
Under review as a conference paper at ICLR 2023

Part I

Appendix

Table of Contents
A Additional related work 14

B Problem assumptions and modeling heuristics 14

C Additional ProtDiff details 15

D Conditional sampling: SMCDiff details and supplementary proofs 16
D.1 The replacement method and its error . 17
D.2 SMCDiff details and verification proof of Proposition 4.1 18
D.3 Proofs and lemmas . 19

E Detecting chirality 22

F Training details 23

G Additional metric details 23

H Additional experimental results 24
H.1 Additional motif-scaffolding results . 24
H.2 Qualitative analysis of scTM in different ranges 26
H.3 Additional latent interpolation results . 28
H.4 Structural clustering . 29

I Applicability of SMCDiff beyond proteins: MNIST inpainting 29

A ADDITIONAL RELATED WORK

We next cover additional related work on generative models of proteins sequence and structure,
beyond the discussion in Section 1.1. Following the success of deep language models, Ferruz et al.
(2022) developed protein sequence models to generate new proteins, but these models do not allow
specification of structural motifs. Another class of methods, referred to as fixed backbone sequence
design (Fleishman et al., 2011; Ingraham et al., 2019; Xiong et al., 2020; McPartlon et al., 2022;
Hsu et al., 2022), attempts to solve the problem of identifying a sequence that folds into any given
designable backbone structure. In the present work, we utilize a particular sequence design method,
ProteinMPNN (Dauparas et al., 2022), but in principle any other fixed-backbone sequence design
method could be used in its place. Anand & Huang (2018); Lin et al. (2021); Wu et al. (2021) propose
generative adversarial networks, variational autoencoders, and energy-based models, respectively, on
distance matrices, but these approaches (1) do not generate backbones compatible with a specified
motif and (2) rely on an unwieldy optimization step to translate the distance matrix into backbone
coordinates. Other authors use neural net (Tischer et al., 2020; Anishchenko et al., 2021; Wang et al.,
2022; Huang et al., 2022; Wu et al., 2021), but require a computationally challenging conformational
landscape exploration.

B PROBLEM ASSUMPTIONS AND MODELING HEURISTICS

The formulation of the motif-scaffolding problem presented in Section 2.1 makes several simplifying
assumptions, and our modeling approach relies on several heuristics. We describe these assump-
tions and heuristics in what follows, and comment on how they might be addressed by further

14

Under review as a conference paper at ICLR 2023

methodological developments. But we first describe an illustrative example of an instance of motif
scaffolding.

Protein sequence-structure relationship. Generally speaking, a protein’s sequence encodes an
ensemble of conformations, populated to different degrees at biological temperatures. Anfinsen’s
hypothesis states that the ground state conformation is thermodynamically accessible (Anfinsen,
1973), providing a mapping from sequence to a unique (ground state) structure. In practice, the
ground state structures make up the vast majority of experimentally determined protein conformations,
as over 95% of structures in the Protein Data Bank (PDB) are collected at cryogenic temperatures
(Fraser et al., 2011). Thus we simplify our problem by saying that a sequence uniquely maps to a
static structure (i.e. the ground state structure). However, violations of this assumption arise in some
PDB structures as a result of (1) of context specific determinants of structure such as post-translational
modifications and environmental factors including pH, binding partners, and salts, as well as (2)
thermodynamic inaccessibility of the ground state.

Motif sequence and side-chains. As stated in Section 2.1, we assume we may represent a functional
motif by the coordinates of its C-↵ atoms. However, the biochemical functions of proteins depend
not only on backbone structure, but also on side-chains. For example, the activity of many enzymes is
imparted by triplets of residues, known as catalytic triads, whose ability to catalyze reactions depends
on the spatial organization of side-chain atoms. Our problem statement and subsequent evaluation
scheme are agnostic to the amino acid identity of motif residues, let alone side-chain positioning. A
more complete representation of a motif would include the side-chain identities (i.e. the amino acid
sequence) and side-chain atom coordinates.

Scaffold length and motif placement. We have additionally assumed that the size of scaffolds and
the indices of motif residues within the backbone chain, M, are known a priori. However, in practice
satisfactory scaffolds could have different lengths and different motif placements, and typically it is
not known a priori what lengths and placements will be best. Previous works have addressed this
challenge through brute force by sampling multiple lengths and placements, and relied on post-hoc
filtering to identify the most promising scaffolds (Wang et al., 2022; Yang et al., 2021). Subsequent
work on ML methods could potentially generalize beyond this assumption to efficiently sample
appropriate scaffold lengths and motif placements.

Sequence and side-chain modeling. ProtDiff models only the backbone coordinates and leaves
sequence design to a subsequent stage, for which we have used ProteinMPNN. A more complete
representation of a proteins could include both sequence and structure (where structure can be divided
into the backbone and side-chain atom coordinates). To model sequence, we rely on a separately
trained neural network, ProteinMPNN, but this is not ideal. Unless ProtDiff produces perfect
backbones, one would expect the backbone samples of ProtDiff to present a substantial domain
shift when used as input for ProteinMPNN.

