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ABSTRACT

In this paper, we introduce SPA, a novel representation learning framework that
emphasizes the importance of 3D spatial awareness in embodied Al. Our ap-
proach leverages differentiable neural rendering on multi-view images to endow a
vanilla Vision Transformer (ViT) with intrinsic spatial understanding. We present
the most comprehensive evaluation of embodied representation learning to date,
covering 268 tasks across 8 simulators with diverse policies in both single-task
and language-conditioned multi-task scenarios. The results are compelling: SPA
consistently outperforms more than 10 state-of-the-art representation methods,
including those specifically designed for embodied Al, vision-centric tasks, and
multi-modal applications, while using less training data. Furthermore, we con-
duct a series of real-world experiments to confirm its effectiveness in practical
scenarios. These results highlight the critical role of 3D spatial awareness for
embodied representation learning. Our strongest model takes more than 6000
GPU hours to train and we are committed to open-sourcing all code and model
weights to foster future research in embodied representation learning. Project Page:
https://haoyizhu.github.io/spa/.

1 INTRODUCTION

Vision systems have made remarkable progress in understanding 2D images (He et al., 2020; Chen
et al., 2020a; He et al., 2022; Feichtenhofer et al., 2022; Tong et al., 2022; Yang et al., 2023; Oquab
et al., 2023; Radford et al., 2021; Fang et al., 2023b; Chen et al., 2024b). However, achieving true
visual intelligence necessitates a comprehensive understanding of the 3D world. This is crucial for
embodied Al, where agents must perceive, reason, and interact with complex 3D environments.

Existing visual representation learning methods for embodied AI (Nair et al., 2022; Radosavovic
et al., 2023; Majumdar et al., 2023; Karamcheti et al., 2023; Shang et al., 2024; Yang et al., 2024b)
largely rely on paradigms from 2D vision, predominantly employing contrastive-based or masked
autoencoder (MAE)-based approaches. However, they often struggle to fully capture the spatial
relationships and 3D structures inherent in the physical world. This limitation arises from their
primary emphasis on 2D semantic understanding, which, though valuable, is still insufficient for
the sophisticated spatial reasoning required in embodied Al tasks, where agents need to navigate
environments, manipulate objects, and make decisions using their 3D spatial awareness.

In this paper, we introduce , a general 3D spatial-aware representation learning framework for
embodied AI. SPA leverages neural rendering (Mildenhall et al., 2021) as the pre-training pre-text
task on multi-view images. Unlike explicit 3D representations like point clouds or meshes—which
prior work (Wang et al., 2024b;a; Ze et al., 2024; Zhu et al., 2024) has shown to outperform pure
2D inputs in robot learning—multi-view images are easier to process and more readily available,
making them ideal for large-scale training, such as from internet videos. Specifically, given a vanilla
2D image backbone, e.g. a Vision Transformer (ViT) (Dosovitskiy et al., 2021), we first extract
multi-view feature maps from the input images. Using known camera poses, we then construct a
feature volume from these feature maps and sample rays to apply differentiable neural rendering.
This process generates multi-view RGB-D images and semantic maps for supervision without labels,
enabling the pre-training of a 2D image backbone to enhance 3D spatial awareness.
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Figure 1: Performance comparison across representations. Above: (a) Mean rank and (b) mean
success rate on benchmarks. Lines represent the performance of SPA, best, and second best perfor-
mance on each benchmark. Botfom: Rank distributions for 268 individual tasks, showing proportions
from rank 1 to rank > 4 counterclockwise. Our model demonstrates superior overall performance.

(c) Rank Distributions

To thoroughly validate our assumption and method, we collect 268 embodied tasks across 8 simulators
using various policy methods. To our knowledge, this represents the largest scale of embodied
evaluation to date. Previous work, such as R3M (Nair et al., 2022) and VC-1 (Majumdar et al.,
2023), evaluated fewer than 20 tasks, potentially leading to incomplete or biased conclusions. Our
evaluation spans both single-task and language-conditioned multi-task learning. We compare over 10
state-of-the-art representation learning methods, categorized as embodied-specific (Nair et al., 2022;
Majumdar et al., 2023; Radosavovic et al., 2023), vision-centric (Oquab et al., 2023; Chen et al.,
2021; He et al., 2022), and multi-modal (Radford et al., 2021; Fang et al., 2023b; Chen et al., 2024b).
Our method consistently outperforms others, underscoring the importance of 3D spatial awareness
for embodied Al Notably, multi-modal models like CLIP (Radford et al., 2021), consistently perform
poorly. This holds even the vision-language model scales the ViT to 6B parameters (Chen et al.,
2024b). Through a camera pose estimation task and feature map visualization, we demonstrate that
SPA has learned superior 3D spatial understanding. Further, we find that 3D awareness shows a
positive correlation with embodied performance. Finally, we conduct several real-world tasks, where
SPA also demonstrates superior performance. Our contribution can be summarized as follows.

» We propose a significant spatial hypothesis: 3D spatial awareness is crucial for embodied
representation learning. Our experiments provide clear evidence for the hypothesis.

* We introduce SPA, a novel paradigm for representation learning in embodied Al. It enhances
a vanilla Vision Transformer (ViT) with 3D awareness using differentiable neural rendering
as the pre-text task on multi-view images.

* We conduct the largest evaluation benchmark for embodied representation learning, signifi-
cantly larger than previous studies. It involves 268 tasks, 8 simulators, and over 10 SOTA
methods with diverse downstream policies and task settings.
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» Through extensive experiments in both simulators and real-world settings, SPA outperforms
more than 10 SOTA representation learning methods, demonstrating its effectiveness.

2 METHODOLOGY

In this section, we first describe our process for handling multi-view image inputs and feature
extraction in Sec. 2.1. Subsequently, we construct an explicit feature volume from these multi-view
features, detailed in Sec. 2.2. Finally, we explain the image rendering from the feature volume and
loss functions for network optimization in Sec. 2.3 and Sec. 2.4. Our pipeline is visualized in Fig. 2.

2.1 INPUT PROCESS AND FEATURE EXTRACTION

Given a set of multi-view images I = {I1, I5,..., Iy}, where each I; € R3*HXW and N € 7+,
we utilize a 2D image backbone F’, such as a ViT. The images are processed separately through F,
yielding latent features L = {l,lo, ..., Ix}, where each [; = F(I;) € RE*Y. Following MAE, we
apply random masking to input images to enhance robustness, but without a ViT decoder and MAE’s
pixel reconstruction objective. For each [;, masked positions are filled with a mask token, and we
concatenate the global class token with other patch tokens as read-out tokens similar to DPT (Ranftl
et al., 2020). We then unpatchify them to obtain a latent feature map of size % X %, where P is the
ViT patch size. Finally, two simple upsampling layers transform this into a feature map M; matching
the input resolution. Each upsampling layer includes a convolution, a GELU (Hendrycks & Gimpel,

2016) activation, and a pixel shuffle layer (Shi et al., 2016) with an upscale factor of v/P.

2.2 DYNAMIC VOLUME CONSTRUCTION

To enable multi-view interaction, we construct a 3D feature volume from multi-view feature maps,
M. Unlike the bird’s-eye view (BEV) construction in autonomous driving (Li et al., 2022), which
usually relies on a fixed scene range around ego vehicle , our method dynamically adjusts the scene
range based on the spatial extents of the environment to accommodate varying datasets. Specifically,
the scene’s bounds are first estimated using available depth data, sparse points, or pre-defined rules.
We then partition the scene into a volume of size X X Y x Z, with voxel size dynamically adjusted
to capture either fine object details or larger environments. Voxel features, V, are initialized with
learnable positional embeddings. Each voxel is projected onto the multi-view feature maps using
the known transformation matrix T. Deformable attention (Zhu et al., 2021) is then applied, where
the multi-view features act as keys and values, and the voxel features as queries. Finally, a 3D
convolution refines the output volume features to obtain V. The process can be formulated as:

V = Conv3D(DeformAttn(V, M, T)). 1)

2.3 DIFFERENTIABLE VOLUMETRIC RENDERING

After constructing the feature volume, we employ differentiable neural rendering (Mildenhall et al.,
2021) to connect 2D and 3D domains. For better geometry representation, we utilize the implicit
signed distance function (SDF) field modeling as in NeuS (Wang et al., 2021). The SDF represents
the 3D distance from a query point to the nearest surface, implicitly capturing the 3D geometry.

Given a feature volume V, we apply a shallow 3D CNN ¢ to directly produce three outputs: an
SDF feature volume S € RXXY*Z 3 spherical harmonic (SH) (Yu et al., 2021; Zhu et al., 2023a)
coefficient field K € RP*X>XY*Z (where D = 3 - (I;nax + 1)?) for color rendering, and a semantic
feature volume F € RCsemantic XX XY X7,

SERXXYXZ ICERDXXXYXZ, IERcsemam;CXXXYXZ :¢(V) (2)

Unlike prior work (Huang et al., 2023; Zhu et al., 2023b; Yang et al., 2024a), which employs an MLP
to compute the attributes of each sampled point individually, we directly apply a 3D CNN to V. This
eliminates the need for pointwise MLP computations, reducing redundant processing and enabling
more efficient execution. Consequently, our approach leads to substantial improvements in both time
and memory efficiency, especially when sampling a large number of points during rendering.

?
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Figure 2: Pipeline Overview. Given multi-view images, we randomly mask patches and input the
remaining into a Vision Transformer. The upsampled latent features generate multi-view feature
maps, from which we construct a feature volume to derive SDF values, SH coefficients, and semantic
features. We then render depth, RGB, and semantic maps for loss computation.

To render a 2D pixel ¢, we sample N ray points {p; =o+¢;d; | j =1,...,N, t; < t;41} from
ray r;, where o is the camera origin and d; is the viewing direction. Attributes for each point are
obtained via trilinear sampling:

si =7(5,p;), ki =7(K,p;), £ =7(F,p)) ©)
The SH vector k; = (kI™)o<i<in,—1<m<1» Where k" € R3, is used to compute view-dependent
colors ¢; by querying the SH basis functions ¥;™ : S — R based on the viewing direction d:
lmax l
¢; = Sigmoid (Z > kle/n(dj)> : (4)
=0 m=-1
Following the formulation in NeuS (Wang et al., 2021), the RGB color Ci, depth ]ADi, and semantic
feature F; for pixel 7 are computed by integrating the predicted values along the ray:

N N N
Ci = ijéj, Dz = ijtj, F,L' = ijfj, (5)
Jj=1 j=1 j=1
where w; = Tja; is the occlusion-aware weight, with T; = fc;ll(l — «y) representing the
accumulated transmittance and «; being the opacity value. Specifically, o; is computed as:
o —max<"s(s")_gs(sj“),o>, ©6)
os(s5)

where o4 (z) = (1 + e~%%) ! is the sigmoid function modulated by a learnable parameter s.

2.4 Lo0SS FUNCTIONS

During pre-training, we randomly sample K pixels from multi-view inputs in each iteration. The
rendering loss is calculated based on the differences between the input pixel values and the predicted
values. For the semantic feature map, we use the feature map from AM-RADIO (Ranzinger et al.,
2024) as supervision. Our framework has the capability to distill knowledge from multiple vision
foundation models by adding multiple rendering heads. However, this paper does not explore that
approach, as it is not the primary focus. The rendering loss is expressed as:

K
1 A . .
ﬁrender = ? Z(Acolnr : ||Cz - CzH + Adepth : ||Dz - Dz” + /\semantic : ||F1 - FZH) (7)
=1

Additionally, we incorporate the Eikonal regularization 10ss Lejkonal, Near-surface SDF supervision
loss L, and free space SDF loss Lgee, Which are standard in neural surface reconstruction. Detailed
definitions of these losses are provided in Appendix A. The total loss is defined as:

Elotal = Acrender + >\eik0nal : £eikonal + )\sdf : Esdf + >\free : Efree- (8)
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Figure 3: Overview of our large-scale embodied evaluation. We conduct the largest-scale evaluation
of embodied representation learning to date. Our study encompasses 268 tasks across 8 simulators,
including both single-task and language-conditioned multi-task settings. We evaluate diverse policy
architectures and assess various state-of-the-art representation methods. This thorough evaluation
allows us to provide a comprehensive and unbiased analysis of different representations.

3 LARGE-SCALE EMBODIED EVALUATION

Unlike the CV or NLP communities, where large-scale benchmarks are common, embodied represen-
tations have not been thoroughly assessed. The largest previous evaluation, VC-1 (Majumdar et al.,
2023), includes only 17 tasks. This may lead to randomness and bias. Therefore, we have created
the largest embodied evaluation to date, encompassing 268 tasks across 8 simulators—over 15
times larger than VC-1’s evaluation. Additionally, unlike previous approaches (Majumdar et al.,
2023; Nair et al., 2022; Radosavovic et al., 2023) that used a small MLP policy under single-task
settings, our evaluation spans multiple policy types (e.g. MLP, diffusion, transformer) and includes
both single-task and language-conditioned multi-task settings. This unprecedented scale and diversity
ensure robust and convincing conclusions. During all evaluations, we adhere to standard practices
by freezing the pre-trained representation model. Our detailed evaluation settings can be found in
Appendix B. The overview of our evaluation is shown in Fig. 3.

We have included 3 single-task benchmarks:

1) VC-1 (Majumdar et al., 2023) involves 4 selected simulators with 14 tasks in total: Adroit
(AD) (Kumar, 2016), Meta-World (MW) (Yu et al., 2020), DMControl (DMC) (Tunyasuvunakool
et al., 2020), and TriFinger (TF) (Wiithrich et al., 2020). We use a 3-layer MLP as the policy network.
2) Franka Kitchen (Gupta et al., 2019) involves 5 selected tasks. Each task spans two camera
viewpoints and three random seeds. We utilize 25 demonstrations to train a 2-layer MLP policy.

3) Meta-World (Yu et al., 2020) involves 48 selected tasks of varying difficulty. We implemented the
Diffusion Policy (Chi et al., 2023) on this benchmark and adhered to the setup in Ze et al. (2024) to
generate 10 demonstrations for each single-task training, followed by evaluation through 20 rollouts.

We have also included 2 language-conditioned multi-task benchmarks:

1) RLBench (James et al., 2020) features 71 selected tasks that can be successfully executed. We
divide the tasks into two groups according to their category defined by PolarNet (Chen et al., 2023).
We employ RVT-2 (Goyal et al., 2024), the SOTA method on this benchmark, as our policy.

2) LIBERO (Liu et al., 2024) comprises 130 tasks across 5 suites: LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, LIBERO-10, and LIBERO-90. We train a language-conditioned transformer policy
provided by the original LIBERO on each suite with only 20 demonstrations per task.

4 TRAINING AND IMPLEMENTATION DETAILS

In this section, we present the implementation and training of our SPA model. We first compile several
multi-view datasets, training ViT-B models on each to assess the impact of different datasets (Sec. 4.1).
Finally, we integrate all factors and scale up both data and model size to train the strongest version of
SPA using a ViT-large (ViT-L) backbone (Sec. 4.2). More details can be found in Appendix C.
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4.1 DATASET INVESTIGATION

We collect several multi-view datasets. To investigate their effectiveness in SPA representation
learning, we train a ViT-B model on one or two of the datasets, keeping the total training steps
constant, and assess performance on the VC-1 benchmarks. For simplicity, semantic rendering is
disabled. The datasets investigated are listed in the first column of Tab. 1. Most datasets provide
ground-truth depth, which we use for supervision. As our findings above reveal that depth supervision
is helpful, for datasets lacking ground-truth depth, we employ a depth estimation model. For instance,
Droid (Khazatsky et al., 2024) only offers binocular images, so we apply CroCo-Stereo (Weinzaepfel
et al., 2023) for dense depth estimation. Additionally, due to inaccurate camera poses in Droid,
we treat its data as single-view inputs. The results are presented in Tab. 1, with further details in
Appendix C. Our analysis reveals that some datasets can be detrimental. For example, although
RH20T (Fang et al., 2023a) is a large-scale robotic dataset, its lack of visual diversity—stemming
from data collected in the same lab—negatively impacts representation learning.

Table 1: Influence of different datasets. We present the performance results on the VC-1 benchmark.
Mean S.R. refers to the mean success rate across all individual tasks.

