Table 1: Quantitative comparisons on CLIP similarity in NeRF generation.

Methods ViT-B-32 ViT-L-14 ViT-g-14
VEDS(Poole et al., 2022) 32.13 31.85 31.78
VE-CSD(Yu et al., 2023) 32.46 31.57 32.02

VF-ISMLiang et al. (2023) 32.72 32.96 33.14
FlowDreamer 34.96 34.19 34.58

Table 2: Quantitative comparisons on CLIP similarity in 3D Gaussian splatting generation.

Methods ViT-B-32 ViT-L-14 ViT-g-14
VFDS(Poole et al.|[2022) 28.32 28.48 29.08
VE-CSD(Yu et al.|[2023) 28.36 28.03 28.56

VF-ISMLiang et al.|(2023) 29.56 29.52 29.87
FlowDreamer 30.70 30.49 30.66

APPENDIX

The overview of the Appendix: We provide comparisons under a unified framework (see [.I), some
illustrations, including the effects of the Transformer Jacobian term, a comparison of SDS, VFDS
and FlowDreamer with different steps, and an example of the initialization difference between NeRF
and 3D GS models (see[.2). Accordingly, we introduce the details of the experiments in[.3] To better
compare with other methods, we also conduct a user study to evaluate user preferences in[4] The
derivation process of VF-ISM with the Rectified Flow prior is discussed in [5] Additionally, we
discuss the steps of NFE and sampling methods in[[6] More results include comparisons under 3D
GS and NeRF generation settings and additional results from our FlowDreamer (see[7).

.1 COMPARISONS UNDER A UNIFIED FRAMEWORK AND ABLATION STUDIES
.1.1 COMPARISONS UNDER A UNIFIED FRAMEWORK

In the baseline methods, SD2.1 was chosen, whereas Flow-based SD3 was used in our method. Tak-
ing the reviewers’ suggestions into account, we replaced SD2.1 in the comparative methods with
SD3, as shown in Figure 2| and Figure [3]| However, since the baseline methods were specifically
designed for the Diffusion model or adjusted 3D model parameters within Diffusion model, directly
transferring them to SD3 results in limited improvements and, in some cases, even worse perfor-
mance (for example, the DreamGaussian results for the prompt an origami pig”). Forcing a direct
transfer to SD3 for comparison also leads to unfairness.

Therefore, we continued the examples shown in Figure 7 of the original paper and transferred the
loss functions into a unified framework. In the original paper, we had already provided VFDS and
VF-ISM; now, we have further transferred the Consistent3D loss into the unified framework, referred
to as VF-CSD below. However, the original paper did not include many examples or experiments. To
address this, we have conducted comparative experiments for a variety of prompts. All experiments
use SD3 as the prior, with the same random seeds, NeRF settings, and 3D GS settings; the only
difference lies in the loss design. We have provided a large number of experimental images for the
reviewers to compare. Please refer to Fig. 16 to Fig. 28. The results with orange borders correspond
to 3D GS, while the results with green borders correspond to NeRF. After comparison, Our results
yield high-fidelity outputs with richer textual details compared to other baseline methods using
the same SD3 prior.
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Figure 1: VFDS results of ignoring the Transformer Jacobian. We found that it is difficult to generate
meaningful results.

.1.2 QUANTITATIVE COMPARISONS ON CLIP SIMILARITY IN NERF AND 3D GS
GENERATION

All experiments use SD3 as the prior, with the same random seeds, NeRF settings, and 3D GS
settings; the only difference lies in the loss design. We randomly select 12 images with the same
viewpoints from the rendered images and employ three CLIP models from OpenCLIP, ViT-B-32,
ViT-L-14, and ViT-g-14 to calculate the CLIP similarity. Our FlowDreamer achieves superior
CLIP similarity in both NeRF and 3D GS scenarios.