3D backbone representation. In this work, we represent a protein structure using the C-↵ coor-
dinates of every residue along the backbone. However, this representation is coarse-grained and
ignores additional backbone atomic coordinates, namely the backbone carbon and nitrogen atoms.
Dauparas et al. (2022) observed additionally modeling the heavy atoms of the backbone nitrogen
and carbon atoms along with the C-� of every residue (to capture side-chain information) improved
performance (by sequence recovery) for fixed-backbone sequence design. We hypothesize modeling
additional coordinates of every residue would also improve designability performance of ProtDiff.
Constraining ProtDiff to place the remaining atoms in the correct orientation could help enforce
correct chirality and mitigate chain breaks.

C ADDITIONAL PROTDIFF DETAILS

As a reminder from Section 3, each node in the graph is indexed by n = 1, . . . , N and corresponds
to a residue with coordinates xn 2 R3 and node features hn 2 RD. For each pair of nodes n, n0 we
define an edge and associate it with edge features ann0 2 RD. Our neural network to predict ✏✓ is
an instance of EGNN composed of multiple EGCL layers . We recount details of EGCL and then
discuss construction of edge and node features, ann0 and hn.

15

Under review as a conference paper at ICLR 2023

Equivariant graph convolution layers (EGCL). Each layer l = 1, . . . , L defines an update as
(xl, hl) = EGCL[xl�1, hl�1] where for each node n

xl
n = xl�1

n +
X

n0 6=n

~!nn0 · �x(h
l�1
n , hl�1

n0 , dnn0 , ann0) and hl
n = �h(h

l�1
n ,mn), for

~!nn0 =
xl�1
n � xl�1

n0p
dnn0 + �

, mn =
X

n0 6=n

�e(h
l�1
n , hl�1

n0 , dnn0 , ann0), and dnn0 = kxl�1
n � xl�1

n0 k22.

�e,�h, and �x are fully connected neural networks, and � is a small positive constant included for
numerical stability. The first EGCL layer takes in initial node embeddings, h0 while edge embeddings,
ann0 , are kept fixed throughout.

Initial node and edge embeddings. Each edge between two residues indexed in the sequence by
(n, n0) is featurized with D features obtained through a sinusoidal encoding of its relative offset:

ann0 =

2

64
'(n� n0, 1)

...
'(n� n0, D)

3

75 , where '(x, k) =

⇢
sin

�
x · ⇡/N2·k/D�

, k mod 2 = 0
cos

�
x · ⇡/N2·(k�1)/D

�
, k mod 2 = 1.

For node features, we similarly use a sinusoidal encoding of sequence position as well as of the
diffusion time step t as

hn(t) =

2

64
'(n, 1)

...
'(n,D)

3

75+R

2

64
'(t, 1)

...
'(t,D)

3

75 ,

where R is a D⇥D orthogonal matrix chosen uniformly at random. Intuitively, applying R transforms
the time encoding to be orthogonal to the positional encoding.

Coordinate scaling While protein structures are typically parameterized in Angstroms, we transform
the input protein coordinates to be in nanometers rather by dividing by 10. This scaling brings the
backbones to a spatial scale similar to the reference distribution at which the forward noising process
is stationary, a unit variance isotropic Gaussian. Importantly, the distribution of the final step T is
indistinguishable from an isotropic Gaussian (Supplementary Fig. 5.)

Figure 5: Distribution of x(T) after centering and scaling x(0) to nanometers.

D CONDITIONAL SAMPLING: SMCDIFF DETAILS AND SUPPLEMENTARY
PROOFS

We here provide additional details related to SMCDiff and the replacement method described in
Section 4. Details of the replacement method (Song et al., 2021) and our analysis of its error are in

16

Under review as a conference paper at ICLR 2023

Algorithm 2 Replacement method for approx-
imate conditional sampling

1: Input: x(0)
M (motif)

2: // Forward diffuse motif
3: x̆(1:T)

M ⇠ q(x(1:T)
M | x(0)

M)
4:
5: // Reverse diffuse scaffold
6: x(T) ⇠ p✓(x(T))
7: for t = T, . . . , 1 do
8: // Replace with forward diffused motif
9: x(t) [x̆(t)

M,x(t)
S]

10:
11: // Propose next step
12: x(t�1) ⇠ p✓(x(t�1) | x(t))
13: end for
14: Return x(0)

S , x(1:T)

Appendix D.1. Appendix D.2 provides details of our sampling method, SMCDiff, including (1) a
proof of Proposition 4.1 and (2) details of the residual resampling step. We leave technical proofs
and lemmas to Appendix D.3.

Notation. In the following, we require notation that is more precise than in previous sections. For
each t = 0, . . . , T, we let qt(·) and pt(·) denote the density functions of x(t) according to the forward
process and to our neural network approximation of the reverse process, respectively. We denote
densities restricted to the motif and scaffold with subscripts M and S. For example, we here write
pM,t(x

(t)
M), whereas we wrote p✓(x

(t)
M) in the main text. We write (random) conditional densities as

qM,t(· | x(t�1)
M) and write the (deterministic) conditional density for an observation x(t�1)

M = xM as
qM,t(· | x(t�1)

M = xM).