Datasets AD MW DMC TF l\gel;‘“
ScanNet (Dai et al., 2017) 52.67+4.11 90.93+3.22 65.11+1.31 70.75+1.08 | 73.68
ScanNet++ (Yeshwanth et al., 2023) 56.00+2.83  89.87+4.20 62.2444.51 71.28+0.38 | 72.51
Arkitscenes (Baruch et al., 2021) 50.67£5.73  89.87+4.59 60.51£2.55 66.54+0.13 70.45
Droid (Khazatsky et al., 2024) 53.33+5.25  90.40£4.90 60.99+3.72 73.28+0.61 72.16
Hypersim (Roberts et al., 2021) 52.67+4.11 88.80+3.27 60.84£2.06 72.2940.47 71.29
Hypersim + ADT (Pan et al., 2023) 52.00+2.83  87.20£2.30 63.61+1.04 70.83+0.13 71.41
Hypersim + S3DIS (Armeni et al., 2017) 49.33£0.94  94.131+2.04 64.57+3.91 71.74%0.75 73.98
Hypersim + Structured3D (Zheng et al., 2020) 46.67+4.11 80.27+£7.72 58.02+ 2.34 65.05+£0.40 65.35
Hypersim + RH20T (Fang et al., 2023a) 47.33£1.89  86.93+4.99 57.01+4.35 64.2840.46 | 67.35
Hypersim + ASE (Avetisyan et al., 2024) 47.334+4.11 87.73+£3.39 60.62+4.14 68.59+0.30 69.54

4.2 Putr ALL TOGETHER

Based on the previous analyses, we proceed to pre-train the final version of SPA. We use a mask
ratio of 0.5 and enable all three rendering losses. Following Ponder (Huang et al., 2023), we set
the weight for the RGB loss to 10, the weights for the depth and semantic losses to 1, and use
Aeikonal = 0.01, Aggr = 10, and Afree = 1. The volume size is 128 x 128 x 32. For stable
training, we apply the Exponential Moving Average (EMA) technique with a decay of 0.999. We
use AdamW (Loshchilov et al., 2017) as the optimizer with a weight decay of 0.04 and a learning
rate of 8¢~%. OneCycle (Smith & Topin, 2019) learning rate scheduler is adopted. We utilize 80
NVIDIA A100-SXM4-80GB GPUs, each with a batch size of 2, and accumulate gradients over 8
batches, resulting in a total effective batch size of 2 x 8 x 80 = 1280. Training is conducted over
2000 epochs, sampling each dataset to match the size of ADT per epoch. The datasets used for the
final version include ScanNet, ScanNet++, ADT, S3DIS, Hypersim, and Droid.

5 EXPERIMENT RESULTS

In this section, we present the results of our large-scale evaluation. Our experiments are designed to
address the following research questions:

Q1: How does SPA compare to other methods in our large-scale embodied evaluation?

Q2: What insights do we gain about various representation learning approaches from our evaluation?
Q3: Does SPA really learn enhanced 3D awareness that results in improved embodied representation?
Q4: Can SPA facilitate robot learning in real-world environments in a zero-shot manner?

5.1 OVERALL COMPARISONS (Q1, Q2)

Evaluation Metrics. We follow prior work (Majumdar et al., 2023; Zhu et al., 2024) in reporting
two metrics: Mean Success Rate (Mean S.R.) and Mean Rank. Mean S.R. is the average success rate
across all tasks, indicating overall performance, while Mean Rank reflects the average ranking of each
method’s success rate across tasks, providing a measure of relative performance. Since RLBench has
fixed train and test sets, we report a single result for this benchmark.
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Table 2: Summary of different representation learning methods. ‘#Param.’ is the total parameters
of the encoder, while ‘#Frames’ indicates the total number of image frames used during pre-training.

Vision-Centric Multi-Modal Embodied-Specific Distilled
Method MoCoV3 MAE DINOV2 CLIP EVA  InternViT-300M InternViT-6B MVP VC-1 SPA | AM-RADIO
(Chenetal, (Heetal, (Oquabetal, | (Radfordetal, (Fangetal, (Chen et al., (Chen et al., (Radosavovic etal,  (Majumdaretal,  (OUrS) | (Ranzi nger et al.,
2020b) 2022) 2023) 2021) 2023b) 2024b) 2024b) 2023) 2023) 2024)
Is Vanilla? v v X v v X X v v v
Input Size 224 224 224 224 224 448 224 256 224 224 dynamic
Patch Size 16 16 14 14 14 14 14 16 16 16 16
#Param. 303M  303M  303M 303M 303M 303M 5.9B 303M 303M 303M 653M
#Frames 1.28M 1.28M 1.2B 400M 14M 5.0B 5.0B 4.5M 5.6M 3.8M 1.4B

Table 3: Comparison of different representation learning methods. ‘OOM’ indicates an out-
of-memory error during evaluation. The best and second-best results are bolded and underlined
respectively. The number in parentheses denotes the number of tasks. S.R. denotes ‘Success Rate’.

Method Vision-Centric Multi-Modal Embodied-Specific
Benchmark MoCoV3 MAE DINOV2 | CLIP  EVA l"f(;mT' l“‘eg;svm MVP  VC-1 SPA (Ours)
AD (2) S8.77.0 58.0£2.0 47.3L3.1 |48.7£3.1 58.0£6.0 53.3£3.1 60.0£9.2 [53.314.2 54.0£4.0 60.0+4.0
vel  [MWS) o [88.8450 90.044.6 840437 |77.1432 90.7£0.9 840437 §9.1512 93.6+5.2 875438 93.3+2.0
DMC (5) |67.313.3 74.4+1.8 64.5£2.5 |53.943.6 62.74£2.8 533+04 663132 [69.4£2.6 65.3+3.6 7LIE5.0
TF (2) 67.9402 73.0£0.5 68.540.4 |56.1£1.6 67.2£02 65.2+1.6 70.7£0.9 |73.2£0.8 70.9+1.1 73.6£2.0
RLBench |Group 1 35)] 737 783 782 76.8 752 74.1 0OM | 762 80.1 80.5
enh | Group 2 (36)|  54.2 517 56.1 55.7 57.0 54.9 0OM 56.3 55.7 61.2
Meta-World (48)  |69.3+1.5 67.81.7 56306 [66.7£1.7 63.7+1.3 57.5£1.7 OOM |664+1.7 68.6+1.5 69.2+1.7
Object (10) [65.3£8.0 71.7£13.1 64.74£9.9 |50.247.0 73.2£6.0 67.746.0 58.0+£10.6|63.7£4.8 69.7+7.2 76.7+5.3
Spatial (10) [40.5+0.9 57.2:42.9 36.3£11.8(32.240.6 539.3E£7.7 48.3+6.4 42.0+10.3(58.0£6.2 50.5+7.5 50.0+3.8
LIBERO |Goal (10) ~ [49.248.1 543+6.0 222+42.3 |30.3+3.2 56.842.9 58.844.5 33.242.0 [63.852.8 57.546.6 65.3+2.5
10 (10) 34243.8 412445 283230 |27.5+3.9 433428 382413 343+4.6 |30.0£0.9 39.7+3.5 40.243.6
90 (90) 30014 299420 27.5422 |29.442.0 31.342.3 23.8+£1.8 27.142.1 [32.143.5 30.6+3.3 32.2L1.6
Franka-Kitchen (5) |48.3+4.7 42.742.6 40.9+64 [30.8+£3.3 373413 285417 OOM |343+6.1 37.543.5 40.6+19
Mean S.R. 1 81.67  85.13 7518 | 77.10 8384 7541 3065 | 84.85 8469  88.63
Mean Rank | 451 4.07 5.61 5.17 437 5.92 757 424 413 3.20

Baselines. We evaluate 9 SOTA representation learning models, all using ViT-L backbone, categorized
into vision-centric, multi-modal, and embodied-specific. This also includes a 6B multi-modal
model (Chen et al., 2024b). The vision-centric methods are originally from the vision community;
the multi-modal methods are typically CLIP-style language-image pre-trained models and are used
specifically for VLMs; the embodied-specific methods are designed and pre-trained specifically for
embodied Al tasks. Details are summarized in Tab. 2. The results on each benchmark are shown in
Tab. 3. For detailed results on each task and each random seed, please refer to Appendix D. We also
have visualized the performance radar chart and the per-task rank distributions in Fig. 1.

Finding 1: We observe that SPA demonstrates superior performance in both mean success rate and
mean rank. While no method ranks first across all individual benchmarks, consistent with the findings
by Majumdar et al. (2023), SPA achieves the best or second-best mean success rate in 11 out of 13
benchmarks. Additionally, it ranks in the top 3 for over 65.5% of individual tasks, surpassing the
second and third highest percentages of 46.8% for MAE and 46.0% for VC-1, respectively. These
trends demonstrate the robustness and superiority of SPA.

Finding 2: We observe that for vision-centric methods, superior performance on vision tasks does not
necessarily translate to better embodied performance. Despite using 10 times more data, DINOV2
performs worse than MoCoV3 and MAE. Notably, MAE performs exceptionally well, likely due to
its reconstruction objective, which enhances 2D spatial awareness. Interestingly, methods like MVP
and VC-1, which are MAE models pre-trained on human interaction data, show no clear advantage
over ImageNet (Deng et al., 2009) pre-trained MAE. This suggests that while human activity data
may seem more relevant, data diversity and thorough convergence are more critical.

Finding 3: Multimodal methods generally perform poorly in embodied evaluations, except EVA,
which combines image-language contrastive techniques with MAE reconstruction. Furthermore,
InternViT-6B, despite having significantly more model parameters, does not demonstrate superiority
and even performs worse on some benchmarks compared to InternViT-300M. This indicates that
current scaling properties of multimodal approaches do not effectively translate to embodied Al.

Finding 4: Focusing on a single benchmark can lead to highly biased conclusions. For instance,
ImageNet pre-trained methods (e.g. MoCoV3 and MAE) perform exceptionally well on the Franka
Kitchen benchmark, suggesting a minimal domain gap between ImageNet and Franka Kitchen
observations. Moreover, despite being based on MAE, previous SOTA embodied representations like
MVP and VC-1 do not consistently outperform the original ImageNet version. These observations
underscore the importance of our large-scale embodied evaluation.
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Table 4: Additional comparisons of ViT-base models. S.R. denotes ‘Success Rate’.

DINOV2-B MAE-B R3M-B VC-1-B STP-B Voltron-B Theia-B SPA-B
Methods (Oquab et al., (Heetal., (Nair et al., (Majumdaretal,  (Yangetal,  (Karamchetictal,  (Shangetal, (Ours)
2023) 2022) 2022) 2023) 2024b) 2023) 2024)
Is Vanilla? X v v v v X v v
Embodied? X X v v v v v v
AD |36.674+2.31 52.6743.06 48.00£6.93 50.00+£5.29 52.00+2.00 46.674+4.62 53.33+£5.03 52.00+3.46
Vel MW | 60.804+0.80 88.804+4.00 59.20£5.60 86.67+0.92 92.00+1.39 84.004+3.20 89.07+3.23 92.00+4.16
DMC | 35.194+4.87 62.394+4.97 49.57+4.85 60.92+0.70 61.40+2.86 56.36+2.01 64.98+3.42 64.21+3.52
TF 54.50+1.16 70.784+0.17 56.184+7.00 72.334+0.69 67.96+0.95 74.26+1.57 69.414+0.60 73.0640.51
Mean SR. | 4731 71.63 54.37 70.19 71.92 69.50 72.55 73.66

Table 5: Zero-shot camera pose estimation. Trans. and Rot. denote ‘translation’ and ‘rotation’
errors respectively. The detailed metrics on the error calculation are listed in Appendix E.

Error \ MoCoV3 MAE DINOV2 CLIP EVA InternViT-300M InternViT-6B ~ MVP VC-1 SPA(Ours)
Trans. (xe~2)[2.2940.07 2.1540.07 6.55+0.07 4.21£0.37 5494024  4.6240.14 5394041 2.15%0.12 2.02+0.07 1.65+0.09
Rot. (xe~!) |0.79£0.07 0.73£0.03 2.1240.25 1.520.08 1.83+0.09  1.83£0.08  1.91£0.12 0.7740.05 0.72:0.01 0.61=0.01
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Figure 4: Correlation between mean success rate and camera pose regression error.
5.2 ADDITIONAL COMPARISONS (Q1)

We primarily compare with SOTA methods using the ViT-L backbone, which is commonly available
and pre-trained on large-scale datasets. However, some embodied-specific models are only offered in
ViT-B variants. Therefore, we provide additional comparisons with several ViT-B models in Tab. 4.
Our ViT-B version, SPA-B, also outperforms other baselines. Furthermore, when compared to SPA-L
on VC-1 benchmarks, the mean success rate increases by 4.16 (73.66 — 77.82). This indicates that
increasing the model size positively impacts SPA’s performance.

5.3 STUDY ON 3D AWARENESS OF SPA (Q3) Table 6: Additional ablations on VC-1.

Methods ‘ SPA-B SPA-MAE  RADIO  E-RADIO

AD |52.00£3.46 55.33+3.06 55.33+3.06 56.67+2.31
VC-1 MW |92.004+4.16 90.6746.00 72.004+9.23 83.47+4.11
DMC | 64.21£3.52 63.85+3.60 67.38+7.35 62.92+4.24

TF |73.06£0.51 70.14£0.98 71.75£0.14 68.44+1.19
Mean S. R. ‘ 73.66 73.11 67.93 70.16

Firstly, we aim to provide clear evidence that the
performance improvements of SPA are due to its
3D awareness. To demonstrate this, we conducted
two additional ablation studies on the VC-1 bench-
marks: 1) To determine whether the performance
gain is due to SPA’s pre-training objectives or the datasets used, we continue pre-training the Ima-
geNet pre-trained MAE-B (the most competitive method besides SPA) on the same datasets used by
SPA-B, referring to this model as SPA-MAE. Hyperparameters, including mask ratio and batch size,
are kept at their default settings, and both the ImageNet pre-trained encoder and decoder weights are
initially loaded. 2) Since SPA uses the feature map of RADIO for semantic rendering supervision,
we also evaluate the original RADIO (653M parameters) and its efficient version, E-RADIO (391M
parameters). Results are presented in Tab. 6.

Finding 5: The 3D-aware pre-training objective significantly enhances SPA’s performance. It sur-
passes the single-image naive MAE with the same data. Notably, SPA learns superior representations
compared to its semantic rendering teacher by a substantial margin.

Moreover, we provide both quantitative and qualitative evidence to demonstrate that SPA has ac-
quired 3D awareness. For qualitative analysis, we visualize the zero-shot feature maps on mul-
tiview images of different encoder outputs, as shown in Fig. 5. The images are taken from the
unseen Arkitscenes dataset. For quantitative analysis, we evaluate the zero-shot 3D awareness of
various methods using a camera pose estimation task on the NAVI dataset (Jampani et al., 2023).
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Specifically, given a pair of images from different view-
points, we use a frozen encoder to extract features and
concatenate them. A small MLP then regresses the rela-
tive camera pose and we report rotation and translation
errors in Tab. 5. Details are in Appendix E. While El Ba-
nani et al. (2024) has explored 3D awareness of different
vision models, their context differs. Their tasks can al-
low strong semantic models like DINOV?2 to ‘cheat’.
For example, multiview correspondence can be achieved
through semantic matching, and the relative depth es-
timation task involves transforming normalized values
into discrete bins, resembling a per-pixel classification
task. Additionally, they emphasize fine-grained dense
local context, whereas, embodied Al focuses more on
sparse, global information (Nair et al., 2022). Thus, we
believe camera pose estimation, which predicts a global
‘pose’ from observations, is more relevant to embodied
Al, where a policy must predict a global ‘action’.

Finding 6: We observe that SPA outperforms all
other methods in zero-shot camera pose estimation. It
achieved an 18.3% improvement in translation and
a 15.3% reduction in rotation error compared to the
second-best model. Additionally, we identify a clear
positive correlation between camera pose estimation
and embodied evaluation performance, as demonstrated
in Fig. 4. This finding supports our spatial hypothesis

Input

SPA

VC-1

DINOV2

EVA

InternViT
300M

Figure 5: Feature map visualization.

and may offer valuable insights for future research on embodied representation.

Finding 7: The feature map visualization provides clear evidence that SPA has learned multi-view
consistent knowledge, demonstrating its 3D awareness. Additionally, the features produced by SPA
are cleaner and more coherent. Though VC-1 also generates smooth features, they are not consistent
across viewpoints. The feature maps from the multi-modal approach are highly noisy and lack details.

Table 7: Mask ratio and loss components.
C., D., S. denote color, depth, and semantic.

