraction of people who would judge τ as safe. In this embod-
iment, this distribution is a Beta distribution with parameters
α = [α1, α2]. It represents the epistemic uncertainty of the

learning algorithm, where epistemic uncertainty refers to
the uncertainty that is due to a limited amount of data (e.g.,
limited number of expert trajectories).

Our choice of using the Beta distribution is not arbitrary.
The beta distribution is being used to represent the distribu-
tion over the probability that the trajectory τ is safe. Here,
our requirement is a continuous probability distribution that
can represent a random variable with values falling inside
a finite interval (in this case [0, 1]). Note that the standard
Beta distribution uses the interval [0, 1], which is ideal for
modelling probabilities. This is why we go with the Beta
distribution. Particularly, our choice of the Beta distribu-
tion is motivated by its close relationship with the binomial
distribution. The binomial distribution is used to model the
number of successful outcomes in an experiment with binary
outcomes (where each trial is a Bernoulli event). We are
also considering a random variable, which is the outcome of
an experiment having binary choices since the trajectory can
be judged safe or unsafe (i.e., the two choices). The Beta
distribution is widely used to model success in a binomial
experiment, in terms of the binomial proportion, which is
the fraction of the number of successes with respect to the
total number of trials. Hence, we use the Beta distribution,
which is an excellent choice to represent a distribution of
probabilities.

Let λ be a desired confidence level (e.g., 90%) and let ϕ∗(τ)
be the highest fraction of people such that the true fraction
of people ϕ(τ) is at least as great as ϕ∗(τ) with confidence
λ (i.e., P (ϕ(τ) ≥ ϕ∗(τ)) ≥ λ). Hence, we wish to compute
ϕ∗(τ) since this is the feasibility constraint that corresponds
to the confidence level λ. Here ϕ∗(τ) corresponds to the
1− λ quantile of beta(ϕ(τ)|α). By replacing ϕ(τ) in Equa-
tion 6 with quantilebeta(·|α)(1−λ), we obtain an optimiza-
tion problem that allows us to learn the hyperparameters α
of a beta distribution such that ϕ∗(τ) is its 1− λ quantile.

maxα

∏
τ∈D

exp(βr̄(τ))quantilebeta(·|α)(1− λ)

Z(α)
(7)

In practice, we do not optimize α directly. Instead we use
a neural network that outputs α = [α1, α2] as depicted in
Figure 4. Since this neural network takes as input the expert
trajectories D and a trajectory τ that we wish to evaluate
for feasibility, we denote by αw(D, τ) the output of this
neural network with weights w (Figure 4 uses W to denote
the weights w). The weights of this neural network are then
optimized by using Equation 8.

max
w

∏
τ∈D

exp(βr̄(τ))quantilebeta(·|αw(D,τ))(1− λ)

Z(w)
(8)

The intuition behind the neural network in Figure 4 goes as
follows. Each encoder block shares the same set of weights

4

Confidence Aware Inverse Constrained Reinforcement Learning

w. These encoder blocks can be bidirectional attention
flows (Seo et al., 2016), transformers (Vaswani et al., 2017)
or any other type of encoder that returns two numbers σ1

i ,
σ2
i ∈ [0, 1]. σ1

i and σ2
i can be thought as the contribution

of expert trajectory τei towards α1 and α2 in evaluating the
feasibility of trajectory τ . In the beta distribution, α1 − 1
and α2−1 can be interpreted as the number of data points of
classes 1 and 2 respectively. In our setting, the two classes
are feasible and infeasible. Hence, the outputs σ1

i and σ2
i

of each encoder i can be interpreted as fractional counts of
feasibility and infeasibility when comparing a trajectory τ
to an expert trajectory τe that is assumed to be feasible.

To summarize, by optimizing the weights w to maximize
P (ϕ(τ)), we are essentially trying to find weights that de-
fine a distribution over constraints ϕ(τ) that ensures that
the expert trajectories will be generated with a high prob-
ability. The steps in confidence aware ICRL are given in
Algorithm 1.

Algorithm 1 Confidence Aware Inverse-Constraint-
Learning

Require: Expert trajectories D, iterations N
Initialize π and w randomly
while i = 1 to N do

Forward control:
π∗ = argmaxπ EPπ

[r̄(τ)] + βH(Pπ)
such that EPC

[ϕ∗(τ)] ≤ ϵ
Update weights of constraint distribution:
w ← w +∇w[

∑
τ∈D βr̄(τ)]+

log quantilebeta(·|αw(D,τ))(1− λ)− logZ(w)]
where estimation of Z(w) depends on π∗

Compute ϕ∗ based on confidence λ
ϕ∗(τ)← quantilebeta(·|αw(D,τ))(1− λ)

end while

3.2. Objective 2: Determining sufficiency of expert
trajectories

Figure 3 outlines the solution for the second problem about
determining whether the number of expert trajectories is
sufficient or not. Note that the bottom left box in Figure 3
corresponds to all of Figure 2. Hence, we can view Figure 2
as the step of inferring a confidence-aware constraint in
Figure 3. This solution allows practitioners to determine
whether they have enough expert trajectories. Intuitively,
when the number of expert trajectories is small, then the
inferred constraint will be very constraining, yielding a
policy of low value. As the number of expert trajectories
increases, the inferred constraint for a given confidence level
can be relaxed, yielding a policy of increased value. Hence,
for a given confidence level, the process in Figure 2 will
increase the number of expert trajectories until we get a
policy that exceeds a desired value threshold.