An object of interest will be the Kullback-Leibler (KL) divergence. We write
KL [qt(·)kpt(·)] :=

R
qt(x) log

qt(x)
pt(x)

dx, where log(·) is the natural (base e) logarithm. We
will also encounter the expected KL between conditional densities, which we will write as
EKL

⇥
qt(· | x(t�1))kpt(· | x(t�1))

⇤
:=

R
qt�1(x)KL

⇥
qt(· | x(t�1) = x)kpt(· | x(t�1) = x)

⇤
dx,

where the outer expectation is taken with respect to the unconditional density associated with
first argument of EKL [·k·] .

D.1 THE REPLACEMENT METHOD AND ITS ERROR

The replacement method was proposed by Song et al. (2021) for the task of inpainting in the context
of score-based generative models. Work (Ho et al., 2022) concurrent with the present paper applied
the replacement method to DPMs. Although Song et al. (2021) notes that this approach can be
understood as approximate conditional sampling, they provide no discussion of approximation error.
We here show that the replacement method introduces irreducible error that is inherent to the forward
process. Algorithm 2 provides an explicit description of the replacement method.

The first return of Algorithm 2, x(0)
S , is used as a putative inpainting solution or approximate

conditional sample. But Algorithm 2 additionally returns subsequent time steps, x(1:T). We denote
the approximation over all steps implied by the generative procedure in Algorithm 2 by pRepl

1:T (· |
x(0)
M = xM) and compare it to the exact conditional, q1:T (· | x(0)

M = xM). We here consider error in
KL divergence because it permits an analytically tractable and transparent analysis. We additionally
consider the idealized scenario where p0:T (·) perfectly captures the reverse process. Under this
condition, the forward KL takes a surprisingly simple form.

17

Under review as a conference paper at ICLR 2023

Proposition D.1. Suppose that p0:T (·) exactly matches the forward diffusion process such that for
every x, pt(· | x(t+1) = x) = qt(· | x(t+1) = x). Then for any motif xM,

KL
h
q1:T (· | x(0)

M = xM)kpRepl
1:T (· | x(0)

M = xM)
i

=
T�1X

t=1

EKL
h
qS,t(· | x(t+1),x(0)

M = xM)kqS,t(· | x(t+1))
i
.

(2)

Proposition D.1 reveals that the replacement method introduces approximation error that is intrinsic
to the forward process and cannot be eliminated by making p0:T (·) more expressive. Although the
individual terms in the right hand side of Equation (2) are not analytically tractable in general, in the
following corollary we show that this approximation error can be non-trivial by considering a special
case. For this following example, we depart from the earlier assumption that x is in 3D, and consider
scalar valued xM and xS .

Corollary D.2. Suppose [x(0)
M ,x(0)

S] is bivariate normal distributed with mean zero, unit variance,
and covariance ⇢. Further suppose that qS,t(· | x(0)

S) = N (·;
p
↵̄(t)x(0)

S , 1 � ↵̄(t)) and qS,t+1(· |
x(t)
S) = N (·;

p
1� �(t+1)x(t)

S ,�(t+1)) as in Section 2, where �(t+1) and ↵̄(t) are between 0 and 1.
Then

EKL
h
qS,t(· | x(t+1)

S ,x(0)
M)kqS,t(· | x(t+1)

S)
i
� �1

2

⇣
log(1� �(t+1)↵̄(t)⇢2) + �(t+1)↵̄(t)⇢2

⌘
.

We note two takeaways of Corollary D.2. First, as we might intuitively expect, this error can be large
when significant correlation in the target distribution is present. Second, we see that the approximation
error can be larger at earlier time steps, when ↵̄(t) is closer to 1.

D.2 SMCDIFF DETAILS AND VERIFICATION PROOF OF PROPOSITION 4.1

The idea behind the SMCDiff procedure in Algorithm 1 is to break sampling of x(0)
S ⇠ qS,0(· | x(0)

M)
into three stages:

1. Draw x(1:T)
M ⇠ qM,1:T (· | x(0)

M).

2. Draw x(1:T)
S ⇠ qS,1:T (· | x(0:T)

M).

3. Draw x(0)
S ⇠ qS,0(· | x(0:T)

M ,x(1:T)
S)

If all three steps were performed exactly, by the law of total probability x(0)
S in step (3) would

(marginally) be an exact sample from qS,0(· | x(0)
M). As such, SMCDiff aims to perform step (1) and

approximate steps (2) and (3). Step (1) corresponds to forward diffusing the motif in lines 2–3 and is
exact because we diffuse according to q.

Step (3) corresponds to line 17 in the last iteration (when t = 1). Specifically, to sample from
qS,0(· | x(0:T)

M ,x(1:T)
S) we make three observations. (i) The Markov structure of the forward process

implies that qS,0(· | x(0:T)
M ,x(1:T)

S) = qS,0(· | x(0:1)
M ,x(1)

S). (ii) By the assumption that the forward
and approximated reverse process agree, we have qS,0(· | x(0:1)

M ,x(1)
S) = pS,0(· | x(0:1)

M ,x(1)
S).

(iii) Finally, because pt(· | x(t+1)) factorizes across M and S for each t, pS,0(· | x(0:1)
M ,x(1)

S) =

pS,0(· | x(1)
M ,x(1)

S). As a result, under the assumptions of the proposition, we may sample from
qS,0(· | x(0:T)

M ,x(1:T)
S), and perform step (3) exactly as well.