5.4 HYPERPARAMETER INVESTIGATION

We conduct hyperparameter tuning with a ViT-B Mask| Loss VC-1 Benchmark Mean
model on ScanNet (Dai et al., 2017), and evaluate it ~ Ratio|C.D.S.| AD MW DMC TF [SR.
on VC-1 benchmarks, as shown in Tab. 7. 1) Mask 8-‘2)(5) ; ; ; gggig? gggﬁ; g;zﬁg ;g-ifl)-g ;g?g
Ratio. Our results indicate that a mask ratio of 0.5 50|/ v /(533442 888216 60.143.1 72.640.7|71.18
is the most effective. 2) Loss Components. As dis- 075 |/ v /|51.3£1.2 88.0£3.5 61.1+3.5 73.0+0.8|71.01

. : : 095 |/ v V|51.3+1.2 85.6+4.0 62.5+5.3 73.120.2|70.67
cussed in Sec. 2.4, our rendering loss consists of cplor, 050 |7 X 71513512 909433 58.8.05.6 7154107101
depth, and semantic components. We sequentially 050 |x v v|52.042.0 89.3+3.3 53.9::4.3 70.9+1.3(68.71
deactivate each and find that all three are valuable. ~ 050|/ v X[52.743.1 88.04+4.5 61.54+3.4 71.641.2|71.16

However, deactivating the semantic loss has the least impact.

5.5 REAL-WORLD EXPERIMENTS (Q4)
Picking
Cub
We conduct several real-world experiments to further o

investigate the generalization ability of different rep-
resentations. Specifically, we utilize the open-sourced
Low-Cost Robot Arm (Koch, 2024) to learn real-world

Stacking
Cube

tasks from pixels, with only 50 demonstrations per task
using different frozen pre-trained representations. The
robot performed two single-arm tasks: (1) picking a
cube, and (2) stacking a yellow cube on a pink cube, as
well as one dual-arm task: folding a cloth in half. Refer
to Fig. 6 for illustrations and Appendix F for more details

Figure 6: Real-world task illustrations.
. We evaluate each task with 25 rollouts, with

Folding
Cloth

the results presented in Tab. 8. SPA consistently performs better on real-world tasks, suggesting that
SPA’s pre-trained representations can robustly adapt to real-world environments without finetuning.



Published as a conference paper at ICLR 2025

Table 8: Real-world experiment results. S.R. denotes ‘Success Rate’.

Methods ‘MOCOVS MAE DINOV2 CLIP EVA InternViT-300M InternViT-6B MVP VC-1 SPA (Ours)
Picking Cube 28.00 64.00 20.00 28.00 56.00 32.00 52.00 36.00 40.00 64.00
Stacking Cube | 16.00 32.00 4.00 16.00 8.00 8.00 36.00 20.00 16.00 48.00
Folding Cloth | 48.00 64.00 32.00 24.00 28.00 48.00 44.00 64.00 60.00 84.00
Mean S.R. ‘ 30.67 5333 18.67 22.67 30.67 29.33 44.00 40.00 38.67 65.33

6 RELATED WORK

Representation Learning for Computer Vision. Recent advances in computer vision have increas-
ingly focused on unsupervised and self-supervised learning to utilize large amounts of unlabeled
data. Techniques like contrastive learning (Chen et al., 2020a; 2021; 2020b; He et al., 2020), masked
autoencoders (He et al., 2022; Feichtenhofer et al., 2022; Bachmann et al., 2022; Tong et al., 2022;
Wang et al., 2023), and self-distillation (Caron et al., 2021; Oquab et al., 2023; Ranzinger et al., 2024)
have shown that effective representations can be learned without supervision. Moreover, multi-modal
pre-training approaches (Radford et al., 2021; Fang et al., 2023b; Chen et al., 2024b) leverage lan-
guage to learn more comprehensive representations. These developments have significantly improved
transfer learning capabilities while also displaying zero-shot abilities.

Representation Learning for Embodied AI. Recent advances in embodied Al representation
learning, inspired by computer vision, have applied techniques such as contrastive (Nair et al., 2022;
Yang et al., 2023) and masked autoencoders (Radosavovic et al., 2023; Majumdar et al., 2023;
Karamcheti et al., 2023; Yang et al., 2024b) to embodied Al. However, these approaches often
emphasize semantic learning while overlooking the specific needs of embodied Al tasks. In this
work, we propose a spatial hypothesis specifically for embodied Al representation learning, and we
demonstrate how a standard 2D backbone can integrate 3D spatial awareness.

3D Robot Learning and 3D-Aware Computer Vision. Prior work in 3D robot learning has often
relied on explicit 3D input (Zhu et al., 2024; Ze et al., 2024; Wang et al., 2024b;a; Shridhar et al.,
2023; Chen et al., 2023), or lifting 2D features into 3D spaces (Ke et al., 2024; Goyal et al., 2024),
providing a strong foundation for our spatial hypothesis. Given the scalability challenges of explicit
3D observations, some computer vision research has explored integrating 3D spatial awareness into
2D backbones (Yang et al., 2024a; Zhu et al., 2023b; Yue et al., 2025; Zhang et al., 2024). To the best
of our knowledge, SPA is the first to systematically investigate this approach in embodied Al.

Neural Rendering. Recent advances in 3D vision, particularly in neural rendering (Mildenhall et al.,
2021), have enabled the encoding of scenes using neural networks, which support differentiable ren-
dering and reconstruction. Alongside improvements in neural rendering techniques themselves (Wang
et al., 2021; Zhu et al., 2023a; Gropp et al., 2020; Ortiz et al., 2022; Wang et al., 2022), the Ponder
series (Huang et al., 2023; Zhu et al., 2023b; Yang et al., 2024a) and subsequent works (Wang et al.,
2024c; Irshad et al., 2024) have applied differentiable neural rendering for representation learning.
However, they have primarily focused on 3D perception and autonomous driving scenarios. To the
best of our knowledge, our work is the first to apply neural rendering for embodied Al representation
learning using a standard 2D backbone, marking a novel contribution to this area of research.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we propose that 3D spatial awareness is crucial for embodied Al and introduce SPA,
a novel framework that pre-trains a standard ViT backbone with 3D spatial awareness. To validate
our hypothesis, we conduct the largest-scale embodied evaluation to date, over 15 times larger
than previous studies. Our experiments demonstrate the clear superiority of SPA and highlight
the importance of 3D awareness. Despite strong results across simulated and real robotic tasks,
limitations remain. Our evaluation is currently restricted to imitation learning (specifically behavior
cloning), and exploring SPA’s performance in other settings, such as reinforcement learning, presents
an exciting future direction. Incorporating SPA into VLMs to enhance their performance on spatial
aware tasks (Chen et al., 2024a; Majumdar et al., 2024) also represents an exciting research area.
Additionally, SPA currently focuses on static multi-view scenes; extending it to dynamic, temporal
scenarios could enhance its generality. Lastly, while we use the ViT encoder for fair comparison, the
volume decoder’s multi-view interaction knowledge could be leveraged in policy learning, offering
further potential for improvement.

10
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A ADDITIONAL RENDERING LOSSES

Here we detail the three additional rendering losses we have applied in Sec. 2.4.

Eikonal Regularization Loss. The Eikonal regularization loss, denoted as Leixonal, 1S @ widely used
loss function for the regularization of signed distance functions (SDFs) (Gropp et al., 2020). It is
defined as:

N,

Leikonal = )l =1)%, )

where Vs(p;, ;) represents the gradient of the SDF s at the location p; ;. Since the SDF is a distance
measure, Leikona €ncourages the gradients to have unit norm at the query point.

Near-Surface and Free Space Loss for SDF. To improve SDF estimation, we incorporate additional
approximate SDF supervision, similar to iSDF (Ortiz et al., 2022) and GO-Surf (Wang et al., 2022).
Specifically, for near-surface points, the difference between rendered depth and ground-truth depth
serves as pseudo-SDF ground-truth supervision. For points far from the surface, a free space loss is
used to further regularize the SDF values.

To compute the approximate SDF supervision, we define an indicator b(z) for each sampled ray point
with ray length z and corresponding ground-truth depth D:

b(z) =D — 2. (10)

The value b(z) can be considered a credible approximate SDF value when it is small. Let ¢ be a
user-defined threshold, set to 0.05 in our experiments. For sampled ray points satisfying b(z) < ¢, we
apply the near-surface SDF loss to constrain the SDF prediction s(z; ;):

(i) — b(zi5)| (11)

For the remaining sampled ray points, we utilize a free space loss:

cfree -

(0,67 ) =1, 5(z1,) = blzi) ) (12)
=1 j=1

where « is set to 5, following Ortiz et al. (2022); Wang et al. (2022). Due to the presence of noisy
depth images, Lgr and Ly are applied only to rays with valid depth values.

In our experiments, we adopt a similar weighting scheme to GO-Surf (Wang et al., 2022), setting
Ac = 10.0, Ap = 1.0, Aggr = 10.0, and Agee = 1.0. We observe that the Eikonal term can lead to
overly smooth reconstructions, so we use a small weight of 0.01 for the Eikonal loss.

B EVALUATION SETUPS

Here we detail the setups of our large-scale evaluation in Sec. 3. For the detailed visualizations of
each task, we recommend the readers to read the original simulator’s or benchmark’s dataset.

B.1 SINGLE-TASK BENCHMARKS

VC-1 (Majumdar et al., 2023). This benchmark includes several simulators. We selected four:
Adroit (Kumar, 2016), Meta-World (Yu et al., 2020), DMControl (Tunyasuvunakool et al., 2020), and
TriFinger (Wiithrich et al., 2020). The Adroit subset focuses on dexterous manipulation with 2 tasks:
Relocate and Pen. The Meta-World subset addresses two-finger gripper manipulation with 5 tasks:
Button Press Topdown, Drawer Open, Bin Picking, Hammer, and Assembly. The
DMControl subset is for locomotion control, also with 5 tasks: Walker Stand, Walker Walk,
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Reacher Easy, Cheetah Run, and Finger Spin. The TriFinger subset targets three-finger
manipulation with 2 tasks: Reach Cube and Move Cube. For all tasks, we use a 3-layer MLP
as the policy network for each single-task training, following the original implementation. Each
task is trained with 100 demonstrations, except for 25 on Meta-World, and evaluated 50 times using
the specific seeds 100, 200, and 300. The [CLS] token of a frozen pre-trained ViT is used as the
observation feature. All hyper-parameters are kept the same with the original implementation.

Franka Kitchen (Gupta et al., 2019). Franka-Kitchen is a MuJoCo-modeled simulation environment
with a Franka robot in a kitchen scene. Its action space is the 9-dimensional joint velocity with 7
DoF for the arm and 2 DoF for the gripper. Following previous works (Nair et al., 2022; Karamcheti
et al., 2023), we evaluate five tasks: S1iding Door, Turning Light On, Opening Door,
Turning Knob, and Opening Microwave. Each task spans two camera viewpoints and three
random seeds. Similar to the evaluation scheme in VC-1, we utilize 25 demonstrations to train a
policy model, which is a 2-layer MLP with hidden sizes [256, 256] preceded by a BatchNorm.

Meta-World (Yu et al., 2020). This benchmark comprises a series of tasks in which an agent
directs a Sawyer robot arm to manipulate objects in a tabletop environment. We selected 48 tasks,
encompassing easy, medium, and hard levels. We implemented the Diffusion Policy (Chi et al., 2023)
on this benchmark and adhered to the setup in Ze et al. (2024) to generate 10 demonstrations for
each single-task training, followed by evaluation through 20 rollouts. The average results across
three fixed seeds (100, 200, 300) are reported. The [CLS] token from a frozen pre-trained ViT
serves as the observation feature. The 48 tasks include: Button Press Wall, Door Close,
Door Unlock,Drawer Close,Drawer Open,Faucet Close,Plate Slide,Plate
Slide Back,Plate Slide Side,Window Close, Basketball,Bin Picking, Box
Close, Coffee Push, Assembly, Disassemble, Push Wall, Shelf Place, Door
Open, Button Press, Sweep Into, Door Lock, Reach Wall, Hammer, Stick
Push, Button Press Topdown, Handle Press Side, Plate Slide Back Side,
Sweep, Button Press Topdown Wall, Handle Press, Push, Coffee Pull, Dial
Turn, Reach, Coffee Button,Pick Place Wall, Stick Pull, Hand Insert, Peg
Insert Side,Pick Place,Faucet Open,Push Back,Lever Pull, Handle Pull,
Soccer, Window Open,and Pick Out Of Hole.

B.2 LANGUAGE-CONDITIONED MULTI-TASK BENCHMARKS

RLBench (James et al., 2020). This benchmark is a prominent language-conditioned multi-task
robot learning framework. PolarNet (Chen et al., 2023) has categorized all tasks into 9 groups. We
selected 71 tasks from RLBench that can be successfully executed and split them into two groups
uniformly on categories: Group 1 with 35 tasks and Group 2 with 36 tasks. Each task includes 100
training demonstrations and 25 testing rollouts. For each group, we train a language-conditioned
multi-task agent. We employ RVT-2 (Goyal et al., 2024), the state-of-the-art (SOTA) method on
this benchmark, as our policy. RVT-2 takes multiple images rendered from point clouds as inputs
and uses a convolutional block to generate feature maps. We substitute the convolutional block with
different pre-trained ViTs, unpatchifying the latent vectors concatenated with the global [CLS]
token to obtain feature maps. All other architectures and hyperparameters remain consistent with the
original RVT-2 implementation.

The 35 tasks in Group 1 include: Basketball In Hoop, Put Rubbish In Bin, Meat
Off Grill, Meat On Grill, Slide Block To Target, Reach And Drag, Take
Frame Off Hanger, Water Plants, Hang Frame On Hanger, Wipe Desk, Stack
Blocks, Reach Target, Push Button, Lamp On, Toilet Seat Down, Close
Laptop Lid, Open Box, Open Drawer, Pick Up Cup, Turn Tap, Take Usb Out
Of Computer, Play Jenga, Insert Onto Square Peg, Take Umbrella Out Of
Umbrella Stand, Insert Usb In Computer, Straighten Rope, Turn Oven On,
Change Clock, Close Microwave, Close Fridge, Close Grill, Open Grill,
Unplug Charger,Press Switch, and Take Money Out Safe

The 36 tasks in Group 2 include: Change Channel, Tv On, Push Buttons, Stack
Wine, Scoop With Spatula, Place Hanger On Rack, Move Hanger, Sweep To
Dustpan, Take Plate Off Colored Dish Rack, Screw Nail, Take Shoes Out
Of Box, Slide Cabinet Open And Place Cups, Lamp Off, Pick And Lift,
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Take Lid Off Saucepan, Close Drawer, Close Box, Phone On Base, Toilet
Seat Up, Put Books On Bookshelf, Beat The Buzz, Stack Cups, Put Knife
On Chopping Board, Place Shape In Shape Sorter, Take Toilet Roll Off
Stand, Put Umbrella In Umbrella Stand, Setup Checkers, Open Window,
Open Wine Bottle, Open Microwave, Put Money In Safe, Open Door, Close
Door,Open Fridge, Open Oven,and Plug Charger In Power Supply.

LIBERO (Liu et al., 2024). Built upon Robosuite (Zhu et al., 2020), LIBERO (Liu et al., 2024)
generates a total of 130 language-conditioned tasks across five suites: LIBERO-Spatial, LIBERO-
Object, LIBERO-Goal, LIBERO-10, and LIBERO-90. Each suite contains 10 tasks, except for
LIBERO-90, which includes 90 tasks. We train a language-conditioned multi-task policy for each
suite, adopting the transformer policy provided by LIBERO. The image encoders are modified from
default CNNs to frozen pre-trained ViTs, utilizing the [CLS] token for feature extraction. To
expedite policy training, we use only 20 demonstrations per task and forgo augmentations, allowing
for pre-extraction of all image features during training. After training for 25 epochs, the checkpoints
from the 20th and 25th are evaluated with 20 rollouts per task, and the best checkpoint’s performance
is taken. Finally, the results are averaged on 3 random seeds.

The 10 tasks in LIBERO-Spatial are:

. Pick up the black bowl between the plate and the ramekin and place it on the plate.
. Pick up the black bowl next to the ramekin and place it on the plate.

. Pick up the black bowl from table center and place it on the plate.

. Pick up the black bowl on the cookie box and place it on the plate.

. Pick up the black bowl in the top drawer of the wooden cabinet and place it on the plate.
. Pick up the black bowl on the ramekin and place it on the plate.

. Pick up the black bowl next to the cookie box and place it on the plate.

. Pick up the black bowl on the stove and place it on the plate.

. Pick up the black bowl next to the plate and place it on the plate.

10. Pick up the black bowl on the wooden cabinet and place it on the plate.

The 10 tasks in LIBERO-Object are:

. Pick up the alphabet soup and place it in the basket.
. Pick up the cream cheese and place it in the basket.
. Pick up the salad dressing and place it in the basket.
. Pick up the BBQ sauce and place it in the basket.

. Pick up the ketchup and place it in the basket.