Figure 2: Solution for inferring confidence aware constraint
from a set of expert trajectories with desired confidence λ

Figure 3: Solution for determining sufficiency of expert
trajectory based on the given confidence λ

Figure 4: Confidence Architecture

5

Confidence Aware Inverse Constrained Reinforcement Learning

4. Experiments and Results
We follow the same procedure as prior works (Malik et al.,
2021; Liu et al., 2023) for evaluating the ICRL algorithms.
The objective is to learn a policy that obtains as much re-
wards as possible by adhering to the constraints. Hence,
we plot the constraint violation rate as well as the rewards
obtained by different ICRL methods to demonstrate perfor-
mances and perform comparisons. The constraint violation
rate provides the probability with which a constraint is vi-
olated in a trajectory by a policy (lower is better). The
rewards or cumulative rewards provides the total rewards
collected by an agent in trajectories without constraint vi-
olation (higher is better). We use four baselines for com-
parison. Binary Classifier Constraint Learning (BC2L) (Liu
et al., 2023), Generative Adversarial Constraint Learning
(GACL) (Ho & Ermon, 2016), Inverse Constrained Rein-
forcement Learning (ICRL) (Malik et al., 2021), and Vari-
ational Inverse Constrained Reinforcement Learning (VI-
CRL) (Liu et al., 2023). While the baselines are predomi-
nantly algorithms that learn constraints from data, the GACL
method is an IRL algorithm (specifically GAIL from Ho &
Ermon (2016)) that has been adapted to the ICRL setting by
directly modifying the reward function to provide large pun-
ishments for violating the constraints (see Liu et al. (2023)
for more details on this algorithm). We use two types of
environments for comparing empirical performances. The
first is a set of virtual environments from the well-known
MuJoCo (Todorov et al., 2012) simulator. The second is
a realistic environment based on a highway driving task
previously used by Liu et al. (2023). We consider a total of
seven domains for the experiments (five within Mujoco and
two on the highway driving task).

All experiments are repeated 50 times and we report the
average and standard deviation of performances. Further,
we conduct an unpaired 2-sided t-test and report p-values
for statistical significance. As is common in literature, we
will consider p < 0.05 as statistically significant differ-
ences. All experiments are conducted in two phases. The
first phase is training, where CA-ICRL and all baselines
train the constraint adjustment and policy update networks
over a set of training episodes. The second phase is testing
or execution, where there is no further training and no ex-
ploratory moves. Each method simply executes its learned
policies from the training phase. We report results across
both phases. All the code for the experiments have been
open-sourced (Subramanian, 2024).

4.1. MuJoCo (Stochastic) Virtual Environments

The default MuJoCo environments commonly used for
RL have been modified for constraint inference by prior
works (Liu et al., 2023; Baert et al., 2023). We use sim-
ilar environments for our empirical studies as well. We

consider 5 different robotic environments from MuJoCo
(stochastic having Guassian noise in the transitions with
σ = 0.2, see Appendix C). These are the well-known Half
Cheetah, Ant, Pendulumn, Walker and Swimmer environ-
ments (Duan et al., 2016). They have been modified by
adding constraints and making corresponding adjustments
to the reward function (details in Appendix C). Following
prior work (Malik et al., 2021; Liu et al., 2023), we generate
an expert dataset by training a PPO-Lagrange method (Ray
et al., 2019) with the ground truth constraints, and running
the trained PPO-Lagrange expert agent in testing environ-
ments where trajectories that do not violate the provided
constraints are added to a data buffer De.

Figure 5 shows the constrained violation rate and rewards
obtained by the different methods in all the MuJoCo en-
vironments during the training phase. For the CA-ICRL
method we select a confidence value of 70%. This means
that CA-ICRL is learning constraints that are at-least as con-
straining as the ground truth constraints 70% of the times.
From the constraint violation rate plots in Figure 5, we can
see that the constraint violation rate does indeed fall below
30% for all environments except the Biased Pendulum en-
vironment. The Biased Pendulum is a hard environment
where all ICRL methods struggle to achieve good perfor-
mances (in both the violation rate and rewards obtained),
as also observed by prior works (Liu et al., 2023; Baert
et al., 2023). However, the CA-ICRL method still does
better than the other baselines by achieving a lesser con-
straint violation rate as shown in Figure 5. Further, from
Figure 5 we can see that the CA-ICRL method consistently
obtains more rewards compared to other methods during
training. CA-ICRL learns a constraint function that is at-
least as constraining as the ground truth constraints with a
desired level of confidence, while the other methods learn a
constraint function without a notion of confidence. Having
a high confidence threshold (such as 70%) makes CA-ICRL
more conservative right from the beginning of training. Fur-
ther on in training, this conservative behaviour needs fewer
adjustments to learn a reasonable constraint function and
associated policy. Comparatively, other methods start with
a policy and a constraint function that are initially aggres-
sive (since the policy is trying to maximize rewards and the
learned constraints are poor, the methods become aggres-
sive by default), violating constraints many times before
learning a reasonable constraint function and policy. This
means that these methods have to progressively unlearn their
aggressive behaviour, before they can learn good policies.
Another advantage of CA-ICRL is that, based on need, the
confidence threshold can be reduced to make the method
more aggressive if required (which is not possible in other
methods). The relative advantage of CA-ICRL in the dif-
ferent MuJoCo environments can also be observed in the
testing performances as seen in Figure 6. The observations

6

Confidence Aware Inverse Constrained Reinforcement Learning

are statistically significant (refer Appendix G).

In our experimental domains in Figure 5, we found that con-
fidence values in the range of 70% – 80% were most ideal
for the performance of CA-ICRL to balance the twin goals
of having a low constraint violation rate and the rewards
obtained. Nonetheless, CA-ICRL can be used with any
value of confidence that is usually influenced by practical
considerations.

To demonstrate our second objective (i.e., to show that CA-
ICRL allows practitioners to know if the number of expert
trajectories are sufficient for the given task when provided
a desired level of confidence and rewards), we conduct an-
other set of experiments where we vary the number of expert
trajectories and plot the performances of CA-ICRL. In this
scenario, since practitioners have a desired confidence and
performance level they need to meet, only ICRL methods
that learn a distribution over constraints can be considered.
The ICRL methods that learn point estimates (single con-
straint estimate) cannot provide confidence measures and
hence are not considered as part of this experiment. From
our set of algorithms, only VICRL and CA-ICRL learn dis-
tribution over constraints. Hence, only these two algorithms
are considered as part of this experiment.

