
After Appendix A, the appendix is organized according to the major sections and subsections of the518

main content. We consider Appendix C to be its most important addition to the main content.519

A Limitations and ethics520

A.1 Limitations521

Some limitations of the regret preference model are discussed in the paragraph “Regret as a model522

for human preference” in Section 2.2, including assumptions that a person giving preferences can523

distinguish between optimal and suboptimal segments, that they follow a Boltzmann distribution (i.e.,524

a Luce Shepard choice rule), and that they base their preferences on the desirability of decisions even525

when transition stochasticity results in segment pairs for which the worse decision has a better outcome.526

Our proposed algorithm (Section 6.1) has a few additional limitations. Generating candidate succes-527

sor features for the approximations Q̃⇤
r̂ and Ṽ ⇤

r̂ may be difficult in complex domains. Specifically,528

challenges include choosing the set of policies or reward functions for which to compute successor529

features (line 3 of Algorithm 1) and creating a reward feature vector � for non-linear reward functions530

(discussed in Appendix F.1). Additionally, although learning with Pregret is more sample efficient531

in our experiments, it is computationally slower than learning with P⌃r because of the additional532

need to compute successor features and the use of the softmax function to approximate Q⇤
r̂ and V ⇤

r̂ .533

Nonetheless, we may accept the tradeoff of an increase in computational time that reduces the number534

of human samples needed or that improves the reward function’s alignment with human stakeholders’535

interests. Lastly, the loss during optimization with Pregret was unstable, which we addressed by taking536

the minimum loss over all epochs during training. Therefore, for more complex reward feature vectors537

(�) than our 6-element vector for the delivery task, extra care might be needed to avoid overfitting r̂, for538

example by withholding some preference data to serve as a test set.539

We also generally assume that the RL algorithm and reward learning algorithm use the same discount540

factor as in the MDP\r specification. One weakness of contemporary deep RL is that RL algorithms541

require artificially lower discount factors than the true discount factor of the task. The interaction of this542

discounting with preference models is considered in Appendix F.2. Our expectation though is that this543

weakness of deep RL algorithms is likely a temporary one, and so we focused our analysis on simple544

tasks in which we do not need to artificially lower the RL algorithm’s discount factor. However, further545

investigation of the interaction between preference models and discount factors would aid near-term546

application of Pregret to deep RL domains.547

This work also does not consider which segment pairs should be presented for labeling with preferences548

used for reward learning. However, other research has addressed this problem through active learning549

[14][9][25], and it may be possible to simply swap our Algorithm 1 into these active learning methods,550

combining the improved sample efficiency of Pregret with that of these active learning methods.551

Regarding the human side of the problem of reward learning from preferences, further research could552

provide several improvements. First, we are confident that humans can be influenced by their training553

and by the preference elicitation interface, which is a particularly rich direction for follow-up study.554

We also do not consider how to handle learning reward functions from multiple human stakeholders555

who have different preferences, a topic we revisit in Appendix A.2. Lastly, we expect humans to556

deviate from any simple model, including Pregret, and a fine-grained characterization of how humans557

generate preferences could produce preference models that further improve the alignment of the reward558

functions that are ultimately learned from human preferences.559

A.2 Ethical statement560

This work is meant to address ethical issues that arise when autonomous systems are deployed without561

properly aligning their objectives with those of human stakeholders. It is merely a step in that direction,562

and overly trusting in our methods—even though they improve on previous methods for alignment—563

could result in harm caused by poorly aligned autonomous systems.564

13

When considering the objectives for such systems, a critical ethical question is which human stakehold-565

ers’ interests the objectives should be aligned with and how multiple stakeholders’ interests should566

be combined into a single objective for an autonomous system. We do not address these important567

questions, instead making the convenient-but-flawed assumption that many different humans’ prefer-568

ences can simply be combined. In particular, care should be taken that vulnerable and marginalized569

communities are adequately represented in any technique or deployment to learn a reward function from570

human preferences in high-impact settings. The stakes are high: for example, a reward function that is571

only aligned with a corporation’s financial interests could lead to exploitation of such communities or572

more broadly to exploitation of or harm to users.573

In this specific work, our filter for which Mechanical Turk Workers could join our study is described574

in Appendix D. We did not gather demographic information and therefore we cannot assess how575

representative our subjects are of any specific population.576

A.3 On the challenge of using regret preference models in practice577

We have provided evidence—theoretically and with experimentation—that the regret preference model578

is more effective when precisely measured or effectively approximated. The challenge of efficiently579

creating such approximations presents one clear path for future research and does not justify staying580

within the local maximum of the partial return preference model.581

Like the regret preference model, inverse reinforcement learning (IRL) was founded on an algorithm582

that requires solving an MDP in an inner loop of learning a reward function. For example, see the583

seminal work on IRL by Ng and Russell [19]. This challenge has not stopped IRL from being an584

impactful problem, and handling this inner-loop computational demand is the focus of much IRL585

research.586

Future work on the application of the regret preference model can face the challenge of scaling to587

more complex problems. Given that IRL has made tremendous progress in this direction and Brown et588

al. [26] have scaled an algorithm with similar needs to those of Algorithm 1, we are optimistic that the589

methods to scale can be developed, likely with light adaptation from existing methods (e.g., in Brown et590

al. or in Appendix F.1, under “Instantiating Algorithm 1 for reward functions that may be non-linear”).591

B Preference models for learning reward functions592

For the reader’s convenience, below we derive the logistic expression of a function that is based on two593

subtracted values from the Boltzmann distribution (i.e., softmax) representation that is more common594

in past work. These values are specifically the same function f applied to each segment, which is a595

general expression of both of the preference models considered here.596

P (�1��2)=
exp [f(�1)]

exp [f(�1)]+exp [f(�2)]

=
1

1+ exp [f(�2)]
exp [f(�1)]

=
1

1+exp [f(�2)�f(�1)]

= logistic(f(�1)�f(�2)).