. Pick up the tomato sauce and place it in the basket.
. Pick up the butter and place it in the basket.

. Pick up the milk and place it in the basket.

. Pick up the chocolate pudding and place it in the basket.
10. Pick up the orange juice and place it in the basket.

The 10 tasks in LIBERO-Goal are:

. Open the middle drawer of the cabinet.

. Put the bowl on the stove.

. Put the wine bottle on top of the cabinet.
. Open the top drawer and put the bowl inside.
. Put the bowl on top of the cabinet.

. Push the plate to the front of the stove.

. Put the cream cheese in the bowl.

. Turn on the stove.

. Put the bowl on the plate.

10. Put the wine bottle on the rack.

The 10 tasks in LIBERO-10 are:

1. LIVING ROOM SCENE2: Put both the alphabet soup and the tomato sauce in the basket.

2. LIVING ROOM SCENE2: Put both the cream cheese box and the butter in the basket.

3. KITCHEN SCENE3: Turn on the stove and put the moka pot on it.

4. KITCHEN SCENE4: Put the black bowl in the bottom drawer of the cabinet and close it.

5. LIVING ROOM SCENES: Put the white mug on the left plate and put the yellow and white mug
on the right plate.
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6. STUDY SCENEI: Pick up the book and place it in the back compartment of the caddy.

7. LIVING ROOM SCENES®6: Put the white mug on the plate and put the chocolate pudding to the
right of the plate.

8. LIVING ROOM SCENEI1: Put both the alphabet soup and the cream cheese box in the basket.
9. KITCHEN SCENES: Put both moka pots on the stove.

10. KITCHEN SCENESG: Put the yellow and white mug in the microwave and close it.

The 10 tasks in LIBERO-90 are:

. KITCHEN SCENEI10: Close the top drawer of the cabinet.

. KITCHEN SCENEI10: Close the top drawer of the cabinet and put the black bowl on top of it.
. KITCHEN SCENEI10: Put the black bowl in the top drawer of the cabinet.

. KITCHEN SCENEI10: Put the butter at the back in the top drawer of the cabinet and close it.
. KITCHEN SCENEI10: Put the butter at the front in the top drawer of the cabinet and close it.
. KITCHEN SCENEI10: Put the chocolate pudding in the top drawer of the cabinet and close it.
. KITCHEN SCENEI!: Open the bottom drawer of the cabinet.

. KITCHEN SCENEI: Open the top drawer of the cabinet.

. KITCHEN SCENEI!: Open the top drawer of the cabinet and put the bowl in it.

10. KITCHEN SCENE/1: Put the black bowl on the plate.

11. KITCHEN SCENEI]: Put the black bowl on top of the cabinet.

12. KITCHEN SCENE2: Open the top drawer of the cabinet.

13. KITCHEN SCENE2: Put the black bowl at the back on the plate.

14. KITCHEN SCENE2: Put the black bowl at the front on the plate.

15. KITCHEN SCENE2: Put the middle black bowl on the plate.

16. KITCHEN SCENE2: Put the middle black bowl on top of the cabinet.

17. KITCHEN SCENE2: Stack the black bowl] at the front on the black bowl in the middle.
18. KITCHEN SCENE2: Stack the middle black bowl on the back black bowl.

19. KITCHEN SCENES3: Put the frying pan on the stove.

20. KITCHEN SCENE3: Put the moka pot on the stove.

21. KITCHEN SCENES3: Turn on the stove.

22. KITCHEN SCENE3: Turn on the stove and put the frying pan on it.

23. KITCHEN SCENE4: Close the bottom drawer of the cabinet.

24. KITCHEN SCENE4: Close the bottom drawer of the cabinet and open the top drawer.
25. KITCHEN SCENE4: Put the black bowl in the bottom drawer of the cabinet.

26. KITCHEN SCENE4: Put the black bowl on top of the cabinet.

27. KITCHEN SCENE4: Put the wine bottle in the bottom drawer of the cabinet.

28. KITCHEN SCENE4: Put the wine bottle on the wine rack.

29. KITCHEN SCENES: Close the top drawer of the cabinet.

30. KITCHEN SCENES: Put the black bowl in the top drawer of the cabinet.

31. KITCHEN SCENES: Put the black bowl on the plate.

32. KITCHEN SCENES: Put the black bowl on top of the cabinet.

33. KITCHEN SCENES: Put the ketchup in the top drawer of the cabinet.

34. KITCHEN SCENES6: Close the microwave.

35. KITCHEN SCENESG6: Put the yellow and white mug to the front of the white mug.

36. KITCHEN SCENE7: Open the microwave.

37. KITCHEN SCENE7: Put the white bowl on the plate.

38. KITCHEN SCENE7: Put the white bowl to the right of the plate.

39. KITCHEN SCENES: Put the right moka pot on the stove.

40. KITCHEN SCENES: Turn off the stove.

41. KITCHEN SCENE9: Put the frying pan on the cabinet shelf.

42. KITCHEN SCENEQ9: Put the frying pan on top of the cabinet.

43. KITCHEN SCENE9: Put the frying pan under the cabinet shelf.

44. KITCHEN SCENE9: Put the white bowl on top of the cabinet.

45. KITCHEN SCENE9: Turn on the stove.

46. KITCHEN SCENE9: Turn on the stove and put the frying pan on it.

47. LIVING ROOM SCENEI: Pick up the alphabet soup and put it in the basket.

48. LIVING ROOM SCENEI: Pick up the cream cheese box and put it in the basket.

49. LIVING ROOM SCENEI1: Pick up the ketchup and put it in the basket.

50. LIVING ROOM SCENEI!: Pick up the tomato sauce and put it in the basket.

51. LIVING ROOM SCENE2: Pick up the alphabet soup and put it in the basket.
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52. LIVING ROOM SCENE2: Pick up the butter and put it in the basket.

53. LIVING ROOM SCENE?2: Pick up the milk and put it in the basket.

54. LIVING ROOM SCENE2: Pick up the orange juice and put it in the basket.

55. LIVING ROOM SCENE2: Pick up the tomato sauce and put it in the basket.

56. LIVING ROOM SCENE3: Pick up the alphabet soup and put it in the tray.

57. LIVING ROOM SCENES3: Pick up the butter and put it in the tray.

58. LIVING ROOM SCENE3: Pick up the cream cheese and put it in the tray.

59. LIVING ROOM SCENE3: Pick up the ketchup and put it in the tray.

60. LIVING ROOM SCENE3: Pick up the tomato sauce and put it in the tray.

61. LIVING ROOM SCENE4: Pick up the black bowl on the left and put it in the tray.

62. LIVING ROOM SCENE4: Pick up the chocolate pudding and put it in the tray.

63. LIVING ROOM SCENE4: Pick up the salad dressing and put it in the tray.

64. LIVING ROOM SCENE#4: Stack the left bowl on the right bowl and place them in the tray.
65. LIVING ROOM SCENE4: Stack the right bowl on the left bowl and place them in the tray.
66. LIVING ROOM SCENES: Put the red mug on the left plate.

67. LIVING ROOM SCENES: Put the red mug on the right plate.

68. LIVING ROOM SCENES: Put the white mug on the left plate.

69. LIVING ROOM SCENES: Put the yellow and white mug on the right plate.

70. LIVING ROOM SCENE®6: Put the chocolate pudding to the left of the plate.

71. LIVING ROOM SCENES6: Put the chocolate pudding to the right of the plate.

72. LIVING ROOM SCENES6: Put the red mug on the plate.

73. LIVING ROOM SCENES®6: Put the white mug on the plate.

74. STUDY SCENEI: Pick up the book and place it in the front compartment of the caddy.
75. STUDY SCENEI: Pick up the book and place it in the left compartment of the caddy.
76. STUDY SCENEI: Pick up the book and place it in the right compartment of the caddy.
77. STUDY SCENEI: Pick up the yellow and white mug and place it to the right of the caddy.
78. STUDY SCENE2: Pick up the book and place it in the back compartment of the caddy.
79. STUDY SCENE2: Pick up the book and place it in the front compartment of the caddy.
80. STUDY SCENE2: Pick up the book and place it in the left compartment of the caddy.
81. STUDY SCENE2: Pick up the book and place it in the right compartment of the caddy.
82. STUDY SCENES3: Pick up the book and place it in the front compartment of the caddy.
83. STUDY SCENES3: Pick up the book and place it in the left compartment of the caddy.
84. STUDY SCENES3: Pick up the book and place it in the right compartment of the caddy.
85. STUDY SCENES3: Pick up the red mug and place it to the right of the caddy.

86. STUDY SCENES3: Pick up the white mug and place it to the right of the caddy.

87. STUDY SCENEA4: Pick up the book in the middle and place it on the cabinet shelf.

88. STUDY SCENEA4: Pick up the book on the left and place it on top of the shelf.

89. STUDY SCENEA4: Pick up the book on the right and place it on the cabinet shelf.

90. STUDY SCENE4: Pick up the book on the right and place it under the cabinet shelf.

C MORE IMPLEMENTATION DETAILS

C.1 DATASET DETAILS

The datasets used for SPA include ScanNet, ScanNet++, Hypersim, ADT, S3DIS, and Droid.

ScanNet consists of 1.89 million frames in total. Each epoch includes 1.5 times the dataset size. For
each scene, a random starting frame is selected, followed by the sampling of 1 to 8 frames at random,
with an interval of 8 frames between them.

ScanNet++ comprises 0.11 million frames. Each epoch includes 5 times the dataset size. For each
scene, a random starting frame is selected, followed by the sampling of 1 to 8 frames at random, with
an interval of 5 frames between them.

Hypersim contains 0.03 million frames. Each epoch includes 8 times the dataset size. For each
scene, we randomly select 1 to 8 continuous frames.

ADT consists of 0.0015M frames in total. Each epoch includes 1 times the dataset size. For each
scene, 1 to 8 continuous frames are randomly selected.
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S3DIS consists of 0.015 million frames. Each epoch includes 5 times the dataset size. For each scene,
a random starting frame is selected, followed by the sampling of 1 to 8 frames at random, with an
interval of 5 frames between them.

Droid contains a large number of videos, but due to the high similarity between frames, the videos
are first downsampled by a factor of 15 during pre-processing, resulting in 1.78 million frames. Since
Droid does not provide depth data, we utilize Croco-Stereo Weinzaepfel et al. (2023) to estimate
dense depth maps for rendering supervision. Additionally, due to the significant noise in the camera
pose data, only a single frame is sampled at a time during training.

During pre-training, we first resize the multi-view input images to slightly larger than 224 x 224,
and then randomly crop them to a final size of 224 x 224. Random photometric distortions with a
probability of 0.5 are applied for augmentation, including brightness ranging from 0.875 to 1.125,
contrast ranging from 0.5 to 1.5, saturation ranging from 0.5 to 1.5, and hue ranging from -0.05 to
0.05. Frames with very small valid depth areas or scene boxes are filtered out.

For semantic rendering supervision, we observe that using larger image sizes improves the quality
of feature maps generated by RADIO. Consequently, we resize the images to 1024 x 1024 before
feeding them into RADIO, which outputs a feature map of size 64 x 64. We then apply bilinear
sampling to query the semantic feature labels for each pixel.

C.2 PRE-TRAINING DETAILS

For stability during pre-training, we apply the Exponential Moving Average (EMA) with a decay rate
of 0.999. The model is trained for 2000 epochs on 80 NVIDIA A100-80G GPUs, using a gradient
clipping threshold of 1.0. Each GPU processes a batch size of 2, with 8 gradient accumulation steps,
resulting in a total effective batch size of 2 x 80 x 8 = 1280. We employ the AdamW optimizer
with a weight decay of 0.04. The base learning rate is set to 5 x 1079, and the actual learning rate is
scaled by a factor of 8 times the effective batch size. A OneCycle learning rate scheduler is used,
with a percentage start of 0.05, a divide factor of 100, and a final divide factor of 1000.

To facilitate faster convergence and improve stability, we initialize the encoder with ImageNet pre-
trained weights from the Masked Autoencoder (MAE), applying a learning rate layer decay of 0.8.
This initialization does not affect the validity of our conclusions, as demonstrated by the ablation
study of SPA-MAE in Sec. 5.3. The ViT encoder and upsampling layers are trained with FP16
precision, while the volume decoder is trained with FP32 precision.

We set the loss weights t0 Acolor = 10, Ageptn = 1, Asemantic = 15 Acikonat = 0.01, Agee = 1, and
Asaf = 10. For the NeuS sampler, the initial number of samples is set to 72, with 24 importance
samples. In each iteration, we randomly sample 512 pixels per view for rendering and supervision.

D DETAILED RESULTS OF EACH TASK

We present the results of all individual tasks in Tab. 12, Tab. 13, Tab. 14, Tab. 15, Tab. 16, and Tab. 17.

E CAMERA POSE ESTIMATION DETAILS

We adopt a setup similar to that of El Banani et al. (2024) for camera pose estimation using the NAVI
dataset (Jampani et al., 2023). Given an image pair from different viewpoints, we first extract features
from each image using a frozen, pre-trained Vision Transformer (ViT) encoder. Following standard
protocols for embodied evaluation, we use the [CLS] token as the feature representation. The two
[CLS] tokens are then concatenated and passed through a BatchNorm layer and a Multi-Layer
Perceptron (MLP) to regress the camera pose. The MLP consists of four linear layers with three
ReLU activations, using hidden sizes of 512, 256, and 128 units, and outputs a 7-dimensional pose
vector. The first three dimensions represent the zyz translation, while the last four dimensions
correspond to the rotation quaternions.

We employ the Mean Squared Error (MSE) loss function and optimize the model using the AdamW
optimizer with a OneCycle learning rate scheduler. The model is trained for 100 epochs with a base
learning rate of 1 x 1073 and a starting percentage of 0.1. For evaluation, we use Euclidean distance
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as the translation error metric and geodesic distance as the rotation error metric. The geodesic distance
between two quaternions g1 and g» is defined as:

6 =2 -arccos(|q1 - g2), (13)

where ¢ and ¢-» are normalized quaternions, and - denotes the quaternion dot product. The Euclidean
distance d between two translation vectors t; = (z1,y1, 21) and to = (22, ys, 22) is given by:

d=/(z2—21)2+ (g2 — y1)% + (22 — 21)%. (14)

F REAL-WORLD EXPERIMENT DETAILS

Our real-world hardware setup is based on the open-source Low-Cost-Robot project (Koch, 2024).
We utilize two Intel RealSense D415 cameras for image capture. A visualization of our platform is
provided in Fig. 8. For teleoperation, policy training, and evaluation, we leverage the open-source
RealRobot project (Contributors, 2024). The policy used is the ACT policy (Zhao et al., 2023).

For each task, we collect 50 demonstrations, and during evaluation, we conduct 25 rollouts, each
with randomized object locations and orientations. The model is trained for 10,000 epochs using
four NVIDIA A100 GPUs. We employ the AdamW optimizer with a learning rate of 5 x 10~ and
a weight decay of 0.05. Additionally, a OneCycle learning rate scheduler is used, with a starting
percentage of 0.1, a division factor of 10, and a final division factor of 100.

G ADDITIONAL REINFORCEMENT LEARNING EXPERIMENTS

We conduct additional RL experiments following the settings in Hu et al. (2023) to use DrQ-v2 (Yarats
etal., 2021), a state-of-the-art off-policy actor-critic approach for continuous vision-based control.
We train some RL experiments with different pre-trained vision representations with ViT-Base
architectures. The vision encoders are frozen during RL training. Five tasks in the Meta-World
benchmark are chosen, as shown below. We train for a total of 1.1M frames and all other hyper-
parameters including random seeds are kept as default and same. We run three seeds for each
experiment. We report the evaluation success rate and episode reward below in Tab. 9. The reward
curves are visualized in Fig. 7. From the results, it is evident that the reinforcement learning outcomes
exhibit high variance. Nevertheless, overall, our 3D spatial-aware representation outperforms other
representation learning methods.
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Figure 7: Reinforcement learning reward curves visualization.

H ADDITIONAL MONOCULAR GRASP POSE DETECTION EXPERIMENTS

We conduct a monocular grasp pose detection experiment to further investigate more complex robotics
learning paradigms. We follow similar settings in Gou et al. (2021), which train a neural network to
detect the 7-DoF grasp poses on monocular image observations. The experiment is conducted on
GraspNet-1Billion (Fang et al., 2020), a large-scale real-world object grasping benchmark. We follow
the hyper-parameters and setups in the official implementation, except that we replace the default
ResNet with different pre-trained ViT models for feature extraction. All pre-trained representations
are with ViT-Base architecture and are frozen during training. We report the overall Top-K accuracy
on the test set below. The results align well with our findings and indicate that SPA also outperforms
other representation learning methods in the monocular grasp pose detection task.
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Table 9: Reinforcement learning comparison results.