For these experiments, we assume a confidence of 80% for
CA-ICRL. We consider three scenarios, where there are 100,
200, and 300 expert trajectories available respectively. The
performances in Blocked Walker are in Figure 7 (other envi-
ronments can be found in Appendix G). It can be observed
that CA-ICRL obtains a much better constraint violation
rate as compared to VICRL. Further, in all the three cases,
the constraint violation rate of CA-ICRL eventually drops
to less than 20%, consistent with the confidence require-
ment of 80%. Also, we observe that the rewards obtained
by CA-ICRL is higher than that obtained by VICRL across
all the three different scenarios. Additionally, CA-ICRL
obtains higher rewards as the number of expert trajectories
increases. This shows that CA-ICRL learns less conserva-
tive constraints when more expert trajectories are present,
and practitioners can use CA-ICRL to determine if the num-
ber of expert trajectories are sufficient to achieve the desired
performance levels (i.e., they will need to obtain more trajec-
tories if CA-ICRL does not learn policies that reach desired
performance levels with the current trajectories).

4.2. Realistic Environments

This environment corresponds to the highway driving task
used by prior works (Liu et al., 2023; Baert et al., 2023).
Here we have a set of human driver trajectories collected
as part of the HighD dataset (Krajewski et al., 2018). The
HighD dataset collects samples reflecting the stochastic
dynamics involved in real-world driving (due to different
preferences of human drivers and road conditions). This

dataset preparation and the game conditions are the same
as that in Liu et al. (2023), where the velocity and distance
of vehicles are constrained to ensure a safe driving experi-
ence. Two environments are simulated using this dataset,
where the first environment uses a constraint of the vehicle
distance and the second environment places a constraint
on the vehicle velocity (more details in Appendix C). The
performances of the different algorithms are in Figure 8
(CA-ICRL continues to use the confidence of 70%). Simi-
lar to our observations in MuJoCo, we find that CA-ICRL
provides better performances as compared to other methods
in terms of both constraint violation rate and rewards.

4.3. Varying Confidence in CA-ICRL

We run an experiment to study the performance of CA-
ICRL under different confidence values. As noted previ-
ously, one important advantage of CA-ICRL as compared to
prior ICRL methods is that it can accept a confidence value
and learn the least constraining constraint that is at-least as
constraining as the ground truth constraints with the desired
confidence. We choose the Blocked Walker MuJoCo envi-
ronment and four confidence values (30%, 50%, 70%, and
90%) for CA-ICRL. For each confidence value we use a
expert dataset with 150 trajectories. We plot the training
performances (both constraint violation rate and the rewards
obtained) in Figure 9. From results in Figure 9(a), we note
that as the confidence values increases, the constraint viola-
tion rate of CA-ICRL reduces. Hence, if practitioners prefer
to be conservative and only use constraints that have high
confidences, then the constraint violation rate of CA-ICRL
drops as expected. However, from Figure 9(b), we can see
that the performance in terms of reward accumulated also
reduces with increase in confidence. This is also expected,
since requiring more confidence in the constraints leads to
learning comparatively more conservative constraints that
reduces the rewards obtained. Considering this trade-off
between rewards and the constraint violation rate, practi-
tioners can use CA-ICRL with the choice of an appropriate
confidence based on their requirements. Further, Figure 9(a)
demonstrates that CA-ICRL ensures that the constraints are
at-least as conservative as the ground truth constraints with
the desired value of confidence for all the four values of con-
fidence. This demonstrates the advantage of CA-ICRL as
compared to prior methods that do not maintain confidence.

In our work, we discussed two ways of meeting the perfor-
mance requirements (represented by δ) for the CA-ICRL
algorithm. Either, the number of expert trajectories can
be increased by fixing the confidence threshold (i.e., λ) as
shown in the experiments of Figure 7, or the confidence
requirements can be reduced by keeping the expert trajecto-
ries fixed as shown in Figure 9. Based on the preferences of
the practitioners and their performance requirements, either
of the two methods can be used.

7

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 5: Training experiments in the MuJoCo environments

Figure 6: Execution experiments in the MuJoCo environments

Figure 7: Comparison of VICRL and CA-ICRL in the Blocked Walker Environment for different numbers of expert
trajectories

8

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 8: Training and execution in the HighD environments with distance and velocity constraints

Figure 9: CA-ICRL performance with varying confidence
values

Appendix E provides the wall clock time for our experi-
ments, and Appendix D contains details regarding the com-
putational complexity for CA-ICRL.

4.4. Minimum Number of Expert Trajectories

In Figure 7 we showed that the performance of CA-ICRL
improves with an increase in the number of expert trajec-
tories for a fixed confidence requirement. Related to this
observation, in this subsection, we run an ablation study that
demonstrates an increase in the minimum numbers of expert
trajectories required for CA-ICRL to satisfy increases in
performance requirements (represented by δ in Section 3.2).
We consider the Blocked Walker environment, where we
vary the performance threshold (δ) from 1000 to 2000 (in-
crements of 200) and use CA-ICRL (with a confidence
requirement of 80%) to find the minimum number of expert
trajectories from the expert policy to achieve this perfor-
mance. The ablation results can be found in Figure 10. The
results show that more trajectories are required for a higher
desired performance, consistent with our observations in
other experiments in the main paper.

Figure 10: Experiment showing the minimum number of
expert trajectories required for a desired value threshold in
CA-ICRL. The experiment uses the Blocked Walker envi-
ronment. CA-ICRL uses a confidence of 80%.

5. Conclusion
In this paper, we introduced the notion of confidence in
ICRL. We provided a method (CA-ICRL) that can take in
a desired level of confidence, and learn a constraint that is
at-least as constraining as the ground truth constraint with
the desired level of confidence. Additionally, this method
allows practitioners to know if the number of expert tra-
jectories available is sufficient to learn constraints with the
desired confidence and performance levels. Empirically,
we demonstrated the performance of CA-ICRL in a variety
of simulated and realistic environments and showcased its
superiority as compared to a set of recent baselines. A set of
limitations of our work with associated discussion of future
works can be found in Appendix A. Particularly, as future
work, we are interested in extending our study to settings
where the constraint as well as the reward function are not
provided apriori and need to be learned from data.

9

Confidence Aware Inverse Constrained Reinforcement Learning

Acknowledgements
Resources used in preparing this research at the University
of Waterloo were provided by Huawei Canada, NSERC, the
province of Ontario and the government of Canada through
CIFAR and companies sponsoring the Vector Institute.