Step (2) is the only non-trivial step, and cannot be performed exactly. The challenge is that although
the reverse process approximation, pS,1:T (· | x(0:T)

M), is well-defined, computing it explicitly involves
an intractable, high-dimensional integral.

The sequential Monte Carlo approach of SMCDiff, then, is to circumvent this intractability by
constructing a sequence of approximations. For each t = T, T � 1, . . . , 1, we approximate pS,t(· |
x(t�1:T)
M) (and thereby qS,t(· | x(t�1:T))) with K weighted atoms (the particles). We denote these

18

Under review as a conference paper at ICLR 2023

Algorithm 3 Residual Resample
1: Input: w1:K (weights), x1:K (particles)
2: 8k, (ck, rk) (bKwkc,Kwk � bKwkc)
3: x̃C = [x1, . . . ,x1| {z }

c1

, . . . ,xK , . . . ,xK| {z }
cK

]

4: R K �
PK

k=1 ck
5: [i1, . . . , iR] ⇠ Multinomial(r1:K , R)
6: x̃R [xi1 , . . . ,xiR]
7: x̃ = concat(xR,xC)
8: Return x̃

approximations (which are implicit in Algorithm 1) by P(t)
K (·) :=

PK
k=1 w̃

(t)
k �(·;x(t)

S,k), where each
w̃(t)

k and x(t)
S,k are as in Algorithm 1, and �(·;x) denotes a Dirac mass at x. In particular, P(1)

K (·) is an
approximation to pS,1(· | x(0:T)

M). Proving the proposition amounts to showing that in the limit as
K goes to infinity, each P(1)

K (·) converges weakly to pS,1(· | x(0:T)
M), which by assumption is equal

to qS,1(· | x(0:T)
M). This weak convergence follows from standard asymptotics for particle filters

(Chopin & Papaspiliopoulos, 2020, Proposition 11.4), which we make explicit in Lemma D.1. As
a result, if we perform step (3) with x(1)

S ⇠ P(1)
K (·), then this lemma implies that x(0)

S converges in
distribution to qS,0(x

(0)
S | x(0)

M), since (i) qS,0(x
(0)
S | x(1)

M ,x(1)
S) is continuous in x(1)

S and (ii) x(0)
S is

independent of x(0)
M conditional on x(1).

Recall that to show the proposition, it was to sufficient to show that P(1)
K converged weakly to

qS,1(· | x(0:T)
M); this implied that the K particle returned by Algorithm 1 would then converge in

distribution to qS,0(· | x(0:T)
M) which, by the law of total probability, implied that they marginally

converge to qS,0(· | x(0)
M). However, while the particles return by Algorithm 1 may be treated as

exchangeable, they are not independent, because they depend on shared randomness in x(1:T)
M . To

obtain approximate samples that are independent, it is necessary to run Algorithm 1 multiple times.

Residual resampling. Line 14 of Algorithm 1 indicates a Resample step. In particle filtering,
resampling steps (or branching mechanisms (Doucet et al., 2001, Chapter 2)) filter out particles
with very small weights, and replace them with additional copies of particles with large weights.
Notably, the resampling step is the only point of departure of Algorithm 1 from the replacement
method; without resampling, the algorithms behave identically. While a variety of possible branching
mechanisms exist, we use residual resampling (Algorithm 3) in our implementation for its simplicity.

D.3 PROOFS AND LEMMAS

Particle filtering lemma with technical conditions

Lemma D.1. Consider P(1)
K :=

PK
k=1 w̃k�(·;x(1)

S,k), where w̃k and x(1)
S,1:K are as constructed in

Algorithm 1. Assume the conditions of Proposition 4.1. Then P(1)
K converges weakly to pS,1(· | x(0:T)

M)

as K goes to infinity. That is, for any Borel measurable A, limK!1 P(1)
K (A) =

R
A pS,1(x |

x(0:T)
M)dx.

Proof. The proof of the lemma follows from an application of standard asymptotics for particle
filtering (Chopin & Papaspiliopoulos, 2020, Proposition 11.4). In particular, to apply Proposition
11.4 we use the formalism of Feynman–Kac (FK) models, following the notation of (Chopin &
Papaspiliopoulos, 2020, Chapter 5). Though typically (and in (Chopin & Papaspiliopoulos, 2020)) FK
models are defined via a sequence of approximations at increasing time steps, we consider decreasing
time steps because we are approximating the reverse time process. We take the initial distribution
as MT (x

(T)
S) = pS,T (x

(T)
S), the transition kernel as Mt(x

(t+1)
S ,x(t)

S) = pS,t(x
(t)
S | x(t+1)), and

19

Under review as a conference paper at ICLR 2023

the potential functions as Gt(x
(t)
S) = pM,t�1(x

(t�1)
M | x(t)). The sequence of FK models, Qt, then

correspond to

Qt(x
(t:T)
S) = L�1

t MT (x
(T)
S)GT (x

(T)
S)

tY

i=T�1

Mi(x
(i+1)
S ,x(i)

S)Gi(x
(i)
S)

for each t, where Lt is a normalizing constant.