(7)

B.1 Logistic-linear preference model597

In Appendix E.2, we also consider preference models that arise by making the noiseless preference598

model a linear function over the 3 components of Pregretd . Building upon Eqn. 7 above, we set599

f(�) = ~w · hV ⇤
r̃ (s�,0),⌃� ,V ⇤

r̃ (s�,|�|)i. This preference model, Plog�lin, can be expressed after600

algebraic manipulation as601

14

Plog�lin(�1��2|r̃)=602

logistic([~w ·hV ⇤
r̃ (s�1,0)�V ⇤

r̃ (s�2,0),⌃�1�⌃�2 , V
⇤
r̃ (s�1,|�1|)�V ⇤

r̃ (s�2,|�2|)i). (8)

This logistic-linear preference model is a generalization of P⌃r and also of Pregretd , the regret603

preference model for deterministic transitions. Specifically, if ~w = h0,1,0i, then Plog�lin(·|r̃) =604

P⌃r (·|r̃). And if ~w=h�1,1,1i, then Plog�lin(·|r̃)=Pregretd(·|r̃).605

B.2 Adding a constant probability of uniformly distributed preference606

Appendix E.2 also considers adaptations of P⌃r , Pregretd , and Plog�lin that add a constant probability607

of uniformly distributed preference, as was done by Christiano et al. [9]. The body of the paper does608

not consider these adaptations.609

We create this adaptation, which we will call P 0 here, from another preference model P by P 0(�1�610

�2)= [(1� logistic(c))⇤P (�1��2)]+[logistic(c)/2], where c is a constant that in practice we fit611

to data and logistic(c) is the constant probability of uniformly random preference. The logistic(c)612

allows any constant c to result in a the constant probability of uniformly distributed preference to be613

in (0,1). The term logistic(c)/2 gives half of the constant probability to �1 and half to �2. The term614

[1�logistic(c)] scales the P (�1��2) probability—which could be P⌃r , Pregretd , or Plog�lin—to a615

proportion of the remaining probability. The only difference in this adaptation and Christiano et al.’s616

0.1 probability of uniformly distributed preference is that we learn the value of c from training data (in617

a k-fold cross-validation setting), as we see in Appendix E, whereas Christiano et al. do not share how618

0.1 was chosen.619

B.3 Expected return preference model620

In Appendix F.3, we test reward learning on a third preference model. This expected return preference621

model is derived by making f(�)=�(⌃� r̃+V ⇤
r̃ (s�,|�|)), in Equation 7. This segment statistic f(�)622

can be considered be in between deterministic regret (Equation 3) and partial return, differing from623

each by one term.624

We include this preference model because judging by expected return is intuitively appealing in that it625

considers the partial return along the segment and the end state value of the segment, and we found626

it plausible that human preference providers might tend to ignore start state value, as this preference627

model does. However, reward learning with the regret model outperforms or matches that by this628

expected return preference model, as we show in Appendix F.3.629

B.4 Policy learning from regret-based preferences without learning a reward function630

When preferences are based upon regret, an entirely different method of policy learning appears631

reasonable. This method is motivated by regret itself differentiating which of two segments is more632

desirable, including differentiating an optimal segment from a suboptimal segment.633

When learning a reward function is not desired, one can instead learn a segment scoring function that634

estimates the regret of a segment directly. Such a regret estimator can be learned by following the same635

algorithm for reward learning with the partial return preference model that is defined in Section 2.2636

and used throughout this paper, with two changes. First, each preference sample’s segment ordering637

needs to be reversed before training. Second, the learned “reward function” is instead interpreted as a638

regret function, outputting a regret estimate for any segment. (Without reversing the order, the learned639

function would be negated regret.) If we assume the regret estimator perfectly models regret, any action640

that minimizes expected regret is an optimal action. Therefore, the policy is defined by choosing such a641

regret-minimizing action.642

Though theoretical analysis of this approach is beyond the scope of this paper, we suspect that it would643

be possible to show that the above algorithm will result in an optimal policy for noiseless or stochastic644

preferences, given the infinite and exhaustive dataset described in Definition 3.1. In Appendix F.2.3,645

we provide limited empirical evidence supporting this approach.646

15

Even when learning a reward function, this approach could be used to help create reward features for647

reward functions that are non-linear or have unknown reward features (as discussed in Appendix F.1)648

and to identify a policy for which to learn successor features.649

B.5 Relationship to inverse reinforcement learning650

The inputs to inverse reinforcement learning (IRL) and learning reward functions from pairwise651

preferences are different: IRL requires demonstrations, not preferences over segment pairs. However,652

because a a regret-based preference model always prefers optimal segments over suboptimal segments,653

at least one connection can be made. If one assumes that a demonstrated trajectory segment is654

noiselessly optimal—as in the foundational IRL paper on apprenticeship learning [27])—then such a655

demonstration is equivalent to expressing preference or indifference for the demonstrated segment over656

all other segments (or, equivalently, that no other segment is preferred over the demonstrated segment).657