Impact Statement
This work provides an algorithm in the space of Inverse
Constrained Reinforcement Learning (ICRL), that maintains
a measure of confidence in the estimated constraints from
a set of expert demonstrations. We expect our method to
have a very positive impact in the area of AI safety. To
deploy algorithms that are safe, practitioners can use CA-
ICRL with a high confidence requirement. This is extremely
important in safety critical applications like autonomous
driving. For example in the case of autonomous driving, if
we pick a confidence of 90%, CA-ICRL can be used to find
the minimum gap d (bumper-to-bumper distance) such that
the true minimum gap that is safe in practice is at-least d,
90% of the time.

References
Afsar, M. M., Crump, T., and Far, B. Reinforcement learn-

ing based recommender systems: A survey. ACM Com-
puting Surveys, 55(7):1–38, 2022.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC press, 1999.

Armesto, L., Bosga, J., Ivan, V., and Vijayakumar, S. Effi-
cient learning of constraints and generic null space poli-
cies. In 2017 IEEE International Conference on Robotics
and Automation, ICRA 2017, Singapore, Singapore, May
29 - June 3, 2017, pp. 1520–1526. IEEE, 2017.

Baert, M., Mazzaglia, P., Leroux, S., and Simoens, P. Max-
imum causal entropy inverse constrained reinforcement
learning. CoRR, abs/2305.02857, 2023.

Chou, G., Ozay, N., and Berenson, D. Learning paramet-
ric constraints in high dimensions from demonstrations.
In Kaelbling, L. P., Kragic, D., and Sugiura, K. (eds.),
3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceed-
ings, volume 100 of Proceedings of Machine Learning
Research, pp. 1211–1230. PMLR, 2019.

Chou, G., Berenson, D., and Ozay, N. Uncertainty-aware
constraint learning for adaptive safe motion planning
from demonstrations. In Kober, J., Ramos, F., and Tomlin,
C. J. (eds.), 4th Conference on Robot Learning, CoRL
2020, 16-18 November 2020, Virtual Event / Cambridge,
MA, USA, volume 155 of Proceedings of Machine Learn-
ing Research, pp. 1612–1639. PMLR, 2020.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pp. 1329–
1338. JMLR.org, 2016.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J.,
Paduraru, C., Gowal, S., and Hester, T. Challenges of
real-world reinforcement learning: definitions, bench-
marks and analysis. Machine Learning, 110(9):2419–
2468, 2021.

Gaurav, A., Rezaee, K., Liu, G., and Poupart, P. Learning
soft constraints from constrained expert demonstrations.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=8sSnD78NqTN.

Glazier, A., Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F.,
and Venable, K. B. Making human-like trade-offs in con-
strained environments by learning from demonstrations.
CoRR, abs/2109.11018, 2021.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Lee, D. D., Sugiyama, M., von Luxburg, U.,
Guyon, I., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pp. 4565–4573, 2016.

Krajewski, R., Bock, J., Kloeker, L., and Eckstein, L. The
highd dataset: A drone dataset of naturalistic vehicle tra-
jectories on german highways for validation of highly
automated driving systems. In 21st International Confer-
ence on Intelligent Transportation Systems, ITSC 2018,
Maui, HI, USA, November 4-7, 2018, pp. 2118–2125.
IEEE, 2018.

Lin, H., Ray, P., and Howard, M. Learning task constraints
in operational space formulation. In 2017 IEEE Inter-
national Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017, pp.
309–315. IEEE, 2017.

Liu, G., Luo, Y., Gaurav, A., Rezaee, K., and Poupart, P.
Benchmarking constraint inference in inverse reinforce-
ment learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=vINj_Hv9szL.

Liu, S. and Zhu, M. Learning multi-agent behaviors from
distributed and streaming demonstrations. In Neural In-
formation Processing Systems (NeurIPS), 2023.

10

https://openreview.net/forum?id=8sSnD78NqTN
https://openreview.net/forum?id=8sSnD78NqTN
https://openreview.net/forum?id=vINj_Hv9szL
https://openreview.net/forum?id=vINj_Hv9szL

Confidence Aware Inverse Constrained Reinforcement Learning

Liu, S. and Zhu, M. Meta inverse constrained reinforce-
ment learning: Convergence guarantee and generaliza-
tion analysis. In International Conference on Learning
Representations (ICLR), 2024.

Liu, Y., Halev, A., and Liu, X. Policy learning with con-
straints in model-free reinforcement learning: A survey.
In The 30th International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

Malik, S., Anwar, U., Aghasi, A., and Ahmed, A. Inverse
constrained reinforcement learning. In International Con-
ference on Machine Learning, pp. 7390–7399. PMLR,
2021.

McPherson, D. L., Stocking, K. C., and Sastry, S. S. Max-
imum likelihood constraint inference from stochastic
demonstrations. In IEEE Conference on Control Technol-
ogy and Applications, CCTA 2021, San Diego, CA, USA,
August 9-11, 2021, pp. 1208–1213. IEEE, 2021.

Menner, M., Worsnop, P., and Zeilinger, M. N. Constrained
inverse optimal control with application to a human ma-
nipulation task. IEEE Transactions on Control Systems
Technology, 29(2):826–834, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000.

Papadimitriou, D., Anwar, U., and Brown, D. S. Bayesian
methods for constraint inference in reinforcement learn-
ing. Transactions on Machine Learning Research, 2022,
2022.

Park, D., Noseworthy, M. D., Paul, R., Roy, S., and Roy, N.
Inferring task goals and constraints using bayesian non-
parametric inverse reinforcement learning. In Kaelbling,
L. P., Kragic, D., and Sugiura, K. (eds.), 3rd Annual Con-
ference on Robot Learning, CoRL 2019, Osaka, Japan,
October 30 - November 1, 2019, Proceedings, volume
100 of Proceedings of Machine Learning Research, pp.
1005–1014. PMLR, 2019.

Pavlovic, M. Expected Calibration Error
(ECE): A Step-by-Step Visual Explanation.
https://towardsdatascience.com/
expected-calibration-error-ece\
-a-step-by-step-visual-explanation,
2012. [Online; accessed 19-July-2023].