.1.3 ABLATION STUDIES

As shown in Figure [/} we also provide some examples for comparison with the results of VF-
ISM with 7n;, VF-ISM, and FlowDreamer. As shown in Figure 8] as the number of warm-up steps
increases, the results improve, and at 1200 steps, the performance becomes highly stable. A compar-
ison of DDIM inversion and Push-backward at different NFEs and CFG scales is shown in Figure[9]

.2 SOME ILLUSTRATIONS

We provide some illustrations for a better understanding of our paper. Figure[I]illustrates the effects
of the Transformer Jacobian term. It is shown that keeping this term leads to training crashes,
making it very difficult to generate meaningful 3D objects. Therefore, we omit this term to achieve
an effective gradient for optimization. Figure[I(|illustrates an example of the initialization difference
between NeRF and 3D GS models.

.3 IMPLEMENTATION DETAILS

We adopt Stable Diffusion 3 (SDv3) (Esser et al.l [2024) as our Rectified flow model. To facilitate
a better comparison, we will categorize the methods into two types: one where the 3D model is
NeREF, and the other where the 3D model is 3D GS. For NeRF results comparisons, unlike Prolific-
Dreamer (Wang et al.| [2024) and Consistent3D (Wu et al.| 2024)), which use multi-stage rendering
with normal, geometric, and texture rendering, our method simply uses Instant-NGP (Miiller et al.
2022) for rendering. It is optimized with a resolution of 256 for the first 5000 steps with a batch
size of 1, and then 512 for the subsequent 3000 steps, also with a batch size of 1. For the warm-up
strategy, we use VFDS to optimize over 1200 steps. The initial framework VFDS need more steps
to optimize, which uses 5000 steps for both 256 and 512 resolutions, with the batch size always set
to 1. For 3D Gaussian splatting comparisons, we utilize the pretrained PointE (Nichol et al., [2022)
to initialize the locations of 3D Gaussians, while other properties of 3D Gaussians adopt random
initialization. Our FlowDreamer uses a batch size of 4 and 3000 iterations, while VFDS uses the
same batch size but with 4000 iterations. The CFG for VFDS is set to 100 on both NeRF and 3D
GS, while it is set to 40 for FlowDreamer.



DreamGaussian GaussianDreamer LuicdDreamer Ours(FlowDreamer)

o
A
w2
<
o
a
wn
o
a
wn
<
o
a
wn
“an origami pig.”’
Figure 2: Comparison of SOTA methods using the Stable Diffusion 3 prior.
DreamFusion Consistent3D Ours(FlowDreamer)
—
N
a
n
<
o
a
n
“A DSLR photo of a small saguaro cactus planted in a clay pot.”
I
a
n
<
o
A
n

“A DSLR photo of an octopus playing the harp.”

Figure 3: Comparison of SOTA methods using the Stable Diffusion 3 prior.

.4 USER STUDY

To compare our method with other comparison methods based on human perception, we conducted
a user study involving 36 participants using generated videos from 26 prompts in NeRF and 3D



Table 3: User study of 3D Gaussian splatting methods.
Methods \ DreamGaussian (Tang et al.[[2023)  GaussianDreamer (Yi et al.]2023) LucidDreamer (Liang et al.[2023)  Ours
Scores | 1.18 2.03 3.09 3.70

Table 4: User study of NeRF methods.
Methods \ DreamFusion (Poole et al.[[2022)  ProlificDreamer (Wang et al.[[2024)  Consistent3D (Wu et al.[2024)  Ours
Scores | 1.46 2.70 2.18 3.65

Gaussian splatting, respectively. Participants viewed four videos simultaneously and assigned scores
of 1, 2, 3, and 4 to each video. In each test, the prompts were shown in the title, and participants
were instructed to make their decisions based on the degree of alignment of the video with the text,
the detail of the video, the color of the video, and the quality of the video. A higher score indicates
that users believe the video is better. Our FlowDreamer achieves the highest scores among these
methods, both in NeRF results and in 3D Gaussian splatting results.

.5 VEF-ISM DERIVATION

ISM uses DDIM inversion to predict the noisy latent x5 as below.
Ty = A T 4+ /T = agep(ts_sp,5 — 07, 0)
= Va, (277 +7(s)eg (@5, 5,0))
where 25701 = \/%ms,gT — (s — 0r)es(Ts—57,8 — O7,0), Y(t) = ‘/\1/? and s = t — 7.

The #°~°7 is computed using DDIM inference, while z represents the rendered image from the 3D
model, as shown below.