However, IRL has its own identifiability issues in noiseless settings (e.g., see Kim et al. [28]) that,658

viewed from the lens of preferences, come in part from the “indifference” part of the above statement:659

since there can be multiple optimal actions from a single state, it is not generally correct to assume that660

a demonstration of one such action shows a preference over all others, and therefore it remains unclear661

in IRL what other actions are optimal. Note that since partial-return-based preferences can prefer662

suboptimal segments over optimal segments, the common assumption in IRL that demonstrations are663

optimal does not map as cleanly to partial-return-based preferences.664

The regret preference model also relates to IRL in that the most basic version of IRL requires solving665

an MDP in the inner loop, as appears necessary for a perfect measure of regret while learning a reward666

function [29, Algorithm 1].667

C Theoretical comparisons668

For convenience, Theorems 3.1 and 3.2 from Section 3 are reprinted below. Consider reviewing the669

definitions of optimal segments and suboptimal segments in Section 2.1 and Definition 3.1 before670

proceeding.671

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(�1|r̃) <672

regret(�2|r̃), Pregret(�1 ��2|r̃)> 0.5, and if regret(�1|r̃)= regret(�2|r̃), Pregret(�1 ��2|r̃)=673

0.5. Pregret is identifiable.674

Proof Make all assumptions in Definition 3.1. Since r̂ minimizes cross-entropy loss, Pregret(·|r)=675

Pregret(·|r̂) for all possible segment pairs. Also, by Equation 4 regret(�|r̃) = 0 if and only if � is676

optimal with respect to r̃. And regret(�|r̃)>0 if and only if � is suboptimal with r̃.677

With respect to some r̃, let �⇤ be any optimal segment and �¬⇤ be any suboptimal segment.678

regret(�⇤|r̃) < regret(�¬⇤|r̃). Pregret(�⇤ � �¬⇤|r̃) > 0.5, which we refer to as be-679

ing preferred by Pregret(·|r̃). Pregret(·|r̃) induces a total ordering over segments, defined by680

regret(�1|r̃) < regret(�2|r̃)()Pregret(�1 � �2|r̃) > 0.5()�1 > �2 and regret(�1|r̃) =681

regret(�2|r̃)()Pregret(�1 � �2|r̃) = 0.5()�1 = �2. Because regret has a minimum (0), there682

must be a set of segments which are ranked highest under this ordering, denoted ⌃⇤
r̃ . These segments in683

⌃⇤
r̃ are exactly those that achieve the minimum regret (0) and so are optimal with respect to r̃.684

Since the dataset (D�) contains all segments by assumption, ⌃⇤
r̃ contains all optimal segments with685

respect to r̃. If a state-action pair (s,a) is in an optimal segment, then by the definition of an optimal686

segment Q⇤
r̃(s,a) = V ⇤

r̃ (s). The set of optimal policies ⇧⇤
r̃ for r̃ is all ⇡ such that, for all (s,a), if687

⇡(s,a)>0, then Q⇤
r̃(s,a)=V ⇤

r̃ (s). In short, ⌃⇤
r̃ determines the set of every state-action pair (s,a) such688

that Q⇤
r̃(s,a)=V ⇤

r̃ (s), and that set determines ⇧⇤
r̃ . Therefore ⌃⇤

r̃ determines ⇧⇤
r̃ , and we will refer to689

this determination as the function g.690

We now focus on the reward function used to generate preferences, r, and on the learned reward691

function, r̂. Since Pregret(·|r)=Pregret(·|r̂), r and r̂ induce the same total ordering over segments,692

and so ⌃⇤
r=⌃⇤

r̂ . Therefore g(⌃⇤
r)=g(⌃⇤

r̂). Since g(⌃⇤
r)=⇧⇤

r and g(⌃⇤
r̂)=⇧⇤

r̂ , ⇧⇤
r=⇧⇤

r̂ .693

16

Theorem 3.2 (Noiseless P⌃r is not identifiable). Let P⌃r be any function such that if ⌃�1 r̃>⌃�2 r̃,694

P⌃r (�1��2|r̃)=1, and if ⌃�1 r̃=⌃�2 r̃, P⌃r (�1��2|r̃)=0.5. There exists an MDP in which P⌃r is695

not identifiable.696

Below we present two proofs of Theorem 3.2. Each are proofs by counterexample. Though only one697

proof is needed, we present two because each counterexample demonstrates a qualitatively different698

category of how the partial return preference model can fail to identify the set of optimal policies.699

Proof based on stochastic transitions: Assume the following class of MDPs, illustrated in Figure 7.700

The agent always begins at start state s0. From s0, action asafe always transitions to ssafe, getting a701

reward of 0. From s0, action arisk transitions to swin with probability 0.5, getting a reward of rwin,702

and transitions to slose with with probability 0.5, getting a reward of �10. In all MDPs in this class,703

rwin>0. All 3 possible resulting states (ssafe, swin, and slose) are absorbing states, from which all704

further reward is 0.705

�������

����
����

�����U
ZLQ

VORVH

VVDIH
V�

VZLQ
D VDI
H

D
ULVN

Figure 7: A class of MDPs in which, if
rwin>0, the partial return preference model
fails the test for identifiability.

If rwin � 10, arisk is optimal in s0. If rwin 10, asafe706

is optimal in s0. Three single-transition segments exist:707

(s0, asafe, ssafe), (s0, arisk, swin), and (s0, arisk, slose).708

By noiseless P⌃r , (s0,arisk,swin) � (s0,asafe,ssafe) �709

(s0,arisk,slose), regardless of the value of rwin. In other710

words, P⌃r is insensitive the what the optimal action is711

from s0 in this class of MDPs.712

Now assume MDP M , where rwin = 11. In linear form,713

the weight vector for the reward function rM can be ex-714

pressed as wrM1
=<�10,0,11>. Let r̂M have wr̂M =<715

�10,0,9>. Both rM and r̂M have the same preferences as716

above, meaning that r̂M minimizes loss on an infinite pref-717

erences dataset D� created by P⌃r , yet it has a different718

optimal policy. Therefore, noiseless P⌃r is not identifi-719

able.720

0�0�

��

��

����

��

��

����

VWHUP

V� VD

VWHUP

V� VD

Figure 8: An MDP (M1) where ⇧⇤
r =⇧⇤

r̂ is not guaranteed
for the partial return preference model, failing the test for iden-
tifiability with segments of length 1. The ground truth reward
function is shown to the left, and an MDP M 0

1 with an alterna-
tive reward function is shown to the right. Under partial return,
both create the same set of preferences despite having different
optimal actions from s0.