Pérez-D’Arpino, C. and Shah, J. A. C-LEARN: learning
geometric constraints from demonstrations for multi-step
manipulation in shared autonomy. In 2017 IEEE Inter-
national Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017, pp.
4058–4065. IEEE, 2017.

Qiao, G., Liu, G., Poupart, P., and zhiqiang xu. Multi-modal
inverse constrained reinforcement learning from a mix-
ture of demonstrations. In Neural Information Processing
Systems (NeurIPS), 2023.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7(1):2, 2019.

Scobee, D. R. R. and Sastry, S. S. Maximum likelihood
constraint inference for inverse reinforcement learning.
In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H.
Bidirectional attention flow for machine comprehension.
In International Conference on Learning Representations,
2016.

Subramanian, S. G. Confidence aware in-
verse constrained reinforcement learning, 2024.
URL https://github.com/Sriram94/
ConfidenceAwareICRL.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
IROS 2012, Vilamoura, Algarve, Portugal, October 7-12,
2012, pp. 5026–5033. IEEE, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wu, N. The maximum entropy method, volume 32. Springer
Science & Business Media, 2012.

Xu, S. and Liu, G. Uncertainty-aware constraint inference
in inverse constrained reinforcement learning. In Interna-
tional Conference on Learning Representations (ICLR),
2024.

11

https://towardsdatascience.com/expected-calibration-error-ece\-a-step-by-step-visual-explanation
https://towardsdatascience.com/expected-calibration-error-ece\-a-step-by-step-visual-explanation
https://towardsdatascience.com/expected-calibration-error-ece\-a-step-by-step-visual-explanation
https://github.com/Sriram94/ConfidenceAwareICRL
https://github.com/Sriram94/ConfidenceAwareICRL

Confidence Aware Inverse Constrained Reinforcement Learning

Zhao, W., Queralta, J. P., and Westerlund, T. Sim-to-real
transfer in deep reinforcement learning for robotics: a
survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

12

Confidence Aware Inverse Constrained Reinforcement Learning

A. Limitations and Future Work
We can think of a few limitations of our work. These could serve as excellent avenues for future work.

1. Our algorithm like several other ICRL methods (Liu et al., 2023; Baert et al., 2023; Gaurav et al., 2023) assumes that
the reward function is available and only the constraint function needs to be learned. Learning the constraint function
as well as the reward function from expert demonstrations is an important avenue for future work.

2. ICRL methods (including ours) commonly learn the imitation policy using online training with a simulator (Liu et al.,
2023). However, in many real-world settings like autonomous driving, it is hard to build a simulator that simulates the
conditions perfectly. Rather, it is easier to collect offline data and we need ICRL methods that can learn the imitation
policy through offline training.

3. It is commonly assumed that the expert demonstration used for training ICRL methods are coming from oracles that
are infallible. However, in real-world settings it is unlikely to have such experts/oracles who are infallible. Extensions
of ICRL methods to sub-optimal experts is another important avenue for future work.

4. Even though our method provides a way to use confidence associated with a learned policy in ICRL, there is still no
way to guarantee that this policy will not violate ground-truth constraints. Learning such policies that guarantee zero
ground truth constraint violation rate is yet another important avenue for future work.

5. Our method is slower than previous methods since it learns and uses a similarity measure between every policy
trajectory from the current policy and all expert trajectories to determine the revised constraint function. This method
does not scale well to problems with an extremely large set of expert trajectories.

B. Related Work

Algorithms State-Action
Space

Soft/Hard
constraints

Distribution over
constraints

Confidence-aware
constraints

ML-ICL (Scobee & Sastry, 2020) Discrete Hard No No
ML-SICL (McPherson et al., 2021) Discrete Hard No No
ICLR (Malik et al., 2021) Continuous Hard No No
GAIL (Ho & Ermon, 2016) Continuous Hard No No
P-ICL (Chou et al., 2019) Continuous Hard No No
Soft-ICL (Gaurav et al., 2023) Continuous Soft No No
UA-ICL (Chou et al., 2020) Continuous Hard Yes No
MESC-IRL (Glazier et al., 2021) Discrete Soft Yes No
BICRL (Papadimitriou et al., 2022) Discrete Hard Yes No
VICRL (Liu et al., 2023) Continuous Soft Yes No
CA-ICRL (ours) Continuous Soft Yes Yes

Table 1: State-of-the-art ICRL algorithms compared. Only CA-ICRL learns a confidence-aware constraint.

Previous approaches for inverse constrained learning can be broadly classified based on the type of state-action space
(discrete/continuous) they are applicable to, type of constraints they learn (soft/hard), whether they learn a distribution
over constraints, and whether the constraints learned are associated with a confidence level. The difference between soft
and hard constraints is that the hard constraints need to be strictly satisfied in every trajectory, while the soft constraints
only need to hold in expectation (Gaurav et al., 2023). Table 1 captures these characteristics of prior methods in the
literature. The majority of the works that restrict themselves to discrete states and actions focus on learning constraints
that evidently distinguish between feasible and infeasible state-action pairs (Scobee & Sastry, 2020; McPherson et al.,
2021; Park et al., 2019). Analogously, other works that are applicable to continuous domains learn a decision boundary
to distinguish between feasible and infeasible regions of state-action pairs (Malik et al., 2021; Chou et al., 2019; Lin
et al., 2017). While studying continuous domains, all works are motivated by specific applications in the field of robotics.
Armesto et al. (2017) learns constraints directly from observations associated with a surface wiping task pertaining to
robotic arm movements. Pérez-D’Arpino & Shah (2017) learns geometric constraints and associated policies for reaching