By substituting in our choices of Mt and Gt, we can rewrite and simplify Qt as

Qt(x
(t:T)
S) = L�1

t pS,T (x
(T)
S)pM,T�1(x

(T�1)
M | x(T))

tY

i=T�1

pS,i(x
(i)
S | x(i+1))pM,i�1(x

(i�1)
M | x(i))

= L�1
t pS,T (x

(T)
S)pt:T�1(x

(t:T�1) | x(T))pM,t�1(x
(t�1)
M | x(t))

/ pt:T (x
(t:T) | x(t�1)

M)

/ pS,t:T (x
(t:T)
S | x(t�1:T)

M),

where lines 3 and 4 drop multiplicative constants that do not depend on x(t:T)
S . From the above

derivation, we see that each Qt(x
(t)
S) = pS,t(x

(t)
S | x(t�1:T)

M), and in particular that Q1(x
(1)
S) =

pS,1(x
(1)
S | x(0:T)

M). As such, the desired convergence in the statement of the lemma is equivalent to
that P(1)

K converges to Q1.

Chopin & Papaspiliopoulos (2020, Proposition 11.4) provide this result for the generic particle
filtering algorithm (see Chopin & Papaspiliopoulos (2020, Algorithm 10.1), which is written in the
FK model form described above). More specifically, Proposition 11.4 proves almost sure convergence
of all Borel measurable functions of P(t)

K , which implies the desired weak convergence.

Although the proof provided in Chopin & Papaspiliopoulos (2020) is restricted to the simpler, but
higher variance, case where the resampling step uses multinomial resampling, the authors note that
Chopin (2004) proves it holds in the case of residual resampling (which we use in our experiments)
as well.

Replacement method error — lemmas and proofs
We here provide proofs of Proposition D.1 and Corollary D.2.

Proof of Proposition D.1:

Proof. The result obtains from recognizing where the replacement method approximation agrees
with the forward process, using conditional independences in both processes, and applying the chain
rule for KL divergences. We make this explicit in the derivation below, with comments explaining

20

Under review as a conference paper at ICLR 2023

the transition to the following line.

KL
h
q1:T (· | x(0)

M = xM)kpRepl
1:T (· | x(0)

M = xM)
i

=

Z
q1:T (x

(1:T) | x(0)
M = xM) log

q1:T (x(1:T) | x(0)
M = xM)

pRepl
1:T (x(1:T) | x(0)

M = xM)
dx(1:T)

// By the chain rule of probability.

=

Z
q1:T (x

(1:T) | x(0)
M = xM)

h
log

qM,1:T (x
(1:T)
M | x(0)

M = xM)

pRepl
1:T (x(1:T)

M | x(0)
M = xM)

+

log
qS,1:T (x

(1:T)
S | x(0:T)

M = x(0:T)
M)

pRepl
S,1:T (x

(1:T)
S | x(0:T)

M = x(0:T)
M)

i

// By the agreement of q and pRepl on the motif, and the chain rule of probability.

=

Z
q1:T (x

(1:T) | x(0)
M = xM)

h
log

qS,T (x
(T)
S | x(0:T)

M = x(0:T)
M)

pRepl
T (x(T)

S | x(0:T)
M = x(0:T)

M)
+

T�1X

t=1

log
qS,t(x

(t)
S | x(t+1)

S = x(t+1)
S ,x(0:T)

M = x(0:T)
M)

pRepl
S,t (x(t)

S | x(t+1)
S = x(t+1)

S ,x(0:T)
M = x(0:T)

M)

i
dx(1:T)

// Because qS,T (·) = pRepl
S,T (·) = N (·; 0, I) and the assumption that p✓ matches q.

=

Z
q1:T (x

(1:T) | x(0)
M = xM)

h T�1X

t=1

log
qS,t(x

(t)
S | x(t+1) = x(t+1),x(0)

M = x(0)
M)

qS,t(x
(t)
S | x(t+1) = x(t+1))

i
dx(1:T)

=
T�1X

t=1

EKL
h
qS,t(· | x(t+1),x(0)

M = x(0)
M)kqS,t(· | x(t+1))

i
.

Proof of Corollary D.2:
The proof of the corollary relies of on a lemma on the variances of the two relevant conditional
distributions. We state this lemma, whose proof is at the end of the section, before continuing. For
notational simplicity, we drop the scripts and annotations on ↵̄(t) and �(t+1), and instead write ↵ and
�, respectively.

Lemma D.2. Suppose x(0)
M ,x(t)

S , and x(t+1)
S are distributed as in Corollary D.2. Then Var[x(t)

S |
x(t+1)
S] = � and Var[x(t)

S | x(t+1)
S ,x(0)

M]  �(1� �⇢2↵).

Now we provide a proof of Corollary D.2.