Meta-World RL Task | Method (ViT-B) | Success Rate  Episode Reward
CLIP 0.93 653.97
DINOv2 1.00 746.04
button-press-topdown-v2 | MAE 0.46 517.54
MoCoV3 0.99 749.93
SPA (Ours) 1.00 778.47
CLIP 0.00 401.41
DINOv2 0.67 746.74
hammer-v2 MAE 0.66 720.19
MoCoV3 0.59 645.46
SPA (Ours) 1.00 870.32
CLIP 0.00 478.18
DINOv2 0.00 694.73
lever-pull-v2 MAE 0.00 540.44
MoCoV3 0.23 598.54
SPA (Ours) 0.15 646.33
CLIP 0.00 181.40
DINOv2 0.00 180.72
coffee-pull-v2 MAE 0.00 184.56
MoCoV3 0.00 225.73
SPA (Ours) 0.00 262.11
CLIP 1.00 1228.90
DINOv2 1.00 1236.30
drawer-close-v2 MAE 1.00 1233.91
MoCoV3 1.00 1233.46
SPA (Ours) 1.00 1235.81
CLIP 0.39 588.77
DINOv2 0.53 720.91
Mean MAE 0.42 639.33
MoCoV3 0.56 690.63
SPA (Ours) 0.63 758.61

Table 10: Overall top-k monocular grasp pose detection accuracy of various methods (ViT-Base).

Method (ViT-Base) | CLIP DINOv2 MoCoV3 MAE SPA
Overall Accuracy | 21.10 22.08 29.39 31.03 31.20

I ADDITIONAL ABLATION STUDY ON NEURAL RENDERING

To clarify the contribution of neural rendering to the overall performance of SPA, we conducted an
additional ablation study. In this study, we maintained all settings identical—data loading, training
techniques, hyperparameters, and the encoder—while replacing the volume neural rendering decoder
with a multiview transformer-based decoder, similar to the MAE decoder. This alternative decoder
receives masked patches filled with mask tokens corresponding to multiview images. Additional
camera pose embeddings are added, and attention layers are used to fuse the multiview information
and reconstruct RGB and depth images. We refer to this baseline as MV-MAE. It was trained on
the ScanNet dataset without semantic supervision, ensuring a fair comparison with the result in the
last line of Tab. 7. The results from this experiment demonstrate that neural rendering is crucial for
incorporating explicit 3D spatial information. Simple multiview attention-based interaction, as used
in MV-MAE, does not perform as effectively in learning 3D spatial awareness.

Table 11: Additional Ablation Study on Neural Rendering. The models are evaluated on two
subsets of the VC-1 benchmark. The model architectures are both ViT-base.

Method | Meta-World DMControl
MV-MAE 84.84+5.8 59.6+3.2
SPA 88.0+4.5 61.5+3.4
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Table 12: All results on Vc-1 benchmarks.

Benchmark|

AD

MwW

DMC

TF

Methods

Seed

Relo- Pen
cate

Button
Press
Topdown

Drawer

Bin

Ham-

Open Picking mer

Assem-
bly

‘Walker Walker Reacher Cheetah Finger
Stand Walk Easy

Run

Spin

Reach Move
Cube Cube

ViT-L Methods

MoCoV3

100
200
300

40.00 92.00
36.00 80.00
28.00 76.00

88.00
88.00
84.00

100.00
100.00
100.00

88.00
80.00
68.00

100.00
100.00
92.00

88.00
84.00
72.00

84.88
82.95
81.42

57.59
55.02
53.59

92.29
92.08
91.96

56.28
43.17
41.27

70.49
69.49
68.23

84.37 61.20
84.20 61.26
84.09 64.24

MAE

100
200
300

36.00 84.00
36.00 80.00
32.00 80.00

84.00
84.00
68.00

100.00
100.00
100.00

88.00
76.00
72.00

100.00
96.00
98.00

100.00
96.00
88.00

951.27 680.69
933.67 676.92
873.53 659.41

976.50
952.20
895.60

482.47
49.22
501.91

703.30
695.00
691.80

85.46 59.46
86.88 59.45
85.26 61.69

DINOV2

100
200
300

32.00 68.00
28.00 68.00
28.00 60.00

68.00
60.00
60.00

100.00
100.00
100.00

84.00
80.00
80.00

100.00
96.00
92.00

88.00
80.00
72.00

87.01
86.00
82.41

56.52
53.97
51.69

94.50
89.97
88.36

26.98
21.84
21.34

70.87
68.78
67.41

86.16 50.84
86.87 50.78
86.05 50.17

CLIP

100
200
300

24.00 80.00
24.00 72.00
24.00 68.00

28.00
24.00
16.00

100.00
100.00
100.00

88.00
84.00
84.00

100.00
100.00
96.00

84.00
80.00
72.00

66.16
64.04
52.70

43.94
34.51
31.60

90.71
88.26
85.17

18.40
16.52
14.51

68.30
66.68
67.49

73.28 41.09
75.11 33.45
74.73 38.95

EVA

100
200
300

44.00 84.00
40.00 76.00
32.00 72.00

72.00
84.00
96.00

100.00
100.00
100.00

76.00
72.00
68.00

100.00
100.00
96.00

100.00
100.00
96.00

77.92
77.63
77.21

51.64
50.81
47.71

98.17
86.66
88.41

31.04
19.37
29.19

70.17
67.43
67.43

82.56 52.04
81.72 52.07
82.13 52.70

InternViT-
300M

100
200
300

40.00 72.00
28.00 72.00
28.00 80.00

80.00
68.00
60.00

100.00
100.00
100.00

72.00
76.00
72.00

100.00
96.00
96.00

84.00
84.00
72.00

70.04
67.63
66.95

30.44
31.55
29.28

80.80
82.33
81.87

16.70
19.39
18.80

67.05
67.57
68.55

78.59 53.67
77.07 55.21
78.27 48.58

InternViT-
6B

100
200
300

32.00 72.00
40.00 76.00
60.00 80.00

88.00
84.00
80.00

100.00
100.00
100.00

80.00
76.00
88.00

100.00
100.00
100.00

84.00
80.00
76.00

88.53
85.28
81.88

70.02
60.09
59.17

93.09
90.86
87.87

26.54
22.84
21.53

70.62
69.04
67.20

85.96 57.52
86.30 54.11
85.68 54.86

MVP

100
200
300

32.00 84.00
28.00 76.00
24.00 76.00

96.00
92.00
84.00

100.00
100.00
100.00

96.00
84.00
68.00

100.00
100.00
100.00

100.00
96.00
88.00

84.88
82.95
81.42

57.59
55.02
53.59

92.29
92.08
91.96

56.28
43.17
41.27

70.49
69.49
68.23

84.37 61.20
84.20 61.26
84.09 64.24

VC-1

100
200
300

32.00 84.00
28.00 80.00
24.00 76.00

84.00
68.00
76.00

100.00
100.00
100.00

76.00
72.00
96.00

96.00
92.00
88.00

96.00
84.00
84.00

82.36
80.21
68.62

55.33
53.90
50.13

98.09
89.83
87.89

35.31
34.10
31.18

72.60
70.15
70.11

83.36 58.00
83.17 61.00
82.75 57.16

SPA-L

100
200
300

40.00 88.00
44.00 76.00
36.00 76.00

76.00
84.00
96.00

100.00
100.00
100.00

92.00
88.00
88.00

100.00
100.00
96.00

100.00
84.00
96.00

94.19
92.28
87.87

66.34
60.60
51.75

95.57
81.43
83.86

52.53
44.99
39.10

73.95
71.83
70.91

87.37 56.68
87.26 64.35
87.62 58.02

ViT-B Methods and Others

STP-B

100
200
300

20.00 80.00
28.00 76.00
32.00 76.00

88.00
92.00
88.00

100.00
100.00
100.00

84.00
84.00
72.00

100.00
100.00
100.00

96.00
80.00
96.00

77.02
71.50
71.44

45.34
33.60
42.86

87.97
84.08
79.67

40.01
34.30
39.17

72.72
72.18
69.12

80.41 54.66
80.13 57.97
80.65 53.95

R3M-B

100
200
300

20.00 92.00
12.00 76.00
12.00 76.00

52.00
48.00
32.00

96.00
96.00
88.00

32.00
32.00
28.00

88.00
88.00
76.00

48.00
44.00
40.00

668.49 301.54
634.62 256.82
633.39 211.90

842.90
661.40
585.50

256.56
198.63
188.15

678.00
660.90
657.30

75.08 45.66
75..62 48.09
74.54 45.59

Theia-B

100
200
300

32.00 76.00
36.00 80.00
24.00 72.00

88.00
60.00
80.00

100.00
100.00
100.00

80.00
84.00
72.00

96.00
100.00
96.00

96.00
84.00
100.00

72.90
79.05
79.64

43.97
56.99
54.39

82.09
94.36
82.89

37.02
39.59
39.09

70.50
70.22
72.00

84.55 55.62
83.27 54.59
84.01 54.43

Voltron-B

100
200
300

16.00 72.00
32.00 72.00
20.00 68.00

76.00
76.00
72.00

100.00
100.00
100.00

64.00
60.00
52.00

100.00
96.00
96.00

96.00
88.00
84.00

74.31
71.57
71.25

42.05
38.17
36.50

68.88
67.53
66.14

36.94
31.01
30.11

70.91
70.17
69.88

86.28 65.11
86.61 62.39
86.16 59.02

MAE-B

100
200
300

24.00 88.00
28.00 76.00
28.00 72.00

88.00
84.00
76.00

100.00
100.00
100.00

84.00
84.00
80.00

96.00
88.00
88.00

96.00
88.00
80.00

88.28
77.13
75.60

42.55
38.49
36.93

95.18
88.22
78.35

44.08
32.75
31.03

69.26
69.02
69.01

85.63 55.68
85.14 56.81
84.11 57.30

DINOV2-B

100
200
300

8.00 60.00
8.00 68.00
12.00 64.00

40.00
40.00
48.00

100.00
100.00
100.00

44.00
64.00
64.00

96.00
88.00
88.00

20.00
16.00
4.00

45.95
37.96
32.43

16.61
15.81
14.31

63.57
51.44
36.01

13.38
12.59
11.67

60.11
59.56
56.54

74.07 36.29
74.18 32.14
73.77 36.53

VC-1-B

100
200
300

20.00 76.00
32.00 80.00
24.00 68.00

76.00
68.00
80.00

100.00
100.00
100.00

76.00
76.00
80.00

100.00
100.00
88.00

76.00
92.00
88.00

72.35
81.83
83.01

43.14
44.05
41.25

92.77
83.62
77.60

27.31
27.80
28.53

68.67
70.98
70.89

84.19 62.00
83.88 59.63
84.76 59.51

RADIO

100
200
300

28.00 76.00
36.00 76.00
44.00 72.00

48.00
44.00
32.00

100.00
100.00
100.00

72.00
72.00
40.00

100.00
96.00
92.00

84.00
52.00
48.00

87.84
80.26
79.62

62.72
57.39
53.51

96.53
95.93
89.16

15.71
15.26
14.80

67.88
67.51
66.57

85.70 57.52
85.67 57.81
85.64 58.14

E-RADIO

100
200
300

32.00 84.00
32.00 84.00
28.00 80.00

64.00
60.00
60.00

100.00
100.00
100.00

84.00
68.00
72.00

96.00
88.00
88.00

96.00
96.00
80.00

71.47
68.80
65.96

53.41
44.56
33.56

93.01
88.54
98.14

50.19
33.19
32.64

70.75
70.46
69.18

87.17 46.97
87.39 50.72
87.09 51.31

SPA-B

100
200
300

20.00 84.00
28.00 80.00
24.00 80.00

84.00
68.00
88.00

100.00
100.00
100.00

88.00
84.00
92.00

100.00
100.00
100.00

100.00
84.00
92.00

80.50
79.71
74.70

45.08
46.65
48.97

91.38
85.75
81.60

48.90
40.84
34.92

71.16
71.01
71.16

86.04 59.03
86.16 60.05
85.16 61.94
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Table 13: All results on Franka Kitchen.

InternViT-

Task | View | Seed | MoCoV3 MAE DINOV2 CLIP EVA 300M MVP VC-1 SPA
100 86.00 76.00 84.00 72.00 78.00 74.00 66.00 74.00 84.00

Left | 200 78.00  78.00  74.00 72.00 76.00 72.00 58.00 74.00 92.00

Task 1 300 80.00  80.00  78.00  62.00 82.00 70.00 64.00 74.00 80.00
100 82.00 80.00 86.00  78.00 78.00 72.00 82.00 78.00 86.00

Right | 200 88.00 62.00 90.00 70.00 86.00 86.00 86.00 84.00 72.00

300 86.00 82.00 92.00 82.00 86.00 76.00 92.00 78.00 86.00

100 60.00  56.00 48.00 26.00 40.00 22.00 40.00 32.00 48.00

Left | 200 64.00 60.00 46.00 44.00 40.00 32.00 32.00 42.00 60.00

Task 2 300 58.00  54.00 40.00 26.00 32.00 34.00 30.00 50.00 66.00
100 62.00 5400 56.00 26.00 44.00 26.00 32.00 54.00 48.00

Right | 200 64.00 5400 60.00 36.00 40.00 24.00 28.00 56.00 42.00

300 64.00 52.00 50.00 38.00 40.00 30.00 34.00 44.00 42.00

100 16.00  24.00 18.00 18.00 22.00 24.00 6.00 24.00 28.00

Left | 200 28.00  20.00 14.00 18.00 20.00 16.00 6.00 30.00 38.00

Task 3 300 22.00 16.00 14.00  10.00 26.00 22.00 8.00 26.00 30.00
100 46.00  26.00 38.00 22.00 14.00 8.00 32.00 12.00 10.00

Right | 200 48.00 22.00 38.00 24.00 18.00 4.00 32.00 12.00 12.00

300 54.00 3400 52.00 14.00 12.00 6.00 26.00 14.00 16.00

100 3200 36.00 26.00 22.00 34.00 12.00 16.00 36.00 22.00

Left | 200 30.00 30.00 32.00 14.00 20.00 8.00 14.00 24.00 10.00

Task 4 300 24.00 46.00 28.00 14.00 32.00 4.00 20.00 36.00 16.00
100 38.00 24.00 28.00 22.00 32.00 12.00 26.00 12.00 30.00

Right | 200 42.00 24.00 24.00 24.00 24.00 12.00 30.00 8.00 38.00

300 46.00 16.00  32.00 28.00 36.00 16.00 26.00 12.00 30.00

100 36.00 18.00 8.00 16.00 24.00 22.00 26.00 28.00 20.00

Left | 200 30.00  24.00 8.00 10.00 24.00 16.00 20.00 22.00 16.00

Task 5 300 22.00 2200 10.00 12.00 16.00 14.00 28.00 30.00 18.00
100 24.00  46.00  20.00 4.00 14.00 10.00 26.00 22.00 30.00

Right | 200 24.00  30.00 16.00 8.00 18.00 18.00 22.00 22.00 26.00

300 14.00  36.00 16.00 12.00 10.00 12.00 20.00 16.00 22.00
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Table 14: All results on Meta-World.

