
A Additional Experiments415

A.1 Model-Based Generalization416

Figure 5: We evaluate the model’s gener-
alization capabilities at the end of the of-
fline pre-training phase. The model correctly
predicts rewards of up to 4 on successful
episodes in the “partial” task, even though
the maximum dataset reward is 3. (left).
When doing rollouts in the learned model,
the policy solves all four objects in the “par-
tial” task and reaches rewards of up to 4
(right).

The ”partial” task also provides a good test bed for417

an algorithm’s generalization capabilities, since the418

offline dataset does not contain full solutions for419

it. This is a different problem than the standard420

dynamic programming (”stitching”) issue of data-421

centric reinforcement learning since the dataset does422

not contain a sequence of state-action pairs that lead423

from the initial state to the goal state. Instead, to424

solve this task, a learning agent must understand425

the compositional nature of the scene and do com-426

binatorial generalization over the objects. In this427

section we seek to answer whether 1) the learned428

model can do combinatorial generalization of within429

distribution tasks and 2) whether policy optimiza-430

tion can take advantage of the model’s capabilities.431

We evaluate the agent at the end of the offline pre-432

training phase. To answer the first question, we con-433

sider episodes that successfully complete the ”par-434

tial” task from the trained agent. We condition our435

model on the frames that solves the first three tasks436

(which are covered in the offline dataset) and rollout the expert actions to predict the following437

frames. Results are shown in Fig. 1. The model successfully predicts a combination of the mi-438

crowave, kettle, bottom burner and light switch in the correct configuration, despite never encoun-439

tering these four objects together in the offline dataset. Moreover, we evaluate the model-predicted440

rewards on these expert trajectories, plotted in Fig. 5 (left). We see that the model predicts rewards441

of up to 4 with an average reward of 3.63, despite only being trained on trajectories with maximum442

reward of 3. This results show that the learned model is capable of compositional generalization. To443

evaluate whether the learned policy can take advantage of the model generalization capabilities, we444

rollout the trained agent under the model and evaluate the predicted rewards, results are shown in445

Fig. 5 (right). The agent achieves an average final reward of 3.52 under the learned model and solves446

all four tasks. This suggest that the model-based RL agent is able to do combinatorial generalization,447

but the offline dataset is not enough to adequately learn the environment dynamics.448

B Theoretical Results and Empirical Validation449

Theoretical Results for Uncertainty-Aware Model-based Training Given our choice of vari-
ational parametrization and model uncertainty estimation we can directly adapt certain theoretical
guarantees from prior model-based RL literature [11, 20, 19]. We consider the following result in
particular: let Tθps1|s,aq and T ps1|s,aq be the learned and true latent dynamics models respec-
tively. We define the discounted state-action distribution

ρπT ,µ0
ps,aq9

8
ÿ

t“0

γtPπT ,µ0
pst “ sqπpa|sq

in the standard way. The function ups,aq is an admissible error estimator if

dF rT ps1|s,aq||Tθps1|s,aqs ď ups,aq.

For any policy π we can then define

ϵupπq “ Eps,aq„ρπTθ,µ0
rups,aqs.

The following Theorem then holds:450

13

Figure 7: Visualization of the 10 different MetaWorld environments used in our experiments. Top row from left
to right: assembly-v2, bin-picking-v2, box-close-v2, coffee-push-v2, disassemble-v2. Bottom
row from left to right: door-open-v2, drawer-open-v2, hammer-v2, plate-slide-v2, window-open-v2.

Theorem B.1. (Informal) Let pπ˚psq be the optimal policy under the learned model Tθps1|s,aq with451

an uncertainty-penalized reward and π˚ the optimal policy in the ground-truth MDP. Under certain452

mild assumptions, then the following inequality holds:453

2αϵupπ˚q ě Eπ˚,T

”

8
ÿ

t“0

rt

ı

´ E
pπ˚,T

”

8
ÿ

t“0

rt

ı

(11)

Proof. Consult [11].454

Empirical verification From the Theorem, we can deduce that the policy under-performance is455

upper bounded by the discounted model-based uncertainty over the state-action distribution induced456

by the expert policy under the learned model. In practice we do not have access to an oracle esti-457

mator ups,aq and we use the ensemble disagreement from Eq. 2. While these results are not new,458

empirical verification is difficult in the fully offline case, since we have a static dataset, and all values459

are point estimates. However, in the online fine-tuning case, we have a continuum of datasets and460

we can empirically verify the claims of Theorem B.1.461

We periodically evaluate ϵupπ˚q and the expected model uncertainty induced under the expert state-462

action distribution in the learned model. At each epoch E, we cannot generate model rollouts from463

the expert, since that would require training an expert policy under the current inference model qθE .464