Proof. First recall that

KL
⇥
N (µ1,�

2
1)kN (µ2,�

2
2)
⇤
=

1

2

✓
log

�2
2

�2
1

+
�2
1 + (µ1 � µ2)2

�2
2

� 1

◆

� 1

2

✓
log

�2
2

�2
1

+
�2
1

�2
2

� 1

◆

21

Under review as a conference paper at ICLR 2023

and observe that this lower bound is monotonically decreasing in �2
1 for �2

1  �2
2 . Therefore

EKL
h
qS,t(· | x(t+1)

S ,x(0)
M)kqS,t(· | x(t+1)

S)
i

=

Z
qM,0(x

(0)
M)qS,t+1(x

(t+1)
S | x(0)

M)
h

KL
h
qS,t(· | x(t+1)

S = x(t+1)
S ,x(0)

M = x(0)
M])kqS,t(· | x(t+1)

S = x(t+1)
S])

i

i
dx(0)

Mx(t+1)
S

�
Z

qM,0(x
(0)
M)qS,t+1(x

(t+1)
S | x(0)

M)
h

KL
h
N (0,Var[x(t)

S | x(t+1)
S = x(t+1)

S ,x(0)
M = x(0)

M])kN (0,Var[x(t)
S | x(t+1)

S = x(t+1)
S])

i

i
dx(0)

Mx(t+1)
S

� KL
⇥
N (0,�(1� �⇢2↵))kN (0,�)

⇤

� 1

2

✓
log

�

�(1� �⇢2↵)
+

�(1� �⇢2↵)

�
� 1

◆

= �1

2

�
log(1� �⇢2↵) + �⇢2↵

�

where the second inequality follows from Lemma D.2, and the monotonicity of the KL in �2
1 .

Proof of Lemma D.2:

Proof. That Var[x(t)
S | x(t+1)

S] = � follows immediately from that [x(t)
S ,x(t+1)

S] is marginally
bivariate normal distributed with covariance

p
1� �.

The upper bound on Var[x(t)
S | x(t+1)

S ,x(0)
M] is trickier. Observer that [x(t)

S ,x(t+1)
S] | x(0)

M is bivariate
Gaussian and that

Var

""
x(t)
S

x(t+1)
S

#
| x(0)

M

#
=


1� ⇢2↵

p
1� �(1� ⇢2↵)p

1� �(1� ⇢2↵) 1 + �⇢2↵� ⇢2↵

�
.

As such, the conditional variance may be computed in closed form as Var[x(t)
S | x(t+1)

S ,x(0)
M] =

�(1�⇢2↵)+(1��)(1�⇢2↵)
�
1� (1� ⇢2↵)/(1� ⇢2↵+ �⇢2↵)

�
. But since (1�⇢2↵)/(1�⇢2↵+

�⇢2↵) � 1�(�⇢2↵)/(1�⇢2↵) and therefore 1�(1�⇢2↵)/(1�⇢2↵+�⇢2↵)  (�⇢2↵)/(1�⇢2↵)
we can write

Var[x(t)
S | x(t+1)

S ,x(0)
M] = �(1� ⇢2↵) + (1� �)(1� ⇢2↵)

✓
1� 1� ⇢2↵

1� ⇢2↵+ �⇢2↵

◆

 �(1� ⇢2↵) + (1� �)(1� ⇢2↵)
�⇢2↵

1� ⇢2↵
)

= �(1� ⇢2↵) + (1� �)�⇢2↵

= �(1� �⇢2↵).

E DETECTING CHIRALITY

Section 6 noted the limitation of ProtDiff that it can generate left-handed helices (which do not
stably occur in natural proteins). Figure 6 presents two such examples. We additionally note that, as
in Figure 6 Left, model samples can include multiple helices with differing chirality.

22

Under review as a conference paper at ICLR 2023

Figure 6: Two examples of protein backbone samples with incorrect left handed helices.

F TRAINING DETAILS

ProtDiff uses 4 equivariant graph convolutional layers (EGCL) with 256 dimensions for node and
edge embeddings. The training data was restricted to single chain proteins (monomers) found in PDB
and lengths in the range [40, 128]. We additionally filtered out PDB with >5Å atomic resolution.
This amounted to 4269 training examples. Training was performed using the Adam optimizer with
hyperparameters learning_rate=1e-4, �1 = 0.9, and �2 = 0.999. We trained for 1,000,000
steps using batch size 16. We used a single Nvidia A100 GPU for approximately 24 hours. We
implemented all models in PyTorch. We used the same linear noise schedule as Ho et al. (2020)
where �0 = 0.0001, �T = 0.02, and T = 1024. We did not perform hyperparameter tuning.

G ADDITIONAL METRIC DETAILS

Self-consistency algorithm. Section 5.1 described our self-consistency metrics for evaluating the
designability of backbones generated with ProtDiff. Algorithm 4 makes explicit the procedure
we use for computing these metrics.

Algorithm 4 Self-consistency calculation

Input: x 2 RN,3

1: for i 2 1, . . . , 8 do
2: si ProteinMPNN(x)
3: x̂i AF2(si)
4: end for
5: sc_tm maxi21,...,8TMscore(x̂i,x)

Output: , sc_tm

Using dihedral angles to calculate helix chirality. Natural proteins are chiral molecules that
contain only right-handed alpha helices. However, because the underlying EGNN in our model
is equivariant to reflection, it can produce samples with left-handed helices. While examining
model samples, we additionally observed samples with both left and right-handed helices (Figure 6),
even though in theory the EGNN should be able to detect and avoid the chiral mismatch. Left-
handed helices are fundamentally invalid geometries in proteins and represent a trivial failure mode
when calculating the self-consistency and other metrics. Samples with a mixture of left and right-

23

Under review as a conference paper at ICLR 2023

handed helices are especially problematic because they cannot be corrected simply by reflecting the
coordinates. As such, it is important to identify and separate samples with mixed chirality.