Method ‘ MoCoV3 ‘ MAE ‘ DINOV2 ‘ CLIP ‘ EVA IH?SSET-‘ MVP ‘ Ve-1 ‘ SPA

Seed 1100200 300/100 200 300{100 200 300] 100 200 300100 200 300] 100 200 300] 100 200 300] 100 200 300] 100 200 300
ButtonPressWall 100 100 100[100 100 10095 90 95 [100 100 100|95 95 100| 95 100 95 |100 100 100|100 100 100]100 100 100
DoorClose 100 100 100|100 100 100[100 100 100|100 100 100|100 100 100|100 100 100{100 100 100|100 100 100{100 100 100
DoorUnlock 70 65 80|70 65 85|35 35 30|60 50 60|85 85 90|80 65 75|75 70 85|80 75 90|80 75 80
DrawerClose 100 100 100|100 100 100[100 100 100|100 100 100[100 100 100|100 100 100[100 100 100|100 100 100{100 100 100
DrawerOpen 80 70 85|85 65 75|60 40 60|90 80 80|60 55 75|70 75 75|95 75 85|85 85 80|90 60 75
FaucetClose 70 80 55|60 80 60|55 65 35|70 80 50|65 75 60|50 65 50|70 75 60|65 75 10070 80 65
PlateSlide 90 95 10|95 100100[65 70 80|85 95 80 [100100100{85 95 90 |00 100 100/100 95 100|95 95 95
PlateSlideBack 80 65 85(85 65 85(90 75 90|85 75 90|80 65 90|85 80 90|85 70 90|80 70 90|80 70 85
PlateSlideSide 85 90 95|95 90 95|90 85 85|80 85 95100 95 100[90 95 90|80 90 95(100 95 90|90 90 95
WindowClose 100 100 100{100 100 100{ 70 90 100{100 100 95 |95 100 100|100 100 100{100 100 100|100 100 100/100 100 100
Basketball 85 95 95|95 10010070 55 65|85 85 70|95 85 80|90 80 95|95 100 95|90 100 95 |95 100100
BinPicking 30 45 40|20 10 35|10 15 10|30 30 25(20 5 45|10 10 10|25 20 15|30 30 30|40 25 30
BoxClose 80 80 80|75 80 70|35 45 30|80 70 60|55 70 55|60 65 40|80 80 65|80 95 60|80 80 65
CoffecPush 45 50 40|40 55 30(30 25 15|45 40 55|45 35 40|45 30 25|25 45 25|30 45 55|35 40 30
Assembly 70 60 55|55 65 45|30 35 25|45 55 50|45 50 40|30 25 30|60 60 45|60 60 50|50 55 50
Disassemble 40 55 50|30 45 45|30 20 45|55 50 60|30 50 50|40 45 50|40 45 45|40 30 35|40 45 55
PushWall 25 35 30|20 30 40|40 30 45|35 30 35|25 35 30|15 15 25|30 35 35|55 55 60|30 40 45
ShelfPlace 35 35 20|25 45 20|30 30 35|30 35 30|25 20 15|15 15 15|25 25 15|25 15 15|15 35 15
DoorOpen 95 90 90(100 95 95|95 80 95|85 75 90|80 90 100[50 55 60|80 75 95|95 95 95|85 100 95
ButtonPress 75 85 85|85 100100{80 95 85|55 70 75|80 90 90|85 90 80|85 90 95|80 90 85[100 95 100
Sweeplnto 45 45 40|55 55 45|50 50 40|45 45 40|45 25 30|35 25 30|45 50 40|55 50 50|50 50 45
DoorLock 100 85 85|90 100100[95 90 85|85 85 75|95 100 95|80 90 95|85 100 95(100100 90|80 95 85
ReachWall 70 70 80|75 85 70|85 80 85|90 90 80|65 75 85|60 55 55|75 65 75|75 80 80|75 80 70
Hammer 25 45 30|30 30 30|40 45 35|25 35 25(30 35 20|20 20 20|30 35 30|45 40 55|30 40 30
StickPush 95 95 100{80 90 95|90 90 90|75 85 85|90 85 100{60 80 85|90 95 90|85 85 95|90 90 85
ButtonPressTopdown |80 80 75|80 85 80|80 90 90|80 90 70|55 65 55|45 55 55|80 85 80|75 80 70|80 85 80
HandlePressSide 100 100 100{100 100 100{ 95 100 90| 80 100 90 |100 100 95 | 85 100 90 |95 10010075 100 80 |90 100 100
PlateSlideBackSide 100 100 100{100 95 95 |100 100 100100 100 100|100 100 100|100 100 100/100 100 100|100 100 100|100 100 100
Sweep 50 80 70|35 60 60|65 85 95|60 85 75|35 50 55|15 60 35|35 70 65|35 65 65|30 65 55
ButtonPressTopdownWall| 45 70 80|45 75 75|70 75 75|45 60 70|30 45 65|20 55 45|30 60 70|50 85 80|45 65 75
HandlePress 85 95 95|80 100 75|75 100 80|90 100 90 |85 100 85|65 90 75|80 95 75|85 100 90|85 100 80
Push 25 30 30|25 30 30|30 25 40|25 15 30(30 25 20|25 20 20|25 20 25|40 30 25|30 15 35
CoffecPull 55 55 55|40 45 40|20 30 20|50 70 40|40 45 45|40 40 25|55 55 40|55 55 60|55 55 55
DialTurn 80 65 8085 75 75|40 30 35|80 95 90|65 65 80|70 70 55|70 65 75|80 95 75|85 85 75
Reach 90 75 80|90 75 80|70 75 85|95 95 100[85 80 75|95 80 90|80 70 75|70 80 80|85 70 85
CoffecButton 85 95 75(100100 95 |85 80 60|95 100 85|90 100 95|90 85 85 |100100 90|90 100 80 |100 100 100
PickPlaceWall 45 35 65|40 25 45|15 10 20|35 40 50|20 25 35|30 25 25|25 35 40|35 20 45|40 35 55
StickPull 35 35 25|15 40 20|25 10 5 |45 40 45|25 35 15|25 25 15|15 30 25|30 30 30|25 35 30
HandInsert 35 30 30|30 25 25|20 20 20|45 45 40|20 25 20|25 30 25|40 40 35|40 30 40|40 50 40
PeglnsertSide 40 35 40|50 35 45|25 15 10|45 30 20|45 25 30|30 20 25|45 45 30|50 25 35|55 45 60
PickPlace 35 30 30|25 45 15|15 10 10|25 15 30|25 30 25|30 10 30|20 35 25|25 20 20|25 30 40
FaucetOpen 95 95 100100 100 100{ 80 80 100/100 95 100{95 95 100/ 80 85 95 [100 100 100|100 100 10095 100 100
PushBack 65 70 60|40 55 40|15 15 25|30 45 25|35 35 45|15 35 25|40 45 45|45 55 25|35 55 50
LeverPull 70 80 80|80 70 75|15 30 35|55 85 80|70 65 70|60 55 55|65 80 65|65 80 70|85 70 80
HandlePull 85 85 80|85 80 85|45 55 40|75 75 80|80 60 65|45 70 65|80 90 80|70 85 75|100 90 90
Soccer 25 40 35|50 30 25|15 10 15|45 40 3035 35 25|20 20 30|30 30 35|20 20 20|25 50 25
WindowOpen 65 80 80|55 80 85|60 50 65|50 65 60|65 80 75|55 75 75|60 70 70|60 70 75|55 85 65
PickOutOfHole 65 75 80|65 65 60|60 55 60|70 70 50|60 55 50|60 55 55|65 55 60|70 75 60|65 60 75
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Table 15: All results on RLBench.

Method MoCoV3 MAE DINOV2 CLIP EVA I“;‘E)r&\\/’[‘T MVP VC-1 SPA
Group 1

basketball in hoop 100 100 100 100 100 100 100 100 100
put rubbish in bin 100 100 96 96 96 100 96 100 100
meat off grill 100 100 100 100 100 100 100 100 100
meat on grill 80 76 76 68 80 72 68 76 80
slide block to target 0 84 96 24 4 0 100 100 4
reach and drag 100 96 88 100 96 100 96 100 100
take frame off hanger 88 88 92 88 84 84 88 88 96
water plants 64 60 28 64 60 44 52 60 68
hang frame on hanger 8 4 0 4 8 8 12 4 4
wipe desk 0 0 0 0 0 0 0 0 0
stack blocks 60 72 72 68 56 60 84 68 68
reach target 60 96 88 100 96 80 92 96 92
push button 100 100 100 100 100 100 100 100 100
lamp on 88 68 84 88 52 80 28 88 64
toilet seat down 100 100 100 100 100 100 96 9 100
close laptop lid 96 96 96 96 84 80 80 9% 100
open box 12 12 20 4 16 4 0 12 16
open drawer 88 96 92 100 88 88 92 96 96
pick up cup 92 92 88 96 96 88 96 96 96
turn tap 88 84 84 96 88 92 96 100 100
take usb out of computer 100 100 100 100 100 100 100 88 100
play jenga 96 96 96 100 96 100 96 96 96
insert onto square peg 28 84 80 44 88 40 64 92 84
take umbrella out of umbrella stand 92 100 100 92 100 96 100 100 100
insert usb in computer 12 20 20 24 24 20 16 8 68
straighten rope 56 44 72 80 48 72 52 60 84
turn oven on 96 96 96 96 96 96 100 100 100
change clock 64 68 48 68 64 72 64 60 68
close microwave 100 100 100 100 100 100 100 100 100
close fridge 80 92 92 88 92 96 88 92 100
close grill 96 96 96 96 96 96 100 100 96
open grill 100 100 100 100 100 100 96 100 100
unplug charger 44 32 48 36 48 40 40 44 44
press switch 92 92 88 72 76 84 76 88 92
take money out safe 100 96 100 100 100 100 100 100 100
Group 2

change channel 0 8 4 0 0 4 0 0 4
tvon 4 8 0 4 4 8 4 4 8
push buttons 12 4 4 0 0 0 0 12 4
stack wine 12 16 40 4 12 0 28 8 28
scoop with spatula 0 0 0 0 0 0 0 0 0
place hanger on rack 0 0 0 0 0 0 0 0 0
move hanger 0 0 0 0 0 0 0 0 0
sweep to dustpan 92 96 96 96 92 100 100 88 96
take plate off colored dish rack 96 100 96 92 84 96 88 92 96
screw nail 52 36 36 36 36 52 32 32 48
take shoes out of box 20 28 24 36 40 12 32 36 36
slide cabinet open and place cups 0 0 0 0 0 4 0 0 4
lamp off 100 96 96 100 96 96 100 100 100
pick and lift 88 96 92 96 92 80 96 96 96
take lid off saucepan 100 100 100 100 100 100 100 100 100
close drawer 100 100 100 100 96 100 100 100 100
close box 92 92 96 9 100 96 100 96 100
phone on base 100 100 100 100 100 96 100 100 100
toilet seat up 80 88 100 88 88 80 88 92 96
put books on bookshelf 12 24 24 28 28 20 20 28 16
beat the buzz 88 92 96 88 92 84 88 88 100
stack cups 40 56 52 52 48 56 64 68 64
put knife on chopping board 72 76 68 72 80 88 80 76 80
place shape in shape sorter 20 36 32 28 36 20 44 36 56
take toilet roll off stand 100 92 76 96 92 88 84 92 96
put umbrella in umbrella stand 8 0 12 12 0 4 12 8 12
setup checkers 76 80 68 68 88 92 92 80 80
open window 96 96 100 100 96 100 96 100 100
open wine bottle 80 100 88 92 92 88 96 88 88
open microwave 100 100 88 9 100 80 96 100 100
put money in safe 96 100 88 92 100 96 100 100 100
open door 100 96 96 96 96 96 84 96 96
close door 32 68 56 60 80 20 24 20 60
open fridge 44 52 48 44 36 64 52 32 64
open oven 8 4 12 8 4 20 4 4 16
plug charger in power supply 32 36 32 24 44 36 24 32 60
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Table 16: All results on LIBERO-OBJECT, LIBERO-SPATIAL, LIBERO-GOAL, LIBERO-10.

InternViT- InternViT-
300M 6B

Seed‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300‘ 100 200 300
LIBERO-OBJECT

0.65 0.60 0.65|0.65 0.45 0.55(0.65 0.80 0.85/0.80 0.75 0.65/1.00 0.70 0.95]0.80 0.65 0.60/0.70 0.85 0.50(0.80 0.90 0.65(0.80 0.50 0.60|0.90 0.95 0.95
0.350.350.55/0.90 0.75 0.80{0.30 0.50 0.75]0.40 0.30 0.05|0.65 0.30 0.70|0.15 0.40 0.20/0.60 0.25 0.45|0.05 0.80 0.60(0.40 0.65 0.45|0.65 0.70 0.45
0.90 0.85 0.950.90 0.40 0.95/0.85 0.50 0.90{0.70 0.80 0.75|0.85 0.75 0.75]0.90 0.85 0.80/0.85 0.45 0.85|0.80 0.85 0.90{1.00 0.95 0.95/0.90 0.95 0.80
0.550.70 0.650.90 0.15 0.90{0.30 0.65 0.90/0.25 0.45 0.60|0.80 0.80 0.90|0.75 0.70 0.40|1.00 0.50 0.55|0.70 0.65 0.85(0.95 0.75 0.60/0.70 0.90 0.90
0.65 0.85 0.85|0.80 0.90 0.75]0.75 0.55 0.75[0.35 0.75 0.65|0.95 0.75 1.00/0.90 1.00 0.85]0.90 0.70 0.80(0.80 0.75 0.70{0.90 0.85 0.90/0.90 1.00 0.95
0.500.70 0.80{0.70 0.35 0.60]0.55 0.75 0.60(0.25 0.70 0.45|0.75 0.75 0.65|0.85 0.60 0.75]0.60 0.35 0.50(0.55 0.40 0.80{0.65 0.70 0.70/0.25 0.15 0.65
0.350.50 0.65]0.60 0.65 0.65(0.55 0.70 0.70{0.35 0.55 0.60|0.40 0.35 0.25|0.65 0.60 0.55/0.30 0.10 0.35|0.25 0.50 0.65(0.50 0.50 0.30{0.50 0.70 0.80
0.750.75 0.80]0.90 0.40 0.75(0.55 0.30 0.70{0.40 0.35 0.40|0.55 0.75 0.70{0.80 0.40 0.60/0.60 0.65 0.70(0.60 0.45 0.65(0.80 0.75 0.50|0.80 0.75 0.65
0.50 0.95 0.90/1.00 0.95 1.00{0.50 0.35 0.50{0.45 0.45 0.35|1.00 0.75 0.85|0.70 0.65 0.75|0.50 0.40 0.75|0.65 0.55 0.70(0.80 0.90 0.50|0.85 0.95 0.90
0.45 0.50 0.40]0.60 0.65 0.95|0.80 0.90 0.95/0.50 0.70 0.30/0.85 0.75 0.75]0.85 0.95 0.65/0.90 0.60 0.15|0.65 0.60 0.30(0.70 0.70 0.65|0.60 0.95 0.90

LIBERO-SPATIAL

0.350.55 0.45|0.45 0.40 0.70(0.65 0.50 0.60(0.25 0.20 0.35/0.70 0.75 0.65|0.55 0.65 0.55|0.55 0.50 0.30|0.75 0.75 0.60(0.35 0.55 0.60|0.45 0.50 0.35
0.65 0.70 0.70]0.80 0.80 0.50(0.55 0.30 0.35/0.75 0.75 0.70/0.55 0.70 0.25]0.35 0.50 0.501.00 1.00 0.90(0.60 0.40 0.60(0.45 0.65 0.80|0.65 0.65 0.85
0.550.50 0.50|0.35 0.60 0.40]0.20 0.05 0.55{0.10 0.00 0.40{0.70 0.80 0.50/0.70 0.75 0.60]0.75 0.60 0.20(0.85 0.55 0.75|0.45 0.45 0.70/0.50 0.50 0.40
0.500.70 0.75|0.55 0.60 0.75]0.80 0.70 0.95/0.15 0.40 0.30|0.85 0.90 0.85/0.35 0.50 0.40]0.40 0.30 0.15|0.95 0.55 0.60|0.50 0.70 0.65|0.55 0.85 0.60
0.150.15 0.20]0.55 0.70 0.80{0.50 0.05 0.45|0.35 0.30 0.20|0.45 0.55 0.40|0.35 0.25 0.40/0.25 0.15 0.15|0.60 0.50 0.70(0.60 0.60 0.80/0.70 0.70 0.50
0.450.10 0.10]0.65 0.40 0.30{0.30 0.20 0.35|0.55 0.45 0.45|0.65 0.50 0.45|0.40 0.30 0.70/0.55 0.60 0.60(0.55 0.30 0.25(0.05 0.05 0.15/0.35 0.35 0.30
0.30 0.35 0.45]0.55 0.25 0.95|0.40 0.30 0.40(0.20 0.25 0.10/0.75 0.70 0.85|0.45 0.55 0.55/0.40 0.35 0.05|0.45 0.75 0.65(0.60 0.70 0.35|0.35 0.45 0.30
0.10 0.20 0.25]0.50 0.35 0.45/0.05 0.00 0.10{0.30 0.15 0.25/0.30 0.30 0.20{0.30 0.60 0.65|0.15 0.05 0.05|0.60 0.65 0.60(0.10 0.20 0.40|0.40 0.15 0.45
0.550.70 0.50|0.35 0.65 0.70]0.40 0.15 0.55|0.30 0.55 0.30|0.85 0.70 0.60|0.30 0.55 0.60]0.65 0.40 0.35|0.70 0.40 0.55|0.70 0.60 0.70/0.75 0.70 0.40
0.550.05 0.10/0.85 0.75 0.50]0.20 0.05 0.25/0.20 0.20 0.20|0.55 0.50 0.30|0.35 0.50 0.30]0.45 0.40 0.35|0.45 0.45 0.30|0.50 0.55 0.65|0.35 0.50 0.45