In contrast, note that by noiseless Pregret,721

the preferences are different than those722

above for P⌃r . If rwin > 10, then723

(s0, arisk, swin) ⇠ (s0, arisk, slose) �724

(s0, asafe, ssafe), If rwin < 10, then725

(s0, asafe, ssafe) � (s0, arisk, swin) ⇠726

(s0,arisk,slose). Intuitively, this difference727

comes from Pregret always giving higher728

preference probability to optimal actions,729

even if they result in bad outcomes. Another730

perspective can be found from the utility the-731

ory of Von Neumann and Morgenstern [30].732

Specifically,P⌃r gives preferences over out-733

comes, which in the terms of utility theory734

can only learn an ordinal utility function. Or-735

dinal utility functions are merely consistent736

with the preference ordering over outcomes and do not generally capture preferences over actions when737

their outcomes are stochastically determined. The deterministic regret preference model,Pregretd , also738

has this weakness in tasks with stochastic transitions. On the other hand, Pregret forms preferences739

over so-called lotteries—the distribution over possible outcomes—and can therefore learn a cardinal740

utility function, which can explain preferences over risky action.741

Since the proof above is focused on stochastic settings, we show the lack of identifiability for noiseless742

P⌃r can be found for quite different reasons in a deterministic MDP.743

17

Proof based on segments of fixed length: Consider the MDPM1 in Figure 8 and assume preferences744

are given over segments with length 1 (i.e., containing one transition). The optimal policy for M1 is to745

move rightward from s0, whereas optimal behavior for M 0
1 is to move leftward from s0. In both M1746

and M 0
1, preferences by P⌃r are as follows, omitting the action for brevity: (sa,s0)⇠ (sa,sterm)⇠747

(s0,sa)� (s0,sterm). As in the previous proof, P⌃r is insensitive to certain changes in the reward748

function that alter the set of optimal policies. Whenever this characteristic is found, ⇧⇤
r =⇧⇤

r̂ is not749

guaranteed, failing the test for identifiability. Here specifically, the reward function for M 0
1 would750

achieve 0 cross-entropy loss on an exhaustive preference dataset created in M1 with the noiseless751

preferences from the partial return preference model, despite the optimal policy in M 0
1 conflicting with752

the ground truth optimal policy.753

0�

0�

��

��

����

��

��

����

����

������

����

����

VWHUP

V� VD VE

VWHUP

V� VD VE

Figure 9: An MDP (M2) where ⇧⇤
r =⇧⇤

r̂ is not guaranteed
for the partial return preference model, failing the test for iden-
tifiability with segments of length 2. The ground truth reward
function is shown in the top diagram, and an MDP M 0

2 with
an alternative reward function is shown in the bottom diagram.
Under partial return, both create the same set of preferences
despite having different optimal actions from s0.

The logic of this proof can be applied for tra-754

jectories of length 2 in the MDP M2 shown755

in Figure 9. Together, M1 and M2 sug-756

gest a rule for constructing an MDP where757

⇧⇤
r=⇧⇤

r̂ is not guaranteed for P⌃r , failing758

the identifiability test for any fixed segment759

length, |�|: set the number of states to the760

right of s0 to |�| (not counting sterm), set761

the reward rfail for (s0, sterm) such that762

rfail<0, and set the reward for each other763

transition to c+rfail/(|�|+1), where c>0.764

Given an MDP constructed this way, an al-765

ternative reward function that results in the766

same preferences underP⌃r yet has a differ-767

ent optimal action from s0 can then be con-768

structed by changing all reward other than769

rfail to c+ rfail/(|�|+ 1), where c now770

is constrained to c < 0 and c⇥ |�|< rfail.771

Note that the set of preferences for each of772

these MDPs is the same even when includ-773

ing segments that reach terminal state before774

|�| transitions (which can still be considered775

to be of length |�| if the terminal state is an776

absorbing state from which reward is 0).777

The relevance of noiseless preference generators Because we model preferences as stochastic in778

Section 2, at this point one might reasonably wonder how the above theoretical analysis of noiseless779

preference generators are relevant. We offer four arguments below.780

First, having structured noise provides information that can help both preference models, but these781

proofs show that there are cases where the signal behind the noise—either regret or partial return—is782

not sufficient in the partial return case to identify an equivalent reward function. So, in a rough sense,783

regret more effectively uses both the signal and the noise, which might explain its superior sample784

efficiency in our experiments across both human labels and synthetic labels. Relatedly, the noiseless785

setting can help us understand each preference model’s sample efficiency in a low-noise setting.786