To detect chiralty, we compute the dihedral angle between four consecutive C-↵ atoms as a chiral
metric to distinguish between the two helix chiralities. Algorithmically, for every C-↵ i, we calculate
the dihedral between C-↵ i, i+1, i+2, and i+3. C-↵ i with dihedral angles between 0.6 and
1.2 radians are classified as right-handed helices, and angles between -1.2 and -0.6 are classified
as left-handed helices, with everything else classified as non-helical. Because C-↵ atoms in native
helices tend to form contiguous stretches longer than one residue in the primary sequence, helical
stretches less than one amino acid were removed. This filtering is meant to help avoid accidentally
counting the occasional isolated backbone geometry that falls into a helical bin as a true helix. Finally,
for all C-↵ atoms i that are still categorized as part of a helix, the associated i+1, i+2 and i+3
C-↵ atoms are also counted as part of that helix.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we describe additional results to complement the main text. We provide a description
of the motif targets in Section 4, along with results of a scaffolding failure case in Appendix H.1.
To understand the qualitative outcomes of scTM, we present additional results of backbone designs,
their AF2 prediction, and most closely related PDB parent chain for different thresholds of scTM in
Appendix H.2. We provide additional examples of latent interpolations in Appendix H.3. Finally,
Appendix H.4 presents a structural clustering of unconditional backbone samples; this result provides
further evidence of ProtDiff’s ability to generate diverse backbone structures.

Figure 7: Structures used for motif-scaffolding test cases. Native structures (grey) and their motifs
(orange) that were used for the motif-scaffolding task are shown.

H.1 ADDITIONAL MOTIF-SCAFFOLDING RESULTS

We here provide additional details of the motif-scaffolding experiments described in Section 5. Table 1
specifies the total lengths, motif sizes, and motif indices of our test cases. In Figure 7 we depict the
structures of the native proteins (6exz and 5trv) from which the motifs examined quantitatively in
the main text were extracted. Figure 8 analyzes commonly observed failure modes of ProtDiff
backbone samples involving chain breaks, steric clashes, and incorrect chirality.

Figure 9 presents quantitative results on a harder inpainting target. In this case, the motif is defined
as residues 163–181 of chain A of respiratory syncytial virus (RSV) protein (PDB ID: 5tpn). We

24

Under review as a conference paper at ICLR 2023

attempted to scaffold this motif into a 62 residue protein, with the motif as residues 42–62. We
chose this placement because previous work (Wang et al., 2022) identified a promising candidate
scaffold with this motif placement. In contrast to the cases described in the main text, for which
a suitable scaffold exists in the training set, SMCDiff and the other inpainting methods failed to
identify scaffolds that recapitulated this motif to within a motif RMSD of 1 Å.

Table 1: Motif-scaffolding test case additional details.

Origin/ Protein Total length Motif size (residue range)
6exz 72 15 (30–44)
5trv 118 21 (42–62)
RSV (PDB-ID: 5tpn) 62 19 (16–34)
EF-hand (PDB-ID:
1PRW)

53 5 (0–4), 13 (31–43)

Figure 8: Failure modes in ProtDiff backbone samples. (A) Backbone clashes and chain breaks.
The C-↵ atoms can be spaced further than the typical 3.8Å between neighbors, resulting in a chain
break (dashed lines). Additionally, backbone segments can be too close to each other, resulting in
obvious overlaps and clashes. (B) Backbones with a mixture of left (circled in red) and right (circled
in green) handed helices. These chirality errors cannot be corrected simply by mirroring the sampled
backbone.

25

Under review as a conference paper at ICLR 2023

Figure 9: Additional inpainting results on a more challenging motif extracted from the respiratory
syncytial virus (RSV) and EH-hand motif. The three inpainting methods are evaluated as described
in Section 5.

H.2 QUALITATIVE ANALYSIS OF SCTM IN DIFFERENT RANGES

In this section, we give intuition for backbone designs and AF2 predictions associated with different
values of scTM to aid the interpretation of the scTM results provided in Section 5. Figure 10 examines
a possible categorization of scTM in three ranges. The first two rows correspond to backbone designs
that achieve scTM > 0.9. We see the backbone designs in the first column closely match the AF2
prediction in the second column. A closely related PDB example can be found when doing a similarity
search of the highest PDB chain with the highest TM-score to the AF2 prediction. We showed in
Figure 3B that scTM > 0.9 is indicative of a close structural match being found in PDB.

The middle two rows correspond to designs that achieve scTM ⇠ 0.5. These are examples of
backbone designs on the edge of what we deemed as designable (scTM > 0.5). In these cases, the
AF2 prediction shares the same coarse shape as the backbone design but possibly with different
secondary-structure ordering and composition. In the length 69 example, we see the closest PDB
chain has a TM-score of only 0.65 to the AF2 prediction but roughly the same secondary-structure

26

Under review as a conference paper at ICLR 2023

ordering as the backbone design. The length 100 sample is a similar case of AF2 producing a roughly
similar shape to the backbone design, but has no matching monomer in PDB.