)

70 = 2 — ~(07) [eg w5y, 07, ) — €4(2,0,0)] ...

2
- ’Y(S - 5T) [€¢(x3—6T78 — o7, [b) - 6¢($5—25T7 s — 20r, @)]
Next, ISM computes x; based on x.
Ty = \/dt"%s+\/l—dt€¢(.’fs,s7®) (3)
B =20 - V() [eg(s,8,0) — €3 (s5—57, 5 — 01, 0)]
After that, ISM computes the ¢ with the denoising process.
~t Tt
= —=—7(t)eg(we, 1, y) +7(s) [€p (e, 1, y) — €s(@s, 5, 9)]
Vay ¢ v ¢ 4)
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ISM computes the 2 — &* and with the DDIM inversion process.
T — jt = ’Y(t> [6¢(i.t7t7y) - 6¢(x57 S, @)} + Mt
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To derive VF-ISM, we adapt ISM to rectified flow. Concretlty, we first conduct push-backward
operation to compute the z, with Euler sample method as below.

x5, =+ vg(x,0,0)dt

To5p = Tsp + Vy(Tsy, 07, D)dt ©

Ty = Ts—sp + Vp(Ts—5p, 5 — O, D)dt



where, dt = Ar.
Then we use the push-backward to compute the x; with Euler method:

T = x5+ vg(xs, s, 0)ds @)
where, ds =t — s.

Due to rectified flow, the % can be simplly expressed as below:

7= ap —vg(x4,t,y)ds
- U¢(wsv S, y)dt - U¢(£Es,5T, s — 5T, y)dt (8)

— . — Uy(x5p, O, y)dt

Then we compute the = — ¥ with push-backward with rectified flow prior:

r— 3" = [vg(me, t,y) — vg(xs,5,0)] ds +m
where,n; = [V (25, 8, Y) — Vo (Ts—s7, 5 — 07, 0)] dt
+ ...
+ [U¢(x25T726T’ y) - U¢(£6Ta5T7 0)] dt

€))

Same as ISM, we ignore the 1, and use vy (2, t,y) — vy (zs, s,0) as ISM with Rectified flow prior.

.6 DISCUSSION OF THE STEPS OF NFE AND SAMPLE METHODS

As the number of iterations for push-backward increases, more training time are required. As NFE
increases, the LEGO car exhibits more complex structures overall. When viewed vertically, each
column represents results of different sampling methods with the same NFE steps. In terms of
results for each column, the Euler sampling method demonstrates strong competitiveness, regardless
of number of steps.

.7 MORE RESULTS OF FLOWDREAMER

As shown in Figure and Figure our FlowDreamer can generate high-fidelity textures and
shapes from pretrained rectified flow models both in 3D GS and NeRF. Our method can produce
realistic objects, such as sweaters and wooden bowls, including fantastical ones that are rare in
reality, like pumpkins with glowing runes and baby dragons.

Comparison with other methods in text-to-3D generation for NeRF and 3D GS, respectively, shows
that our FlowDreamer creates 3D objects that match well with the input text prompts, exhibiting
high fidelity and intricate details. The coupe is realistic in both color and shape, and the generated
watch dial appears lifelike in 3D GS results (See Figure [[4). The burrito’s shape and quality are
more aligned with the prompts, and the generated tacos are even more realistic in NeRF results (See

Figure|15).
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Figure 10: Comparison of initialization between NeRF and 3D GS models. (a) Images generated by
NeRF models before and after training are different, leading to different push-backward results. (b)
As for 3D Gaussian splatting model, the results are quite similar.
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Figure 11: The results of different NFEs and sample methods.
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Figure 13: More results under NeRF generation setting. Please zoom in for details
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Figure 16: More qualitative comparison under a unified framework
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Figure 17: More qualitative comparison under a unified framework
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Figure 19: More qualitative comparison under a unified framework
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Figure 21: More qualitative comparison under a unified framework
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Figure 22: More qualitative comparison under a unified framework
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Figure 23: More qualitative comparison under a unified framework
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Figure 24: More qualitative comparison under a unified framework
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Figure 25: More qualitative comparison under a unified framework
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Figure 26: More qualitative comparison under a unified framework
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Figure 27: More qualitative comparison under a unified framework
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