Second, noiseless preferences are also feasible, even if they are rare. Therefore, understanding what787

can be learned from them is worthwhile. Theorem 3.2 shows that there are MDPs in which there is788

no class of preference models—stochastic or deterministic—that can identify an equivalent reward789

function from partial-return-based preferences if the preference generator noiselessly prefers according790

to partial return. Specifically, we show that the mapping from two reward functions with different sets791

of optimal policies to partial-return based preferences is a many-to-one-mapping, and therefore the792

information simply does not exist to invert that mapping and identify a reward function with the same793

set of optimal policies. In contrast, Theorem 3.1 shows that preferences generated noiselessly (and in794

certain stochastic settings) by regret do not have this issue.795

18

Third, noise is often motivated as modeling human error. Having an algorithm rely on noise—structured796

in a very specific, Boltzmann-rational way—is an undesirable crutch.797

Lastly, there is precedent for considering noiseless human input for theory or derivations. For instance,798

the foundational IRL research by Abbeel and Ng on apprenticeship learning [27] treats demonstrations799

as noiselessly optimal. Recent work by Kim et al. [28] focuses on reward identifiability with noiseless,800

optimal demonstrations.801

D Additional information for creating a human-labeled preference dataset802

D.1 The user interface and study overview803

Here we share miscellaneous details about the user interface from which we collected human subjects’804

preferences. This description builds on Section 4.2.805

In selecting preferences, subjects had four options. They could prefer either trajectory (left or right), or806

they could express their preference to be the same or indistinguishable. To provide these preferences,807

subjects could either click on each of the buttons labeled "LEFT", "RIGHT", "SAME", or "CAN’T808

TELL" (shown in Figure 3) or by using the arrow keys to select amongst these choices.809

For the interface, all icons used to visualize the task were obtained from icons8.com under their Paid810

Universal Multimedia Licensing Agreement.811

We paid all subjects $5 per experiment (i.e., for each a Mechanical Turk HIT), which was chosen812

using the median time subjects took during a pilot study and then calculating the payment to result in813

$15 USD per hour. This hourly rate of $15 was chosen because it is commonly recommended as an814

improved US federal minimum wage. The human subject experiments cost $2,145 USD in total.815

An experimental error resulted in the IRB-approved consent form not being presented to human subjects816

after Mechanical Turk Workers accepted our study. We reported this error to our IRB and received their817

approval to use the data.818

D.2 Filtering subject data819

Before someone could join our study via Amazon Mechancial Turk, they had to meet the following820

criteria. They had to be located in the United States, have an approval rating of at least 99%, and have821

completed at least 100 other MTurk HITs. We selected these criteria to improve the probability of822

collecting data from subjects who would attentively engage with our study and who would understand823

our training protocol.824

We assessed each subject’s understanding of the delivery domain and filtered out those who did not825

comprehend the task, as described below. Specifically, subjects completed a task-comprehension826

survey, through which we assigned them a task-comprehension score. The questions and answer827

choices are shown in Table 2. Each fully correct answer was worth 1 point and each partially correct828

answer was worth 0.5 points. Task-comprehension scores were bounded between 0 and 7. We removed829

the data from subjects who scored below a threshold of 4.5. The threshold of 4.5 was chosen based on830

visual analysis of a histogram of scores, attempting to balance high standards for comprehension with831

retaining sufficient data for analysis.832

In addition to filtering based off the task comprehension survey, we also removed a subject’s data if833

they ever preferred colliding the vehicle into a sheep over not doing so. Since such collisions are highly834

undesirable in this task, we interpreted this preference as evidence of either poor task understanding or835

inattentiveness.836

In total, we collected data from 143 subjects. 58 of these subjects were removed based on their837

responses to the survey, and another 35 were removed for making preference errors. After filtering by838

both the comprehension survey and subject error, we used the data from 50 subjects. This included839

1812 preferences over 1245 unique segment pairs.840

19

https://icons8.com/

Table 2: The task comprehension survey, designed to test participant’s comprehension of the domain for the
purpose of filtering data. Each full credit answer earned 1 point; each partial credit answer earned 0.5 points. We
discarded the data of participants who scored less than 4.5 points overall.

Question Full credit answer Partial credit answer Other answer choices
What is the goal of
this world? (Check
all that apply.)

• To maximize profit • To get to a specific location.
• To maximize profit

Partial credit was given if both
answers were selected.

• To drive as far as possible to explore
the world.

• To collect as many coins as possible.
• To collect as many sheep as possible.
• To drive sheep to a specific location.

What happens when
you run into a
house? (Check all
that apply.)

• You pay a gas penalty.
• You can’t run into a house;

the world doesn’t let you
move into it.

Full credit was given if both
answers were selected.

• You pay a gas penalty.
• You can’t run into a house;

the world doesn’t let you
move into it.

Partial credit was given if only
one answer was selected.

• The episode ends.
• You get stuck.
• To collect as many sheep as possible.

What happens when
you run into a sheep?
(Check all that ap-
ply.)

• The episode ends.
• You are penalized for run-

ning into a sheep.

Full credit was given if both
answers were selected.

• The episode ends.
• You are penalized for run-

ning into a sheep.

Partial credit was given if only
one answer was selected.

• You are rewarded for collecting a
sheep.

What happens when
you run into a road-
block? (Check all
that apply.)

• You pay a penalty. • The episode ends.
• You get stuck.
• You can’t run into a roadblock; the

world doesn’t let you move into it.

Is running into a
roadblock ever a
good choice in any
town?

• Yes, in certain circum-
stances.

• No.

What happens when
you go into the brick
area? (Check all that
apply.)

• You pay extra for gas. • The episode ends.
• You get stuck in the brick area.
• You can’t go into the brick area; the

world doesn’t let you move into it.

Is entering the brick
area ever a good
choice?