The final category of scTM < 0.25 reflects failure cases when scTM is low. The AF2 predictions in
this case have many disordered regions and bear little structural similarity with the original backbone
design. Similar PDB chains are not found. We expect that improved generative models of protein
backbones would not produce any samples in this category.

Figure 10: Qualitative analysis of unconditional backbone samples from ProtDiff. The first
column displays backbone designs from ProtDiff and their sequence lengths. The second column
displays the highest scTM scoring AF2 predictions from the ProteinMPNN sequences of the
corresponding backbone design in the first column. The third column displays the closest PDB chain
to the AF2 prediction in the second column with the PDB ID and TM-score written below. The third
column is blank for the last two rows since no PDB match could be found. See Appendix H.2 for
discussion.

27

Under review as a conference paper at ICLR 2023

H.3 ADDITIONAL LATENT INTERPOLATION RESULTS

We here provide additional latent interpolations. Figures 11 and 12 depict interpolations for between
model samples for lengths 89 and 63, respectively.

Figure 11: Latent interpolation of length 89 backbone sample from ↵ = 0 to 1.

Figure 12: Latent interpolation of length 63 backbone sample from ↵ = 0 to 1.

28

Under review as a conference paper at ICLR 2023

H.4 STRUCTURAL CLUSTERING

All 92 samples with scTM > 0.5 were compared and clustered using MaxCluster Herbert & Sternberg
(2008). Structures were compared in a sequence independent manner, using the TM-score of the
maximal subset of paired residues. They were subsequently clustered using hierarchical clustering
with average linkage, 1 - TM-score as the distance metric and a TM-score threshold of 0.5 (Figure 13
A).

Figure 13: Clustering of self-consistent ProtDiff samples. The distance matrix is 1 - TM-score
between pairs of samples, and ranges from 0 (exact matach) to 1 (no match). Dendrograms are from
hierarchical clustering using the average distance metric. Designs on the right are cluster centroids.
Gray lines connect larger clusters with more than one member to its centroid, while the remaining
designs are from a random selection of the remaining single-sample clusters. Protein backbones are
colored from blue at the N-terminus to red at the C-terminus.

I APPLICABILITY OF SMCDIFF BEYOND PROTEINS: MNIST INPAINTING

Our goal in this section is to study the applicability of SMCDiff beyond motif-scaffolding, by
applying it to inpainting on the MNIST digits dataset. We compare SMCDiff with the replacement
method on the task of sampling the remaining half of MNIST digits. We first train DDPM with
�1 = 10�4,�T = 0.2, T = 1000 using a small 8-layer CNN on MNIST with batch size 128 and
ADAM optimizer for 100 epochs until it is able to generate reasonable MNIST samples (Figure 14).
We then selected 3 random MNIST images and occluded the right half. The left half would then serve
as the conditioning information to the diffusion model (Figure 15).

29

Under review as a conference paper at ICLR 2023

Figure 14: Unconditional MNIST
samples.

Figure 15: Full MNIST images and their occluded
halves used for inpainting experiments.

For each occluded image, we fixed a single forward trajectory and sampled 16 images from each
method: replacement method and SMCDiffwith 16 or 64 particles (K). Results are shown in Fig. 16.
We observe the replacement method can sometimes produce coherent samples as a continuation of the
conditioning information, but more often it attempts to produce incoherent digits. SMCDiff on the
other hand tends to produce digits that compliment the conditioning information. For more difficult
occlusions, such as 5 and 0, SMCDiff can still fail although increasing the number of particles
(K = 64) tends to produce samples that are more visually coherent.

It is important to note SMCDiff has additional computation overhead based on the number of particles.
It can be more expensive than replacement method but result in higher quality samples. Investigating
SMCDiff in more difficult datasets with improved architectures is a direction of future research.

Figure 16: MNIST inpainting results for replacement and SMCDiff. See text for explanation.

30

	Introduction
	Related work

	Preliminaries
	The motif-scaffolding problem
	Diffusion probabilistic models

	ProtDiff: A diffusion model of protein backbones in 3D
	SMCDiff: Conditional sampling in diffusion models by particle filtering
	The challenge of conditional sampling and the error of the replacement method
	Conditional sampling is a sequential Monte Carlo problem

	Experiments
	In silico evaluation of designed backbones
	Motif-scaffolding via conditional sampling
	Unconditional sampling

	Discussion
	Appendix
	I Appendix
	Additional related work
	Problem assumptions and modeling heuristics
	Additional ProtDiff details
	Conditional sampling: SMCDiff details and supplementary proofs
	The replacement method and its error
	SMCDiff details and verification proof of prop:asymptoticaccuracy
	Proofs and lemmas

	Detecting chirality
	Training details
	Additional metric details
	Additional experimental results
	Additional motif-scaffolding results
	Qualitative analysis of scTM in different ranges
	Additional latent interpolation results
	Structural clustering

	Applicability of SMCDiff beyond proteins: MNIST inpainting