However, we can sample expert episodes from the trained expert and the environment. Given an465

expert trajectory τ exp “ x1:T ,a1:T we sample latent belief states from the first T ´ H steps to466

obtain s1:pT´hq „ qθE p¨|x1:T´H ,a1:T´Hq. From each state sj we then rollout the expert actions467

aj:j`H using the current iteration of the dynamics model TθE and obtain states tpŝtj ,a
t
ju
T´H,H
j“1,t“0 as468

in Section 4 (here atj “ aj`t from the expert dataset. We can then obtain the empirical estimate of469

ϵupπ˚q « EqθE ps0
j |τ expq,TθE

” 1

HpT ´ Hq

ÿ

uθpŝtj ,a
t
jq

ı

(12)

Empirical results evaluated on the ”partial” task are shown in Fig. 6. We see that the performance470

gap is strongly bounded (up to a choice of the penalty scale) by the estimate from Eq. 12, which471

verifies the claim of Theorem B.1.472

C Experimental Details473

C.1 Environments474

14

Figure 6: Empirical evaluation of The-
orem B.1. We plot the performance
gap versus the the empirical estimates
of (normalized) expected model uncer-
tainty using Eq. 12.

The Franka Kitchen environment from [23] (RPL) is a475

challenging long-range control problem, which involves476

a simulated 9-DOF Franka Emika Robot in a kitchen set-477

ting. The robot uses joint-space control and the obser-478

vation is a single 64x64 RGB image; we do not assume479

access to object states or robot proprioception. The goal480

of the agent is to manipulate a set of 4 pre-defined ob-481

jects and receives a reward of 1.0 for each object in right482

configuration at each time step. This is a very challeng-483

ing environment due to 1) high-dimensional observation484

spaces; 2) partial observability with non-trivial object and485

robot state estimation; 3) need for very-fine-grained con-486

trol in order to operate the small elements of the environ-487

ment, such as turning knobs and flipping the light-switch;488

4) the long-range nature of the tasks; 5) the use of sparse489

rewards, which provide limited intermediate supervision490

to the policy, and finally 6) the use of high-dimensional491

control which requires learning forward kinematics from images alone. For our experiments we492

render the original RPL datasets and consider two environments from the D4RL benchmark [24].493

The ”mixed” task requires operating the microwave, kettle, light switch and slide cabinet and has a494

small set of successful demos in the offline dataset. The ”partial” task, which requires manipulating495

the microwave, kettle, bottom burner and light switch does not have any trajectories that successfully496

complete all four objects, but has demonstrations for several configurations which complete up to497

three objects. We will release this dataset with our project to facilitate the development and testing498

of vision-based offline RL algorithms.499

For the model-free methods, since we use a feedforward network for encoding images, we use a500

framestack of 3 for all of our model-free experiments. At each timestep t, the agent was provided501

with a history of the previous 3 images (from the offline trajectories during offline training, or from502

the environment during online training). For COMBO and LOMPO, since the latent dynamics model503

has a recurrent component and therefore can implicitly retain a history of observations, we did not504

use any framestacking with the image observations from the environments.505

One the Franka Kitchen Environment, we did not use an action repeat, and on the Metaworld en-506

vironments and data we used an action repeat of 2. For the online finetuning experiments, we used507

the following procedure: roll out the current policy in the environment for a single episode, add that508

episode to the replay buffer, and then finetuning the model, critic network, and the policy network.509

On the Franka Kitchen environment, after each episod we performed 50 gradient steps on each com-510

ponent of each method (eg: model, critic network, and the policy network). For the Metaworld511

environments, we performed 20 gradient steps after each episode. In total, on the Franka Kitchen512

environments, we performed 10, 000 gradient steps of offline training and 66, 300gradient steps of513

online finetuning. On the Metaworld environments, we performed 1, 000 gradient steps of offline514

training and 20, 000 gradient steps of online finetuning.515

C.2 Datasets516

Kitchen517

• Number of trajectories: 563518

• Number of transitions: 128, 569519

• Average undiscounted episode return: 261.12520

• Average number of objects manipulated per episode: 3.98521

MetaWorld All of the MetaWorld datasets have 9 ´ 10 trajectories and 1, 010 total transitions.522

The average undiscounted episode returns and success rates are shown in Table 1:523

15

Environment Avg. Return Success Rate

assembly-v2 36.000 1.000
bin-picking-v2 20.900 1.000
box-close-v2 25.300 1.000

coffee-push-v2 36.200 1.000
disassemble-v2 31.556 1.000
door-open-v2 15.200 1.000

drawer-open-v2 48.000 1.000
hammer-v2 63.333 1.000

plate-slide-v2 71.100 1.000
window-open-v2 60.500 1.000

Table 1: Undiscounted episode returns and success rates in the MetaWorld datasets.