• Yes, in certain circum-
stances

• No

Regarding potential risks to subjects, this data collection had limited or no risk. No offensive content was841

shown to subjects while they completed the HIT. Mechanical Turk collected Worker IDs, which were842

used only to link preference data with the results from the task-comprehension survey for filtering data843

(see Appendix D.2) and then were deleted from our data. No other potentially personally identifiable844

information was collected.845

D.3 The two stages of data collection846

We collected the human preference dataset in two stages, as mentioned in Section 4.2. Here we provide847

more detail on each stage. These stages differed largely by their goals for data collection and, following848

those goals, how we chose which segment pairs were presented to subjects for their preference.849

First stage Figure 10 illustrates the coordinates that segment pairs were sampled from in the first850

stage of data collection, varying by state value differences and by differences in partial returns over the851

segments. We sought a range of points that would allow a characterization of human preferences that852

is well distributed across different parts of the plot. To better differentiate the consequences of each853

preference model, we intentionally chose a large number of points in the gray area of Figure 4, where854

20

the regret and partial return preference models would disagree (i.e., each giving a different segment a855

preference probability greater than 0.5).856

Figure 10: Coordinates from which
segment pairs were sampled from
during the first stage of data collec-
tion. The x-axis is state value dif-
ferences between the two segments
and the y-axis is partial return dif-
ferences between the two segments.
The areas of the circles are propor-
tional to the number of samples at
that point, and the proportionality is
consistent across this plot and the 3
subplots of Figure 11.

We now describe our segment-pair sampling process more specif-857

ically. We first we constructed all unique segments of length 3 and858

then exhaustively paired them, resulting in nearly 30 million seg-859

ment pairs. Each segment pair’s partial returns, start-state values,860

end-state values place the segment pair on a coordinate in Figure 4,861

and segment pairs that are not on any of the dots in Figure 4 were862

discarded. For the segment pairs at each coordinate, we further863

divided them into 5 bins: non-terminal segments with the same start864

state and different end states, non-terminal segments with different865

start states and different end states, terminal segments with the same866

start state and same end state, terminal segments with a different867

start states and the same end state, and bin of segment pairs that fit in868

none of the other bins. Segment pairs in the 5th bin were discarded.869

From each of the 4 bins corresponding to each point in Figure 4,870

we randomly sampled 20 segment pairs. If the bin did not have at871

least 20 segment pairs, all segment pairs in the bin were “sampled”.872

All sampled segment pairs from all bins for all points in Figure 4873

made up the pool of segment pairs used with Mechanical Turk. For874

each subject, 50 segment pairs were randomly sampled from this pool. We gathered data until we875

had roughly 20 labeled segment pairs per bin. After filtering subject data, this first stage contributed876

1501 segment pairs out of the 1812 pairs used in our reward learning experiments in Section 6.3 and877

Appendix F.3.878

Figure 11: Coordinates from which segment pairs were sampled from during the second stage of data collection.
The points are in 3 distant clusters, so they are presented in 3 separate subplots for readability. The areas of the
circles are proportional to the number of samples at that point, and the proportionality is consistent across these 3
subplots and Figure 10.

Second stage When we conducted the reward-learning evaluation in Section 6 with only the data879

from the first stage,P⌃r performed very poorly, always performing worse than uniformly random. This880

performance difference is shown in Appendix ??. In contrastPregret performed well, always achieving881

near-optimal performance. To better assess P⌃r , we investigated its results with synthetic preferences882

in detail and speculated that two types of additional segment pairs would aid its performance. The883

first of these two types include one segment that is terminal and one that is non-terminal, which we884

expected to help differentiate the reward for reaching terminal states from that of reaching non-terminal885

ones. The second of these two types are two segments that each terminate at different t values. For886

example, one segment terminates on its end state, s�,|�|, and another terminates after its first transition,887

at s�,1. These early-terminating segments can be viewed either as shorter segments or as segments of888

the same length as the other segments (|�|=3), where they reach absorbing state from which no future889

reward can be received. We speculated that this second type of segment pairs would help learn the890

negative reward component for each move (i.e., the gas cost). Specifically, in the first stage’s data, both891

segments in a pair always have the same number of non-terminal transitions, seemingly preventing892

preferences from providing information about whether an extra transition (from non-absorbing state)893

21

generally resulted in positive or negative reward. These segment pairs were included in all results894

unless otherwise stated.895

We now describe our segment-pair sampling process for the second stage more specifically. For the896

first additional type of segment pair, where one segment is terminal and one is not, we randomly pair897

terminal and non-terminal segments from the first-stage pool of segment pairs drawn from to present to898

subjects. In this pairing, each segment is only used once, and pairing stops when one of all terminal899

segments or all non-terminal segments have been paired. The corresponding coordinates for these pairs900

are shown in the two right most plots of Figure 11. For the second additional type of segment pair, we901

utilize all terminal segments from the pool of segment pairs shown to subjects in the first stage. For902

each of these terminal segments, we construct two additional segments: one that shifts the segment903

earlier, removing the first state and action and adds a dummy transition within absorbing state at the904

end, and another that shifts the segment two timesteps earlier and adds two such dummy transitions905

at the end. These two newly constructed segments are then each paired with the original segment,906

producing two new pairs for each terminal segment in the data set. The corresponding coordinates for907

these segment pairs are shown in the left most plot of Figure 11.908

All of both types of additional segments pairs are then characterized by the coordinates shown in909

Figure 11. Then, as with the first stage, we randomly sampled 20 segment pairs from each coordinate910

to make the experimental pool for the second round of Mechanical Turk data collection. If 20 segment911

pairs were not available at a coordinate, we used all segment pairs for that coordinate. As in the first912

stage, 50 segment pairs were randomly sampled from this pool to be presented to each subject during913

preference elicitation. After filtering subject data, this first stage contributed 311 segment pairs out of914

the 1812 pairs used in our reward learning experiments in Section 6.3 and Appendix F.3.915

D.4 The study design pattern916

This work follows an experimental design pattern that is often used for studying methods that take917

human input for evaluating the desirability of behaviors or outcomes. In this pattern, human subjects are918

taught to understand a specific task metric and/or are incentivized to align their desires with this metric.919