LIBERO-GOAL

0.450.70 0.75|0.70 0.85 0.80|0.15 0.10 0.30(0.25 0.40 0.35|0.70 0.60 0.60|0.75 0.65 0.75]0.25 0.35 0.35(0.75 0.60 0.95|0.45 0.85 1.00/0.85 1.00 0.85
0.70 0.60 0.80]0.65 0.50 0.90{0.25 0.55 0.25/0.20 0.15 0.25/0.70 0.80 0.80{0.90 0.90 1.00/0.40 0.15 0.15|0.90 0.80 0.95(0.65 0.65 0.65/1.00 0.85 0.90
0.500.20 0.15]0.10 0.40 0.35(0.10 0.05 0.15]0.30 0.25 0.30/0.65 0.75 0.75]0.40 0.75 0.45|0.50 0.35 0.35|0.45 0.25 0.65(0.40 0.60 0.35|0.50 0.55 0.35
0.75 0.45 0.60]0.40 0.75 0.55(0.20 0.10 0.10{0.05 0.20 0.55|0.30 0.15 0.15]0.30 0.50 0.65/0.20 0.25 0.25|0.70 0.70 0.15(0.75 0.55 0.50/0.65 0.35 0.80
0.20 0.25 0.05]0.35 0.40 0.25(0.10 0.00 0.05{0.40 0.30 0.15/0.15 0.10 0.10{0.20 0.15 0.10/0.15 0.20 0.20(0.55 0.60 0.25(0.15 0.30 0.30{0.30 0.35 0.35
0.10 0.75 0.80]0.60 0.85 0.80(0.65 0.50 0.50(0.35 0.45 0.50/0.80 0.75 0.75]0.70 0.55 0.45|0.55 0.45 0.45|0.80 0.75 0.85(0.65 0.75 0.80/0.80 0.65 0.65
0.450.05 0.15/0.00 0.10 0.05]0.00 0.05 0.00{0.10 0.10 0.00{0.00 0.65 0.65|0.50 0.40 0.30]0.00 0.00 0.00(0.15 0.35 0.70{0.25 0.50 0.45/0.40 0.30 0.35
0.250.75 0.90(0.80 0.65 1.00]0.45 0.45 0.35/0.50 0.65 0.80{1.00 1.00 1.00/1.00 1.00 0.95]0.70 0.85 0.85(0.95 1.00 0.95|1.00 0.95 0.70/0.95 1.00 1.00
0.50 0.80 0.75]0.85 0.55 0.90(0.45 0.40 0.20{0.60 0.25 0.50/0.90 0.35 0.35]0.95 0.65 0.55/0.65 0.25 0.25|0.70 0.65 0.70(0.50 0.75 0.55|0.80 0.65 0.80
0.10 0.65 0.60]0.50 0.20 0.50{0.10 0.00 0.10/0.10 0.10 0.00/0.15 0.70 0.70|0.60 0.40 0.20|0.15 0.35 0.35|0.30 0.50 0.55|0.20 0.35 0.70|0.55 0.60 0.45

LIBERO-10

0.150.20 0.10]0.15 0.25 0.10{0.00 0.05 0.10{0.00 0.05 0.05/0.25 0.35 0.10|0.35 0.10 0.25/0.15 0.15 0.00|0.05 0.15 0.20(0.10 0.45 0.25|0.05 0.10 0.05
0.250.20 0.20]0.30 0.15 0.25(0.15 0.15 0.15]0.40 0.30 0.15/0.65 0.10 0.60{0.15 0.50 0.45/0.00 0.25 0.35|0.15 0.10 0.15(0.20 0.40 0.15|0.25 0.05 0.45
0.70 0.60 0.75]0.30 0.60 0.75|0.55 0.45 0.50|0.25 0.45 0.40|0.75 0.55 0.65|0.45 0.80 0.55/0.70 0.80 0.75|0.75 0.65 0.55(0.85 1.00 0.90/0.70 0.80 0.50
0.500.80 0.55|0.55 0.60 0.80]0.40 0.45 0.45/0.60 0.65 0.60|0.80 0.90 0.75|0.75 0.65 0.50]0.75 0.60 0.60(0.75 0.70 0.65|0.80 0.70 0.70/0.70 0.90 0.70
0.250.20 0.05|0.35 0.25 0.30]0.10 0.10 0.05{0.20 0.05 0.05|0.15 0.10 0.15/0.15 0.15 0.05]0.15 0.20 0.15(0.25 0.20 0.35|0.30 0.25 0.30/0.40 0.30 0.25
0.400.60 0.75]0.55 0.70 0.80{0.50 0.65 0.75|0.40 0.40 0.30/0.85 0.65 0.75]0.75 0.55 0.75|0.45 0.55 0.45|0.60 0.70 0.75(0.80 0.90 0.60/0.70 0.70 0.45
0.20 0.25 0.10]0.40 0.35 0.40{0.05 0.20 0.05{0.25 0.15 0.15]0.20 0.30 0.35]0.10 0.15 0.20/0.20 0.25 0.05|0.40 0.30 0.35(0.30 0.10 0.20/0.20 0.20 0.15
0.40 0.30 0.25/0.50 0.50 0.50{0.10 0.30 0.60{0.30 0.40 0.20|0.45 0.30 0.25|0.40 0.35 0.35/0.35 0.70 0.25|0.35 0.30 0.25(0.30 0.25 0.30/0.50 0.45 0.40
0.100.10 0.15]0.10 0.30 0.20{0.35 0.20 0.05{0.10 0.10 0.10/0.15 0.20 0.10{0.20 0.00 0.25|0.05 0.20 0.05(0.10 0.30 0.20(0.25 0.30 0.25|0.25 0.05 0.15
0.20 0.60 0.35]0.40 0.65 0.30{0.35 0.25 0.45|0.45 0.45 0.30/0.40 0.70 0.50|0.50 0.45 0.60/0.50 0.25 0.40|0.40 0.55 0.50(0.00 0.00 0.00/0.50 0.65 0.50
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Table 17: All results on LIBERQO-90.

InternViT- InternViT-

‘ MoCoV3 ‘ MAE ‘ DINOV2 ‘ CLIP ‘ EVA ‘ 300M ‘ 6B ‘ MVP ‘ VC-1 ‘ SPA
Seed| 100 200 300|100 200 300 | 100 200 300|100 200 300|100 200 300|100 200 300|100 200 300|100 200 300|100 200 300|100 200 300
LIBERO-90