13

Confidence Aware Inverse Constrained Reinforcement Learning

and grasping movements with a robotic arm. Menner et al. (2021) learns the objective function and constraints regarding
predictive models of human motor control. These previous works have all assumed the availability of the transition model,
so that planning can be undertaken using the learned constraints to find the optimal policy. In contrast, Malik et al. (2021);
Gaurav et al. (2023); Liu et al. (2023) have provided algorithms that can learn constraints and associated policies in a
fully model-free setting with possibly high-dimensional state-action space continuous environments. Out of these methods,
Gaurav et al. (2023); Liu et al. (2023) aims to learn soft constraints, while Malik et al. (2021) learn hard constraints. All of
these methods use neural networks to learn the constraints and the associated policies. Previously, ICRL methods were
mostly restricted to learning a single candidate constraint (Scobee & Sastry, 2020; McPherson et al., 2021; Malik et al.,
2021), while more recent works learn a distribution over constraints (Chou et al., 2020; Papadimitriou et al., 2022; Liu et al.,
2023). In these methods, Chou et al. (2020) also follows the planning paradigm, where the learned constraints are used
with the available transition functions to find the optimal policy. In contrast, Papadimitriou et al. (2022) uses reinforcement
learning to learn the optimal policy without assuming access to the environment’s transition model, however this method
only applies to discrete state-action space environments. Along similar lines, Glazier et al. (2021) learns a distribution over
constraints with a scaling factor applied to rewards following a logistic distribution, with the method restricted to discrete
state-action environments. Liu et al. (2023) proposes the Variational Inverse Constrained Reinforcement Learning (VICRL)
method, which models the posterior distribution of the constraints, and is applicable to (high-dimensional) continuous
state-action environments. Though, some prior methods use approximate Bayesian techniques to return a distribution
over constraints, they do not have a way to identify the least constraining constraint that satisfies a degree of confidence.
Also, prior methods do not have a way of determining if the expert trajectories available are sufficient to learn constraints
with the desired level of confidence. Our CA-ICRL method addresses these two limitations of prior work. An alternative
approach to ICRL is to adapt methods from the inverse reinforcement learning (IRL literature). For example, the popular
IRL algorithm, Generative Adversarial Imitation Learning (GAIL) can be adapted to the ICRL setting by directly modifying
the reward function to provide large punishments for violating the constraints (Liu et al., 2023). However in such methods,
after learning punishments or constraints that are then re-used in new environments, the type of generalization obtained
is different. Learned punishments do not necessarily disable a target behaviour in new environments, depending on the
transition dynamics and other rewards of that environment. In contrast, learned constraints ensure that a target behaviour
will remain disabled in other environments.

C. Implementation and Environment Details
We provide additional details regarding the pseudocode of CA-ICRL in Algorithm 1. Algorithm 1 iterates over 3 steps:

1. Forward Control: π∗ = argmaxπ EPπ
[r̄(τ)] + βH(Pπ) such that EPC

[ϕ∗(τ)] ≤ ϵ. This constrained optimization
can be solved by PPO-Lagrange (Ray et al., 2019) or PPO-Penalty (Gaurav et al., 2023). In the experiments we use
PPO-Lagrange.

2. Update weights of constraint distribution: w ← w+∇w[
∑

τ∈D βr̄(τ)+log quantilebeta(·|αw(D,τ)(1−λ)−logZ(w)].
We provide more details about the gradient computation. First note that the quantile function consists of the inverse
cumulative distribution function (cdf).

quantilebeta(·|αw(D,τ))(1− λ) = cdf−1
beta(·|αw(D,τ)(1− λ) (9)

Note that the cdf of the beta distribution is the regularized incomplete beta function. Since the inverse cdf of the beta
distribution does not have a closed form, we approximate it numerically by a lookup table with inputs ranging from 0
to 1 in increments of 0.001. To differentiate through this numerically approximated quantile function, we approximate
the gradient by a finite forward difference (with h = 0.002).

∇wquantilebeta(·|αw(D,τ))(1− λ) ≈
quantilebeta(·|αw+h(D,τ))(1− λ)− quantilebeta(·|αw(D,τ))(1− λ)

h
(10)

where h = 0.002.

To compute the ∇wlogZ(w) we use importance sampling as done in Malik et al. (2021). Particularly, Malik et al.
(2021) show that

∇wlogZ(w) ≈ 1

M

M∑
j=1

∇w log ϕ∗
w(τ

j) (11)

14

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 11: An illustration of the MuJoCo environments. These are the Half-Cheetah, Ant, Inverted Pendulum, Walker and
Swimmer environments (from left to right).

Name Obs. Dim. Act. Dim. Constraints
Blocked Half-cheetah 18 6 X-Coordinate ≥ -3

Blocked Ant 113 8 X-Coordinate ≥ -3
Biased Pendulumn 4 1 X-Coordinate ≥ -0.015

Blocked Walker 18 6 X-Coordinate ≥ -3
Blocked Swimmer 10 2 X-Coordinate ≤ 0.5

Table 2: Descriptions of the MuJoCo environments

Malik et al. (2021) use samples from an older policy πw, where w denotes the weights of ϕ at a previous iteration. To
correct for the bias in importance sampling a weight ν is added given by

ν(τ) =
ϕ∗
w(τ)

ϕ∗
w(τ)

(12)

The gradient can then be further approximated by

∇wlogZ(w) ≈ 1

M

M∑
j=1

ν(τ j)∇ log ϕ∗
w(τ) (13)

where the trajectories {τ j}Mj=1 are samples from πw.

3. The third step involves computing ϕ∗(τ) based on the confidence λ. We use the expression ϕ∗(τ) ←
quantilebeta(·|αw(D,τ))(1 − λ). To compute the expectation over ϕ∗(τ) in the forward control (step 1), we use
a sample based approximation for the expectation using 50 trajectories.

We use a set of MuJoCo environments, with settings very similar to that of Liu et al. (2023). Table 2 tabulates the settings in
the different environments. The constraints used for these experiments are the same as that in Liu et al. (2023). A detailed
analysis for the particular choices of these constraints can be found in Liu et al. (2023).

The first domain is the Blocked Half-Cheetah domain shown in Figure 11, where the agent is a robot on two legs with 9
links and 8 joints connecting the legs. The actions apply a torque on the joints that makes the agent move forward as fast as
possible. The agent gets a positive reward proportional to the distance moved forward and a negative reward proportional to
the distance moved backward. Each episode in this game has a maximum of 1000 time steps and the constraint has the robot
stay between -3 and∞ (X ≤ −3). The second domain is the Blocked Ant domain where the agent is a robot with four legs,
one torso and each leg has two links (a total of eight hinges). The actions apply torques on the eight hinges making the agent
move forward. This domain has a maximum of 1000 time steps for each episode and a constraint of X ≤ −3 similar to the
Blocked Half-Cheetah environment. The agent gets a forward reward and a healthy reward corresponding to the distance it
has covered in the forward direction and length of time it stays within the bounds of the environment. The third domain is
the Biased Pendulum domain that tries to balance a pole on a cart. Each episode has a maximum of 100 time steps and an
episode terminates either when the maximum number of time steps has been reached or when the pole falls down. The agent
gets a reward of 0.1 for each time step where the agent remains in X ≥ 0 and a reward of 1 if the agent has X ≤ −0.01.