The human subjects then provide input to some algorithm that has no knowledge of the performance920

metric, and this algorithm or learned model is evaluated on how well its output performs with respect to921

the hidden metric. For another example, see Cui et al. [31].922

E Descriptive results923

E.1 Derivation of regretd(�2|r̃)�regretd(�1|r̃)=(��1Vr̃���2Vr̃)+(⌃�1 r̃�⌃�2 r̃)924

The derivation below supports our assertion in the first paragraph of Section 5.1.925

regretd(�2|r̃)�regretd(�1|r̃)926

=
⇣
[V ⇤

r̃ (s�2,0)�(⌃�2 r̃+V ⇤
r̃ (s�2,|�2|)]�[V ⇤

r̃ (s�1,0)�(⌃�1 r̃+V ⇤
r̃ (s�1,|�1|)]

⌘

=
⇣
[V ⇤

r̃ (s�2,0)�V ⇤
r̃ (s�2,|�2|)]�[V ⇤

r̃ (s�1,0)�V ⇤
r̃ (s�1,|�1|)]

⌘
�
⇣
⌃�2 r̃�⌃�1 r̃

⌘

=
⇣
[V ⇤

r̃ (s�1,|�1|)�V ⇤
r̃ (s�1,0)]�[V ⇤

r̃ (s�2,|�2|)�V ⇤
r̃ (s�2,0)]

⌘
+
⇣
⌃�1 r̃�⌃�2 r̃

⌘

=(��1Vr̃���2Vr̃)+(⌃�1 r̃�⌃�2 r̃)

(9)

E.2 Losses of an expanded set of preference models on the human preferences dataset927

Table 3 shows an expansion of Table 1, including models introduced in Appendix B. The logistic928

linear preference model provides a lower bound in most cases, given that it can express anything the929

other preference models can and the rarity of overfitting its 3 parameters. Therefore, the intended930

comparisons are either between Pregret and P⌃r without the constant probability of a uniformly931

random response or between them with it. We embolden the result with lower loss between these two932

preference models for each such comparison.933

22

F Results from learning reward functions934

Table 3: Expanding on Table 1, mean cross-entropy
test loss over 10-fold cross validation (n=1812) from
predicting human preferences. Lower is better.

Loss

Preference model (n=1,812)

P (·)=0.5 (uninformed) 0.69
P⌃r (partial return) 0.62
Pregret (regret) 0.57

Plog-lin (logistic linear) 0.55
P⌃r with prob of uniform response 0.63
Pregret with prob of uniform response 0.59

Plog-lin with prob of uniform response 0.57

This section provides additional implementation935

details for Section 6, discussion of potential im-936

provements, and additional analyses that themat-937

ically fit in Section 6.938

F.1 An algorithm939

to learn reward functions with regret(��|r̂)940

We describe below additional details of our in-941

stantiation of Algorithm 1.942

Because the ordering of preference pairs is arbi-943

trary, for all preference datasets we double the amount of data by duplicating each preference sample944

with the opposite ordering and the reversed preference. This provides more training data and avoids945

learning any segment ordering effects.946

For this specific instantiation, we compute successor feature functions by first randomly creating a947

large number of reward functions. Specifically, each reward function is created by sampling with948

replacement each element of its weight vector, wr̃, from {�50,�10,�2,�1,0,1,5,10,50}. We also949

included the ground-truth reward function, r, at this point, resulting in 70 reward functions. For each950

reward function, we create its maximum entropy optimal policy through value iteration. In practice, we951

learned the successor feature functions as part of the value iteration process. Finally, we remove any952

successor feature functions for redundant policies and then also remove the successor features function953

for the optimal policy for r. Note that the only effect of including r in the earlier step was to allow us to954

remove any policies for other reward functions that were also optimal for r, making the regret-based955

learning problem more difficult. We ensured that the ground-truth reward function was not represented956

to better approximate real-world reward learning applications, in which one would be unlikely to have957

the optimal policy for learning a successor features function. (However, the policy from the regret958

estimator described in Appendix B.4 could be used to learn a successor features function, gaining the959

benefit of having a successor features function for at least one policy that is likely to perform decently960

in the task.)961

During training, the loss for the Pregret model tended to show cyclical fluctuations, reaching low loss962

and then spiking. To handle this volatility, we used the r̂ that achieved the lowest loss over all epochs of963

training, not the final r̂. A better understanding of these cyclical fluctuations could further improve964

learning with Pregret.965

Despite the delivery domain being an episodic task, a low-performing policy can endlessly avoid966

terminal states, resulting in negative-infinity values for both its return and successor features based on967

the policy. To prevent such negative-infinity values, we apply a discount factor of �=0.999 during968

value iteration—which is also where successor feature functions are learned—and when assessing969

the mean returns of policies with respect to the ground-truth reward function, r. We chose this high970

discount factor to have negligible effect on the returns of high-performing policies (since relatively971

quick termination is required for high performance) while still allowing value iteration to converge972

within a reasonable time.973

Below we describe the other specific hyperparameters used for learning a reward function with both974

preference models. These hyperparameters were used across all experiments. For all models, the975

learning rate, softmax temperature, and number of training iterations were tuned on the noiseless976

synthetic preference data sets such that each model achieved an accuracy of 100% on our specific977

delivery task and then were tuned further on stochastic preferences on our specific delivery task.978

Reward learning with the partial return preference model learning rate: 2; number of training epochs:979

30,000; and optimizer: Adam (with �1=0.9 and �2=0.999, and eps= 1e�08).980

23

Reward learning with the regret preference model learning rate: 0.5; number of training epochs:981

5,000; optimizer: Adam (with �1 = 0.9, �2 = 0.999, and eps=1e� 08); and softmax temperature:982

