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Cell Complex Neural Networks (CXNs)

We propose Cell Complexes Neural Networks (CXNs), a general,
combinatorial, and unifying construction for performing neural
network-type computations on cell complexes.

Cell complexes are topological spaces constructed from simple blocks
called cells. Why cell complexes form a better and more expressive
generalization?

Hierarchical relational reasoning representation
Accommodation for most data forms that are significant in practice
Trainability of neural networks over geometric domains
Resource efficiency

We introduce an inter-cellular message passing scheme on cell
complexes
We introduce a unified cell complex encoder-decoder framework

The forward propagation computation of a cell complex neural net
requires the following data as inputs:

A cell complex X of dimension n, possibly oriented
For each m-cell c m in X, we have an initial vector h (0) cm ∈ R l 0 m

Given the desired depth L > 0 of the net one wants to define on the
complex X, the forward propagation algorithm on X consists of L × n inter-
cellular message passing scheme defined for 0 < k ≤ L:

Proposed Cell Complex Networks (CXN)

Cell Complex

Cell Complex Autoencoders (CXNA)

Example of cell complexes

Cell complexes are characterized via their adjacency matrices or
coadjacency matrices

A cell complex is a topological space X obtained as a disjoint union of 
cells, each homeomorphic to the interior of a k-Euclidean ball for 
some k, attached together via attaching maps in a locally reasonable 
manner

Cell complexes provide a combinatorial formalism that allows the 
inclusion of complicated relationships of restrictive structures
They form a generalization of graphs, simplicial complexes and 
polygonal complexes as shown below

Convolutional Cell Complex Nets (CCXN)

The input for a CCXN is specified by cell embeddings 𝐻(0) ∈ 𝑅𝑁×𝑑that

define the initial cells features on every cell in 𝑋<𝑛 . Here, 𝑑 is the
embedding dimension of the cells. The convolutional message passing

scheme on 𝑋 is defined by

A cell complex autoencoder (CXNA) consists of three components:
An encoder-decoder system, this is the trainable components of
the autoencoder
A similarity measure on the cell complex, which is auser-defined
similarity function that represents a notion of similarity between
the cells in the complex
A loss function, which is a user-defined function utilized to
optimize the encoder-decoder system according to the similarity
measure.

Mathematically, let X be a cell complex of dimension n. Then, an
encoder on Xi s a function of the form:

Examples: Cell2vec and more

This encoder associates to every k-cell 𝑐𝑘 (0≤k<n) a feature vector 𝑧𝑐
∈ 𝑅𝑑 that encodes the structure of this cell and its relationship to other
cells in X. A decoder is a function of the form:

The functions enc and dec are typically trainable functions that are
optimized using a user-defined similarity measure and a user-defined
loss function. A similarity function is a function of the form:

that describes the similarity between cell of the complex. Examples are
adjacency matrices. The enc-dec functions are optimized such that:

Several examples of autoencoders can be defined using the above
formalism; i.e., if we choose the softmax function to be the decoder
and define the loss function to be the cross entropy, then we obtain
cell2vec, an encoding scheme of cell complexes inside Euclidian
spaces that generalize node2vec. The following table shows more
examples:

The following figure demonstrates the above construction/formulation on 
a simplicial complex network with depth L=2 for clarity

To this end, let l∶R×R→R be a user-defined loss function and define:

and finally define:
Other message passing schemes that can be defined on cell complexes are

presented in the paper

Info flow goes from lower cells to higher incident cells

Examples of adjacency and degree matrices