15

Confidence Aware Inverse Constrained Reinforcement Learning

Name Obs. Dim. Act. Dim. Constraints
HighD Distance Constraint 76 2 Car Distance ≥ 20 m
HighD Velocity Constraint 76 2 Car Velocity ≤ 40 m/s

Table 3: Descriptions of the realistic environments

Figure 12: HighD Driving Environment. Figure from Liu et al. (2023).

There is a monotonic increase in reward between 0.1 to 1 when the X coordinate is within the range −0.01 < X < 0. The
constraint is, X ≤ −0.015 which prevents the agent from taking large moves to the left. However, the reward is higher for
left moves, hence the agent has to resist the temptation of the reward to respect the constraint bounds. The fourth domain is
the Blocked Walker domain which is a two legged agent with two dimensions consisting of legs, thighs and feet, all of which
need to coordinate to make the agent move forward. The action applies torque to all of the hinges connecting the different
parts. Each episode can have a maximum of 1000 time steps and the game ends when the robot falls after losing balance.
The constraint prevents the robot from moving too far backwards (X ≤ −3) same as the Blocked Half-Cheetah and the
Blocked Ant domains. The last domain is the Blocked Swimmer domain where the agent tries to swim (or walk) by applying
torque to the rotor that connects two links to form a linear chain. This agent is in a virtual “two-dimensional pool” and tries
to move as fast as possible towards the forward direction. Similar to previous domains, each episode in this domain has a
maximum of 1000 time steps. The agent is rewarded for moving forward proportional to the distance it covers (and punished
for moving backward proportional to the distance moved backwards) and is penalized for taking actions that are too large.
The constraint is X ≥ 0.5, which prevents the robot from moving too far ahead, since it is easier to move ahead than move
back in this domain, which is opposite to the Blocked Half-Cheetah and the Blocked Ant domains where it is easier for the
agent to move back than forward. Following Liu et al. (2023), we are most interested in studying the performance of ICRL
methods in stochastic environments with added noise in the transition functions. Hence, for all environments, at each step
we have an added noise such that p(st+1|st, at) = f(st, at) + η, where η ∼ N (µ, σ), with µ = 0 and σ = 0.2.

The real-world driving environments use the same setting as Liu et al. (2023). The environment is shown in Figure 12 and
the constraints for this environment are shown in Table 3. In Figure 12 the ego car is in blue and the other cars are in red.
The ego car is being controlled by the agent, which tries to drive it as efficiently as possible without violating constraints.

The hyperparameters are largely the same as those used by prior works (Liu et al., 2023; Baert et al., 2023). These parameters
are same for all the ICRL algorthms. For the virutal environments, PPO-Lag batch size is 64, hidden layer size is 64 and the
number of hidden layers for policy, value and cost networks is 3. For the HighD driving environments, the batch size of the
constraint model is 1000, the hidden layer size is 64 and the number of hidden layers for policy, value and cost networks
is 3. Regarding CA-ICRL, we use transformers to implement the encoder blocks given in Figure 4. CA-ICRL contains 2
heads with 4 hidden layers. The value for β = 0.02 throughout. For all the experiments, we repeat 50 times for training
(random seeds 1 – 50) and 50 times for execution (random seeds 51 – 100) and plot the averages and standard deviations of
performances.

D. Computational Complexity
If M is the total number of training episodes of length L, N is the total number of expert trajectories, K is the total number
of iterations within an episodic step, and X is the total number of policy trajectories used for constraint adjustment at each
time step, the time complexity of the CA-ICRL algorithm can be given as O(KLMNX). This is because each trajectory
from the policy is compared against every expert trajectory to compute a similarity score in CA-ICRL. This happens for
every iteration in every step in every episode of training.

16

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 13: Expected Calibration Error in different MuJoCo environments during training (lower is better)

E. Computational Infrastructure and Wall Clock Times
All the training for the experiments were conducted on a virtual machine having 2 Nvidia A100 GPUs with a GPU memory
of 40 GB. The CPUs use the AMD EPYC processors with a memory of 125 GB. The MuJoCo experiments took an average
of 80 hours of wall clock time to complete and the experiments on the realistic driving environments took an average of 95
hours wall clock time to complete.

F. Expected Calibration Error
In this section, we plot the expected calibration error (ECE) of CA-ICRL and VICRL in the different MuJoCo environments.
These experiments use 150 expert trajectories for each of the environments, with a confidence of 70% for CA-ICRL. The
ECE pertains to the constraint adjustment network in both the methods, which returns a probability with which a given
trajectory is feasible. To compute the ECE, we simulate a set of 500 trajectories, of which 250 are feasible and 250 are
infeasible (ground truth label). We split the data into 5 equally spaced bins. If the probability of a trajectory is below 0.5, it
is assigned the label of 0 (not feasible) and if the probability is above 0.5, it is assigned the label of 1 (feasible). We use
the formula ECE =

∑M
m−1

|Bm|
n |acc(Bm)− conf(Bm)| to compute the ECE (Pavlovic, 2012). We compute the ECE at

every episode during training. The plots are shown in Figure 13, where CA-ICRL provides a better ECE as compared to
VICRL in four environments and a similar performance as compared to VICRL in Biased Pendulum. Since CA-ICRL learns
a similarity score for each trajectory as compared to each of the expert trajectories (with direct comparisons to each expert
trajectory), it provides a better estimate of the feasibility of a given trajectory. Comparatively, the VICRL method learns a
distribution, but includes unbounded approximations to the posterior, which leads to a poor ECE (indirect comparisons to
expert trajectories).