0.95 0.85 0.90(1.00 0.90 0.80(0.80 1.00 0.60{0.90 0.80 0.80|1.00 1.00 1.00|0.90 0.80 0.85|0.75 0.80 0.95|0.95 0.95 1.00|0.95 1.00 0.95|1.00 1.00 0.95
1 0.60 0.35 0.60(0.35 0.50 0.15/0.50 0.55 0.30{0.40 0.65 0.35(0.70 0.50 0.25]0.30 0.45 0.40{0.25 0.35 0.55]0.80 0.55 0.30{0.40 0.50 0.05|0.65 0.40 0.50
2 ]0.85 0.50 0.80{0.55 0.55 0.20{0.65 0.60 0.30{0.45 0.30 0.50{0.35 0.50 0.70|0.85 0.65 0.80{0.25 0.35 0.30|0.45 0.70 0.70|0.75 0.55 0.35|0.70 0.85 0.60
3 0.10 0.10 0.00(0.05 0.00 0.00|0.05 0.00 0.00{0.15 0.00 0.00{0.00 0.10 0.15]0.00 0.05 0.05[0.00 0.00 0.05]0.10 0.00 0.05]0.05 0.10 0.00{0.10 0.10 0.00
4 0.40 0.05 0.20(0.30 0.25 0.30(0.15 0.40 0.55|0.40 0.40 0.35|0.10 0.25 0.15|0.40 0.05 0.25|0.20 0.45 0.40|0.30 0.40 0.15]0.25 0.05 0.15|0.15 0.15 0.35
5 0.05 0.05 0.05(0.10 0.05 0.20{0.00 0.20 0.00{0.05 0.05 0.20{0.25 0.25 0.10|0.10 0.05 0.30|0.20 0.10 0.25]0.05 0.15 0.10{0.10 0.05 0.05|0.35 0.00 0.15
6 0.10 0.00 0.00(0.00 0.00 0.05[0.05 0.05 0.10{0.05 0.10 0.00|{0.00 0.00 0.05|0.00 0.00 0.00|0.05 0.10 0.10]0.00 0.05 0.00{0.00 0.00 0.00{0.00 0.05 0.05
7 0.35 0.30 0.65[0.20 0.60 0.30|0.35 0.25 0.40{0.50 0.60 0.35(0.60 0.10 0.20|0.15 0.25 0.10{0.40 0.25 0.45|0.50 0.20 0.40{0.20 0.30 0.25{0.30 0.30 0.65
8 0.10 0.15 0.00(0.05 0.20 0.10/0.15 0.25 0.10{0.20 0.10 0.10{0.10 0.05 0.00{0.05 0.00 0.10{0.20 0.15 0.20{0.10 0.00 0.20{0.05 0.15 0.20{0.05 0.05 0.15
9 ]0.30 0.25 0.35/0.50 0.25 0.30|0.35 0.60 0.70|0.25 0.20 0.50|0.25 0.10 0.50(0.10 0.10 0.25/0.60 0.25 0.30(0.25 0.15 0.45|0.25 0.05 0.35]0.25 0.20 0.25
10 0.50 0.75 0.50|0.50 0.60 0.55|0.65 0.60 0.60[0.90 0.45 0.55[0.40 0.85 0.35|0.35 0.05 0.25|0.45 0.45 0.65|0.40 0.50 0.55|0.45 0.75 0.40|0.40 0.35 0.35
11 ]0.45 0.35 0.75|0.45 0.70 0.65|0.35 0.20 0.15]0.40 0.70 0.55[0.80 0.25 0.70{0.50 0.50 0.10{0.35 0.25 0.45|0.80 0.60 0.95|0.70 0.75 0.60[0.60 0.60 0.65
12 |0.15 0.15 0.10{0.15 0.15 0.05]0.20 0.20 0.15|0.10 0.05 0.05|0.10 0.25 0.05[0.05 0.00 0.00{0.25 0.30 0.10{0.15 0.10 0.10{0.20 0.25 0.10/0.05 0.10 0.15
13 {0.20 0.35 0.30{0.15 0.30 0.20{0.30 0.35 0.10{0.30 0.40 0.35]0.30 0.10 0.45|0.20 0.35 0.40{0.25 0.15 0.55]|0.30 0.30 0.15|0.45 0.10 0.100.10 0.20 0.10
14 {0.05 0.10 0.00{0.30 0.30 0.20{0.10 0.10 0.15{0.15 0.40 0.20{0.25 0.35 0.10{0.15 0.15 0.05{0.20 0.15 0.10]0.20 0.35 0.10{0.20 0.10 0.20|0.15 0.15 0.10
15 ]0.60 0.75 0.45]|0.70 0.50 0.65|0.35 0.50 0.55|0.45 0.65 0.40|0.70 0.75 0.40|0.40 0.65 0.50(0.35 0.55 0.45(0.70 0.60 0.55|0.80 0.80 0.70|0.65 0.80 0.55
16 {0.05 0.20 0.00|0.30 0.15 0.05|0.10 0.10 0.05]0.10 0.00 0.10{0.20 0.20 0.15|0.15 0.15 0.20{0.05 0.00 0.10|0.15 0.05 0.10|0.00 0.15 0.15]0.05 0.10 0.15
17 ]0.05 0.15 0.15|0.10 0.25 0.05|0.05 0.10 0.05[0.05 0.00 0.05[0.05 0.20 0.15|0.10 0.10 0.15{0.00 0.10 0.00|0.20 0.10 0.20|0.15 0.10 0.00{0.25 0.10 0.10
18 [0.45 0.40 0.60|0.40 0.75 0.65|0.30 0.35 0.40|0.45 0.25 0.35|0.25 0.35 0.60{0.40 0.05 0.70{0.60 0.50 0.35|0.35 0.25 0.45|0.30 0.60 0.35|0.60 0.35 0.55
19 [0.30 0.30 0.25]0.35 0.40 0.20{0.20 0.05 0.35|0.45 0.45 0.30{0.30 0.35 0.25|0.15 0.25 0.20{0.35 0.30 0.15]|0.55 0.30 0.40|0.40 0.45 0.35|0.45 0.20 0.35
20 ]0.85 0.75 0.80{1.00 1.00 0.95]0.95 1.00 1.00{0.75 0.85 0.30{1.00 1.00 1.00|0.95 0.95 0.90{1.00 0.50 0.80|0.90 1.00 1.00|{1.00 1.00 1.00|1.00 1.00 1.00
21 ]0.40 0.20 0.40{0.35 0.25 0.30{0.25 0.40 0.20{0.25 0.10 0.45]0.30 0.70 0.05|0.00 0.05 0.10{0.35 0.10 0.30|0.40 0.15 0.30{0.30 0.70 0.600.65 0.40 0.60
22 10.90 0.95 0.95|1.00 0.85 0.95]|0.25 0.60 0.40(0.75 0.75 0.75(0.95 1.00 0.95|0.85 0.95 0.60|0.45 0.25 0.25|0.90 1.00 1.00|0.90 0.90 0.95[1.00 0.95 1.00
23 10.15 0.05 0.15]|0.05 0.10 0.00|0.05 0.10 0.05|0.00 0.00 0.05(0.00 0.00 0.00{0.00 0.00 0.00|0.20 0.25 0.05|0.00 0.00 0.00|0.00 0.00 0.00{0.00 0.00 0.00
24 10.80 0.30 0.85]0.85 0.50 0.80|0.60 0.50 0.65|0.70 0.45 0.60/0.70 0.70 0.80|0.40 0.65 0.60|0.55 0.80 0.45|0.65 0.60 0.90{0.90 0.80 0.80/0.90 0.80 0.75
25 |1.00 0.80 0.85{1.00 1.00 0.90{0.75 0.90 0.90{0.80 0.95 0.90{0.90 1.00 0.95|0.70 0.70 0.85{0.95 0.60 0.65|1.00 0.85 1.00|1.00 1.00 0.90|1.00 1.00 1.00
26 ]0.15 0.20 0.25{0.25 0.40 0.40{0.05 0.30 0.40{0.45 0.05 0.15]0.05 0.30 0.15]0.25 0.40 0.20{0.25 0.15 0.20|0.20 0.30 0.60|0.25 0.45 0.25|0.25 0.20 0.20
27 10.30 0.15 0.20{0.35 0.35 0.10{0.05 0.10 0.00{0.35 0.05 0.10{0.05 0.20 0.05|0.05 0.15 0.00{0.10 0.10 0.05|0.35 0.20 0.30{0.10 0.45 0.400.10 0.40 0.20
28 10.90 0.90 1.00|0.95 0.70 0.70|0.80 0.50 0.80(0.90 0.75 0.90(0.95 1.00 0.85]0.90 0.85 1.00|0.50 0.60 0.45|0.85 0.75 0.90|0.75 0.95 0.60{0.90 0.65 0.90
29 10.15 0.50 0.35]|0.60 0.55 0.20|0.50 0.50 0.40(0.50 0.50 0.30(0.65 0.30 0.30|0.15 0.30 0.40|0.25 0.35 0.25|0.35 0.50 0.25|0.60 0.60 0.10{0.30 0.35 0.70
30 ]0.15 0.25 0.15]|0.60 0.35 0.35]|0.35 0.10 0.50|0.25 0.20 0.45(0.30 0.70 0.20|0.10 0.15 0.20|0.50 0.20 0.25|0.00 0.05 0.20|0.10 0.25 0.10{0.40 0.25 0.40
31 ]0.70 0.60 0.80{0.70 0.75 0.60{0.45 0.70 0.75]0.95 0.65 0.95]0.80 0.75 0.45]0.50 0.55 0.35{0.95 0.80 0.85]|0.80 0.70 0.75|0.75 0.75 0.45|0.70 0.90 0.80
32 ]0.30 0.05 0.20{0.05 0.10 0.05]0.00 0.00 0.05{0.35 0.10 0.10{0.20 0.10 0.15]0.10 0.15 0.10{0.05 0.15 0.05|0.20 0.25 0.10{0.05 0.10 0.05|0.20 0.10 0.05
33 ]0.50 0.55 0.40{0.15 0.30 0.30{0.10 0.20 0.35{0.30 0.25 0.30{0.00 0.50 0.40|0.35 0.20 0.25|0.25 0.25 0.30|0.20 0.35 0.40|0.35 0.45 0.65|0.15 0.15 0.15
34 10.30 0.35 0.30|0.40 0.40 0.25]|0.35 0.40 0.15|0.40 0.40 0.50(0.10 0.40 0.10{0.15 0.05 0.25|0.35 0.30 0.50|0.25 0.30 0.30|0.55 0.25 0.05[0.05 0.30 0.10
35 10.65 0.40 0.60|0.85 0.95 0.75]0.80 0.80 0.60|0.65 0.55 0.90(0.90 1.00 0.80|0.10 0.20 0.55|0.85 0.75 0.70|0.85 0.80 0.85|0.25 0.80 0.55[1.00 0.70 1.00
36 ]0.05 0.10 0.15]|0.05 0.00 0.00/0.00 0.25 0.05[0.05 0.05 0.00(0.15 0.20 0.10{0.15 0.10 0.25]0.00 0.00 0.10|0.20 0.00 0.15|0.30 0.05 0.20{0.05 0.20 0.10
37 10.35 0.30 0.40{0.55 0.20 0.25]0.65 0.50 0.35]0.30 0.60 0.60{0.70 0.80 0.60|0.45 0.55 0.45|0.50 0.55 0.55|0.45 0.45 0.50|0.45 0.75 0.35|0.75 0.50 0.55
38 ]0.50 0.30 0.45(0.55 0.50 0.35]0.25 0.15 0.30{0.50 0.45 0.30{0.50 0.20 0.35]0.35 0.55 0.45|0.35 0.50 0.35|0.70 0.40 0.55|0.70 0.65 0.30/0.70 0.45 0.45
39 ]0.80 0.80 0.75{0.45 0.70 0.60{0.60 0.55 0.65]0.60 0.65 0.70{0.65 0.85 0.55|0.60 0.15 0.60{0.65 0.60 0.60|0.45 0.40 0.70|0.30 0.65 0.35|0.60 0.55 0.60
40 0.40 0.50 0.20(0.40 0.30 0.40(0.30 0.45 0.55|0.50 0.25 0.30|0.70 0.65 0.30|0.25 0.60 0.25|0.55 0.40 0.25[0.65 0.70 0.80(0.35 0.45 0.25|0.55 0.35 0.30
41 ]0.20 0.60 0.40(0.50 0.45 0.60(0.35 0.25 0.55|0.20 0.45 0.50|0.85 0.45 0.50|0.45 0.65 0.45|0.20 0.30 0.35[0.55 0.80 0.20(0.35 0.50 0.65|0.65 0.80 0.40
42 10.20 0.40 0.20(0.35 0.15 0.05(0.30 0.30 0.55|0.35 0.05 0.20{0.70 0.45 0.20|0.40 0.65 0.60|0.25 0.10 0.05[0.30 0.50 0.65[0.35 0.60 0.50|0.60 0.60 0.40
43 ]0.50 0.50 0.50|0.35 0.40 0.30|0.35 0.35 0.15|0.35 0.25 0.45/0.20 0.60 0.50{0.35 0.35 0.05(0.30 0.30 0.15]0.30 0.60 0.40|0.55 0.40 0.20{0.55 0.70 0.40
44 10.90 0.90 0.95/1.00 1.00 0.85|0.80 0.90 0.95/0.75 0.85 0.85/0.95 0.80 1.00|1.00 0.95 0.85/0.85 0.65 0.95(0.85 0.95 0.90|0.95 0.95 0.95[0.95 1.00 0.95
45 10.55 0.40 0.60|0.80 0.75 0.60|0.45 0.55 0.60(0.70 0.70 0.55/0.45 0.40 0.30{0.55 0.15 0.55(0.40 0.65 0.30{0.65 0.50 0.35]0.55 0.65 0.45|0.60 0.75 0.60
46 10.00 0.00 0.00(0.05 0.35 0.10{0.00 0.15 0.00{0.10 0.10 0.05]0.05 0.10 0.00|0.00 0.00 0.10|0.10 0.00 0.05{0.05 0.05 0.20(0.00 0.05 0.10{0.10 0.00 0.10
47 10.45 0.35 0.25(0.25 0.20 0.20(0.10 0.20 0.15]0.60 0.25 0.45|0.45 0.30 0.30|0.15 0.30 0.30|0.15 0.35 0.20{0.40 0.40 0.30(0.20 0.25 0.10|0.55 0.45 0.30
48 0.00 0.15 0.30(0.10 0.00 0.15[0.20 0.05 0.20{0.10 0.10 0.25]0.05 0.10 0.25|0.15 0.00 0.25|0.20 0.10 0.20{0.05 0.10 0.10(0.15 0.20 0.10{0.10 0.05 0.20
49 10.05 0.05 0.25/0.25 0.30 0.15/0.10 0.20 0.25(0.25 0.40 0.30|0.15 0.25 0.05[0.05 0.00 0.15(0.25 0.30 0.00{0.00 0.00 0.15]0.15 0.05 0.25{0.15 0.05 0.10
50 ]0.25 0.05 0.25{0.00 0.05 0.10]0.00 0.00 0.00{0.00 0.00 0.00{0.00 0.05 0.10]0.05 0.05 0.00{0.00 0.05 0.00|0.05 0.05 0.05|0.10 0.00 0.00/0.05 0.15 0.05
51 ]0.05 0.15 0.05{0.10 0.15 0.05]0.15 0.15 0.20{0.15 0.20 0.15]0.15 0.10 0.05|0.05 0.20 0.05{0.35 0.15 0.35|0.15 0.20 0.30{0.15 0.00 0.10|0.05 0.10 0.10
52 10.00 0.00 0.00|0.00 0.00 0.05|0.05 0.10 0.00|0.00 0.05 0.05/0.10 0.00 0.15]0.10 0.00 0.00{0.05 0.05 0.00{0.05 0.15 0.10{0.00 0.00 0.10|0.15 0.00 0.05
53 10.05 0.05 0.10]0.15 0.00 0.05|0.20 0.20 0.05|0.00 0.10 0.20/0.05 0.25 0.05]0.05 0.00 0.00{0.25 0.15 0.25|0.00 0.00 0.00{0.05 0.15 0.10|0.10 0.05 0.15
54 10.05 0.20 0.05|0.05 0.05 0.00|0.05 0.05 0.05|0.25 0.05 0.05/0.05 0.05 0.10{0.20 0.10 0.00{0.20 0.20 0.05|0.05 0.00 0.00{0.00 0.00 0.00|0.05 0.15 0.05
55 10.10 0.05 0.05{0.00 0.00 0.00{0.10 0.05 0.00{0.05 0.00 0.00{0.00 0.00 0.05]0.00 0.00 0.00{0.05 0.05 0.05|0.00 0.05 0.05|0.00 0.00 0.000.00 0.10 0.00
56 10.05 0.15 0.10{0.10 0.10 0.05]0.15 0.15 0.30{0.20 0.10 0.25{0.10 0.10 0.05]0.10 0.20 0.00{0.25 0.15 0.10|0.05 0.00 0.05|0.20 0.15 0.100.10 0.15 0.20
57 10.10 0.00 0.05{0.10 0.10 0.05]0.05 0.20 0.00{0.15 0.10 0.05{0.10 0.15 0.00|0.05 0.05 0.10{0.20 0.25 0.10|0.00 0.00 0.20{0.10 0.00 0.20|0.20 0.05 0.05
58 10.05 0.10 0.20|0.00 0.05 0.10]0.10 0.25 0.10(0.25 0.20 0.15(0.20 0.15 0.15]0.05 0.05 0.15]0.05 0.15 0.05|0.15 0.10 0.10|0.05 0.10 0.20{0.15 0.05 0.10
59 10.05 0.10 0.10/0.05 0.10 0.10{0.05 0.15 0.00|0.05 0.10 0.05/0.05 0.10 0.25]0.05 0.15 0.25]0.05 0.10 0.05|0.10 0.00 0.10{0.15 0.15 0.00|0.00 0.20 0.05
60 ]0.55 0.65 0.70|0.30 0.60 0.45]|0.50 0.50 0.40|0.40 0.35 0.65(0.20 0.75 0.55|0.35 0.35 0.50|0.40 0.40 0.50|0.45 0.50 0.75|0.20 0.50 0.55[0.45 0.65 0.90
61 10.05 0.15 0.05{0.00 0.10 0.00{0.00 0.10 0.05{0.05 0.10 0.10{0.05 0.10 0.05]0.00 0.00 0.10{0.15 0.05 0.20|0.10 0.15 0.20{0.05 0.15 0.05|0.15 0.05 0.15
62 10.45 0.40 0.40{0.45 0.20 0.20]0.25 0.30 0.25]0.55 0.15 0.70{0.40 0.50 0.45]0.30 0.10 0.50{0.40 0.15 0.05|0.20 0.15 0.35]0.25 0.35 0.50|0.40 0.10 0.35
63 ]0.10 0.00 0.05{0.15 0.05 0.00{0.15 0.20 0.15{0.05 0.00 0.00{0.00 0.00 0.00|0.00 0.00 0.00{0.00 0.00 0.00|0.00 0.00 0.10{0.00 0.00 0.000.00 0.00 0.00
64 10.10 0.05 0.05]|0.00 0.05 0.00]|0.00 0.05 0.05[0.00 0.05 0.15[0.00 0.00 0.00{0.00 0.00 0.00|{0.05 0.05 0.00|0.00 0.00 0.00|0.00 0.00 0.00{0.10 0.05 0.00
65 ]0.05 0.00 0.15]|0.20 0.05 0.10{0.00 0.05 0.05|0.10 0.05 0.05/0.05 0.00 0.05]0.00 0.05 0.05]0.05 0.10 0.10{0.10 0.00 0.10{0.15 0.05 0.05|0.05 0.05 0.05
66 0.20 0.35 0.05]|0.05 0.30 0.15|0.40 0.40 0.50|0.20 0.15 0.25/0.10 0.20 0.05]0.25 0.10 0.25]0.15 0.20 0.30{0.20 0.20 0.20{0.10 0.10 0.20|0.35 0.40 0.25
67 10.00 0.00 0.05{0.05 0.00 0.15]0.05 0.05 0.05{0.05 0.00 0.05]0.05 0.00 0.00|0.10 0.05 0.00{0.00 0.05 0.00|0.00 0.10 0.00|{0.05 0.10 0.10|0.00 0.00 0.00
68 10.05 0.40 0.20{0.30 0.25 0.15]0.30 0.40 0.60{0.25 0.20 0.25]0.20 0.25 0.15]0.20 0.25 0.15{0.40 0.50 0.40|0.35 0.30 0.35|0.15 0.15 0.35|0.30 0.15 0.30
69 ]0.15 0.00 0.20{0.10 0.25 0.05]0.00 0.00 0.00{0.10 0.05 0.10{0.30 0.05 0.50|0.20 0.20 0.00{0.10 0.20 0.10|0.30 0.15 0.25|0.30 0.30 0.10|0.25 0.35 0.10
70 10.20 0.45 0.05]|0.20 0.20 0.20|0.30 0.35 0.20(0.20 0.30 0.25(0.20 0.20 0.30{0.20 0.30 0.25]0.20 0.20 0.20|0.25 0.55 0.40|0.25 0.15 0.50{0.40 0.20 0.40
71 ]0.35 0.25 0.10/0.20 0.20 0.35]|0.35 0.20 0.15|0.15 0.30 0.05(0.15 0.15 0.30{0.25 0.10 0.30|0.35 0.05 0.45|0.35 0.10 0.15|0.05 0.10 0.25[0.20 0.45 0.30
72 10.10 0.35 0.25(0.05 0.10 0.40(0.05 0.05 0.25{0.05 0.20 0.10{0.20 0.35 0.35|0.10 0.10 0.30|0.05 0.20 0.05|0.25 0.25 0.50{0.15 0.40 0.30{0.05 0.30 0.25
73 ]0.20 0.05 0.25/0.10 0.05 0.15/0.05 0.00 0.10{0.20 0.15 0.15/0.00 0.15 0.00{0.25 0.10 0.25(0.15 0.05 0.15]0.05 0.05 0.25]0.20 0.25 0.05{0.10 0.10 0.30
74 10.30 0.40 0.25/0.20 0.25 0.40|0.20 0.30 0.15/0.40 0.15 0.25|0.35 0.30 0.25|0.15 0.10 0.25/0.45 0.35 0.15[0.40 0.25 0.45|0.40 0.50 0.20{0.50 0.15 0.25
75 1020 0.30 0.15{0.20 0.10 0.25]0.10 0.20 0.10{0.05 0.20 0.15{0.20 0.20 0.20|0.25 0.15 0.20{0.10 0.10 0.10|0.20 0.35 0.55|0.20 0.20 0.15/0.10 0.20 0.25
76 10.15 0.15 0.40|0.75 0.50 0.20|0.40 0.40 0.35|0.45 0.25 0.30/0.00 0.30 0.05]0.00 0.00 0.00{0.60 0.20 0.30|{0.05 0.25 0.40{0.10 0.05 0.10|0.10 0.05 0.05
77 10.35 0.35 0.10]0.05 0.05 0.30|0.25 0.50 0.35|0.15 0.00 0.40(0.15 0.15 0.50{0.30 0.00 0.10|0.15 0.20 0.20|0.15 0.25 0.30|0.55 0.45 0.55[0.35 0.15 0.40
78 10.10 0.20 0.25(0.00 0.20 0.15[0.10 0.00 0.00{0.10 0.10 0.05|0.10 0.40 0.20|0.05 0.00 0.10|0.05 0.05 0.00|0.20 0.05 0.05{0.20 0.30 0.10{0.15 0.00 0.25
79 |0.15 0.40 0.35/0.25 0.20 0.40|0.15 0.45 0.40|0.35 0.35 0.20|0.35 0.25 0.35|0.35 0.00 0.20/0.30 0.15 0.30{0.25 0.15 0.60|0.50 0.65 0.25[0.35 0.05 0.25
80 |0.15 0.30 0.40{0.20 0.40 0.45]0.25 0.20 0.35{0.10 0.05 0.15]0.40 0.20 0.20|0.20 0.00 0.15{0.30 0.25 0.50|0.25 0.40 0.45|0.60 0.20 0.300.40 0.00 0.30
81 ]0.15 0.10 0.15{0.00 0.05 0.20{0.25 0.15 0.05{0.10 0.05 0.10{0.05 0.20 0.05|0.15 0.00 0.05{0.00 0.00 0.05|0.25 0.25 0.25|0.00 0.15 0.15|0.20 0.25 0.20
82 10.20 0.35 0.45|0.55 0.30 0.45|0.15 0.45 0.25|0.40 0.60 0.65/0.70 0.45 0.60{0.20 0.00 0.15]0.35 0.45 0.50|0.25 0.45 0.65|0.45 0.65 0.15|0.40 0.30 0.45
83 10.10 0.35 0.40|0.10 0.15 0.20|0.10 0.15 0.10(0.30 0.00 0.10{0.20 0.15 0.20|0.05 0.10 0.15]0.40 0.20 0.15|0.15 0.00 0.25|0.15 0.25 0.20(0.15 0.10 0.20
84 10.05 0.20 0.20|0.15 0.25 0.05]|0.20 0.15 0.40(0.35 0.20 0.10(0.30 0.20 0.05|0.05 0.05 0.10|0.50 0.25 0.20|0.20 0.05 0.20|0.20 0.05 0.20{0.05 0.15 0.00
85 10.05 0.00 0.05{0.00 0.10 0.05]0.05 0.20 0.00{0.20 0.10 0.15]0.00 0.05 0.05|0.00 0.00 0.00{0.20 0.10 0.05]|0.00 0.00 0.05|0.10 0.05 0.000.05 0.05 0.00
86 ]0.05 0.25 0.15{0.20 0.60 0.25]0.00 0.05 0.00{0.15 0.25 0.30{0.25 0.25 0.30|0.20 0.05 0.15{0.15 0.20 0.10|0.10 0.00 0.45|0.05 0.20 0.05|0.40 0.30 0.30
87 10.40 0.65 0.65(0.25 0.55 0.40/0.30 0.20 0.20{0.40 0.30 0.35]0.55 0.65 0.55]|0.25 0.50 0.40{0.45 0.30 0.30|0.30 0.45 0.90|0.35 0.65 0.70|0.50 0.45 0.55
88 10.40 0.20 0.55|0.20 0.55 0.35]|0.45 0.65 0.65|0.55 0.60 0.55(0.45 0.50 0.50{0.40 0.20 0.50|0.55 0.25 0.20|0.75 0.45 0.40|0.35 0.65 0.30(0.45 0.55 0.50
89 10.10 0.00 0.05]|0.05 0.10 0.10]0.05 0.20 0.05|0.20 0.05 0.05(0.00 0.10 0.00|0.10 0.25 0.05|0.10 0.15 0.05|0.00 0.25 0.30|0.30 0.05 0.10{0.20 0.20 0.10
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