C.3 Model Based Methods524

MOTO uses the model architecture from [32]. For the convolutional image encoder network, we use525

the following hyperparameters:526

• channels: p48, 96, 192, 384q527

• kernel sizes: p4, 4, 4, 4q528

• strides: p2, 2, 2, 2q529

• padding: VALID530

• four final MLP layers of size: 400531

The decoder network consists of Deconvolution/Transpose convolution layers with the following532

hyperparameters:533

• four initial MLP layers of size: 400534

• channels: p128, 64, 32, 3q535

• kernel sizes: p5, 5, 6, 6q536

• strides: p2, 2, 2, 2q537

• padding: VALID538

MOTO was trained using a model learning rate of 1 ˆ 10´4. The critic and policy network learning539

rates are 8 ˆ 10´5. The batch size for model training is 16 and the batch size for agent training is540

128. We also used a filtered behavioral cloning factor of 10 and a disagreement penalty factor of 10.541

The latent dynamics model is represented using an RSSM [56] with an ensemble size of 7 models.542

All other hyperparameters are the default values in the DreamerV2 repository.543

The DreamerV2 baseline uses the same hyperparameters as used for MOTO (excluding the behav-544

ioral cloning factor and the disagreement penalty factor).545

COMBO [12] and LOMPO [19] were run using the image-based implementations from the LOMPO546

repository. For the image encoder network of the model, we use the default convolutional encoder547

architecture, which has the following hyperparameters:548

• channels: p32, 64, 128, 256q549

• kernel sizes: p4, 4, 4, 4q550

• strides: p2, 2, 2, 2q551

• padding: VALID552

16

• final MLP layer size: 1024553

Similarly, the decoder network consists of Deconvolution/Transpose convolution layers with the554

following hyperparameters:555

• initial MLP layer size: 1024556

• channels: p128, 64, 32, 3q557

• kernel sizes: p5, 5, 6, 6q558

• strides: p2, 2, 2, 2q559

• padding: VALID560

The latent dynamics model is represented using an RSSM [56] with an ensemble size of 7 models.561

Both COMBO and LOMPO were trained using a model learning rate of 6ˆ10´4, and critic network562

learning rate of 3 ˆ 10´4, and a policy network learning rate of 3 ˆ 10´4. The batch size for model563

training is 64 and the batch size for agent training is 256. For COMBO, we use a conservatism564

penalty factor of α “ 2.5, and for LOMPO we use a disagreement penalty factor of λ “ 5.565

C.4 Model Free Methods566

The model free baselines (IQL [3], CQL [4], SAC [47], BC) were run using the JAXRL2 frame-567

work [57]. For all policy networks, critic networks, and value networks, we used a feed-forward568

convolutional encoder network architecture from the D4PG method [58], with the following hyper-569

parameters:570

• channels: p32, 64, 128, 256q571

• kernel sizes: p3, 3, 3, 3q572

• strides: p2, 2, 2, 2q573

• padding: VALID574

• final MLP layer size: 50575

This encoder was then followed by two MLP layers of size 256, followed by a final output layer of576

size 1 (for critic and value networks) or of size action-dim for policy networks. ReLU activations577

were used between each layer.578

We use a discount factor γ “ 0.99 and a batch size of 256 for all of the methods, as well as a579

learning rate of 3 ˆ 10´4 for all policy, critic, and value networks. We also used a soft target update580

for critic and value networks with a factor of τ “ 0.005. For CQL we set the conservatism penalty581

factor α “ 5, and for IQL we set the expectile hyperparameter τ “ 0.5 and the inverse temperature582

hyperparameter β “ 3, which are the default values in JAXRL2. For all other hyperparameters, we583

used the default values in JAXRL2.584

17

	Introduction
	Related Work
	Preliminaries
	Model-based Offline to Online Fine-tuning (MOTO)
	Experiments and Results
	Discussion
	Conclusion
	Additional Experiments
	Model-Based Generalization

	Theoretical Results and Empirical Validation
	Experimental Details
	Environments
	Datasets
	Model Based Methods
	Model Free Methods