G. Additional Experimental Results
In Figures 14 – 21 we show additional results comparing the performances of CA-ICRL and VICRL while the number of
expert trajectories is varied (100, 200 and 300 trajectories). These experiments use four MuJoCo environments (Blocked
Swimmer, Blocked Half-Cheetah, Blocked Ant, Biased Pendulum), the experiments in Blocked Walker can be found in
the experimental section of the main paper. These experiments correspond to our second objective, where CA-ICRL can
be used by practitioners to know if the number of expert trajectories are sufficient for a given task with a desired level of
confidence and performance (through rewards). As noted in the main paper, in most of the experiments in this section, we
note that CA-ICRL performs better than VICRL (both in terms of the constraint violation rate and the rewards obtained).
Also, CA-ICRL obtains higher rewards as the number of expert trajectories increase and consistently learns a policy that has
a constraint violation rate lower than required. The only exception to this observation is in the Biased Pendulum experiment
(Figure 20 and Figure 21) where the constraint violation rate remains quite high. As noted previously, Biased Pendulum is a
very hard domain where all ICRL methods struggle to learn good policies that provide high rewards and have low constraint
violation rates. Nonetheless, we note that CA-ICRL still outperforms VICRL in the Biased Pendulum experiments across all
the three scenarios (100, 200 and 300 expert trajectories).

Table 4 and Table 5 provides the p-values of an unpaired 2-sided t-test for statistical significance in the training and execution
experiments respectively. The p-values are for the comparisons of performances each algorithm with that CA-ICRL in each
of the execution experiments conducted in experimental section of the main paper. From the p-values we see most of our
inferences showing the superiority of CA-ICRL are statistically significant (except a few results in Biased Pendulum).

17

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 14: Comparison of constraint violation rate between VICRL and CA-ICRL in the Blocked Swimmer Environment
for different numbers of expert trajectories

Figure 15: Comparison of rewards earned between VICRL and CA-ICRL in the Blocked Swimmer Environment for different
numbers of expert trajectories

Figure 16: Comparison of constraint violation rate between VICRL and CA-ICRL in the Blocked Half-Cheetah Environment
for different numbers of expert trajectories

18

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 17: Comparison of rewards earned between VICRL and CA-ICRL in the Blocked Half-Cheetah Environment for
different numbers of expert trajectories

Figure 18: Comparison of constraint violation rate between VICRL and CA-ICRL in the Blocked Ant Environment for
different numbers of expert trajectories

Figure 19: Comparison of rewards earned between VICRL and CA-ICRL in the Blocked Ant Environment for different
numbers of expert trajectories

19

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 20: Comparison of constraint violation rate between VICRL and CA-ICRL in the Biased Pendulum Environment for
different numbers of expert trajectories

Figure 21: Comparison of rewards earned between VICRL and CA-ICRL in the Biased Pendulum Environment for different
numbers of expert trajectories

Blocked Half-
Cheetah

Blocked
Ant

Biased
Pendulum

Blocked
Walker

Blocked
Swimmer

HighD
Distance

HighD
Velocity

Rewards

GACL 0.016 0.035 0.063 0.024 0.001 0.004 0.036
BC2L 0.018 0.029 0.071 0.035 0.001 0.004 0.025
ICRL 0.001 0.001 0.033 0.001 0.027 0.004 0.023

VICRL 0.001 0.001 0.001 0.001 0.001 0.001 0.013

Constraint
Violation

Rate

GACL 0.001 0.001 0.022 0.001 0.001 0.001 0.001
BC2L 0.001 0.001 0.024 0.001 0.001 0.001 0.001
ICRL 0.001 0.001 0.017 0.001 0.001 0.001 0.001

VICRL 0.001 0.019 0.001 0.001 0.014 0.005 0.001

Table 4: Statistical Significance - We report the p-values from an unpaired 2-sided t-test with comparisons to CA-ICRL for
the training experiments, conducted at the last episode of training. The values are rounded to the third decimal. We consider
p ¡ 0.05 as statistically significant. From the table, most comparisons are statistically significant differences (except the ones
in bold).

20

Confidence Aware Inverse Constrained Reinforcement Learning

Blocked Half-
Cheetah

Blocked
Ant

Biased
Pendulum

Blocked
Walker

Blocked
Swimmer

HighD
Distance

HighD
Velocity

Rewards

GACL 0.043 0.039 0.081 0.001 0.001 0.015 0.001
BC2L 0.056 0.045 0.086 0.035 0.001 0.031 0.001
ICRL 0.001 0.001 0.053 0.001 0.027 0.048 0.043

VICRL 0.001 0.001 0.001 0.001 0.001 0.026 0.039

Constraint
Violation

Rate

GACL 0.001 0.001 0.007 0.001 0.001 0.001 0.001
BC2L 0.001 0.008 0.031 0.001 0.001 0.001 0.001
ICRL 0.003 0.001 0.068 0.006 0.001 0.007 0.001

VICRL 0.001 0.019 0.084 0.033 0.014 0.004 0.002

Table 5: Statistical Significance - We report the p-values from an unpaired 2-sided t-test with comparisons to CA-ICRL
for the testing experiments. The values are rounded to the third decimal. We consider p < 0.05 as statistically significant
differences. From the table, most comparisons are statistically significant differences (except the ones in bold).

H. Experiments With Thousands of Trajectories
In the experiments in Section 4 we restrict ourselves to hundreds of trajectories since that was close to sufficient in these
environments. Figure 22 shows results with up-to 20,000 trajectories (with performances only showing a small improvement
over 300 trajectories).

I. Comparisons With ICL (Gaurav et al., 2023)
In the experiments in Section 4, we have not considered comparisons to Gaurav et al. (2023) since this method neither
learns confidence nor a distribution over constraints (see Table 1). However, for completeness we run some comparisons to
ICL as well in two MuJoCo environments (Blocked Ant and Blocked Half-Cheetah). The results are in Figure 23 which
demonstrate that CA-ICRL shows consistently better performances as compared to ICL across the different two different
metrics (i.e., constraint violation rate and rewards obtained).

21

Confidence Aware Inverse Constrained Reinforcement Learning

Figure 22: CA-ICRL with thousands of trajectories. All figures share the same legend.

Figure 23: Comparison of CA-ICRL with ICL (Gaurav et al., 2023). All figures share the same legend.

22