0.001.983

Logistic regression with both preference models, for the likelihood analysis in Section 5.2 and Ap-984

pendix E.2 learning rate: 0.5; number of training iterations: 3,000; optimizer: stochastic gradient985

descent; and evaluation: 10-fold cross validation.986

The computer used to run all experiments had the following specification. Processor: 1x Core™987

i9-9980XE (18 cores, 3.00 GHz) & 1x WS X299 SAGE/10G | ASUS | MOBO; GPUs: 4x RTX 2080988

Ti; Memory: 128 GB; and operating system drive: 2 TB NVMe (3,500 MB/s read).989

Pytorch 1.7.1 [32] was used to implement all reward learning models, and statistical analyses were990

performed using Scikit-learn 0.23.2 [33].991

Instantiating Algorithm 1 for reward functions that may be non-linear Algorithm 1 assumes992

that the reward function can be expressed as a linear combination of reward features that are provided993

by a reward-features function � that is input to the algorithm. Here we address situations when that994

assumption does not hold. If the reward features are unknown or the reward is known to be non-linear,995

one method is to create a reward features function that permits a linear approximation of the reward996

function. Several methods to derive some or all of these reward features appear promising:997

• Reward features can be learned by minimizing several auxiliary losses in a self-supervised998

fashion, as by Brown et al. [26]. After optimizing for these various objectives using a999

single neural network, the activations of the penultimate layer of this network can be used as1000

reward features. Such auxiliary tasks may include minimizing the mean squared error of the1001

reconstruction loss for the current state from a lower-dimensional embedding and the original1002

state, predicting how much time has passed between states by minimizing the mean squared1003

error loss (i.e., learning a temporal difference model), predicting the action taken between1004

two states by minimizing the cross entropy loss (i.e., learning an inverse dynamics model),1005

predicting the next state given the current state and action by minimizing the mean squared1006

error loss(i.e., learning a forward dynamics model), and predicting which of two segments is1007

preferred given a provided ranking by minimizing the t-rex loss.1008

• An additional auxiliary objective that may be promising is to use a neural network to learn a1009

regret estimator as described in Appendix B.4 and then use the activations of its penultimate1010

layer as reward features.1011

• Reward features could also be learned by first learning a reward function represented as a1012

neural network using a partial return preference model, and then using the activations of the1013

penultimate layer of this neural network to provide reward features.1014

F.2 Results from synthetic preferences1015

F.2.1 Learning reward functions from 100 randomly generated MDPs1016

Here we describe how each MDP in the set of 100 MDPs discussed in section 6.2 was generated. We1017

also extend the analysis to illustrate how often each preference model performs better than uniformly1018

random and give further details on our statistical tests.1019

Design choices The 100 MDPs are all instances of the delivery domain, but they have different reward1020

functions. The height for each MDP is sampled from the set {5,6,10}, and the width is sampled from1021

{3,6,10,15}. The proportion of cells that are terminal failure states is sampled from the set {0,0.1,0.3}.1022

There is always exactly one terminal success state. The proportion of “mildly bad” cells were selected1023

from the set {0,0.1,0.5,0.8}, and the proportion of “mildly good” cells were selected from {0,0.1,0.2}.1024

Mildly good cells and mildly bad cells respectively correspond to cells with coins and roadblocks in1025

our specific delivery task, but the semantic meaning of coins and roadblocks is irrelevant here. Each1026

sampled proportion is translated to a number of cells (rounding down to an integer when needed) and1027

24

then cells are randomly chosen to fill the grid with each of the above types of states until the proportions1028

are satisfied.1029

Then, the ground truth reward component for each of the above cell types were sampled from the1030

following sets:1031

• Terminal failure states: {0,1,5,10,50}1032

• Terminal success states: {�5,�10,�50}1033

• Mildly bad cells: {�2,�5,�10}1034

Mildly good cells always have a reward component of 1, and the component for white road surface1035

cells is always -1. There are no cells with a higher road surface penalty (analogous to the bricks in the1036

delivery domain).1037

Figure 12: Comparison of performance over 100 ran-
domly generated deterministic MDPs, showing the per-
centage of MDPs in which each model performed better
than an agent taking actions by a uniformly random pol-
icy. This plot complements Figure 5, which shows the
percentage of MDPs in which the models perform near-
optimally.

Better than random performance Figure 121038

complements the results in Figure 5, showing the1039

percentage of MDPs in which each preference1040

model outperforms a policy that chooses actions1041

according to a uniformly random probability dis-1042

tribution. We can see that at this performance1043

threshold, lower than that in Figure 5, the regret1044

preference model outperforms the partial return1045

preference model in most conditions. Even when1046

their performance in this plot—based on outper-1047

forming uniformly random actions—is nearly1048

identical, Figure 5 shows that the regret prefer-1049

ence model achieves near optimal performance1050

at a higher proportion.1051

Details for statistical tests We performed a1052

Wilcoxon signed-rank test on the normalized av-1053

erage returns achieved by each model over the1054

set of 100 randomly generated MDPs. All normalized average returns below �1 were replaced with1055

�1, so that all such returns were in the range [�1,1]. This clipping was done because any normalized1056

average return below 0 is worse than uniformly random, so the difference between a normalized return1057

of �1 and �1000 is relatively unimportant compared to the difference between 1 and 0. Results are1058

shown in Table 4.1059

Table 4: Results of the Wilcoxon signed-rank test on normalized average returns for each preference model.

Preference
generator type

|D�|=3 |D�|=10 |D�|=30 |D�|=100 |D�|=300 |D�|=1000 |D�|=3000

Noiseless
(Pregret vs.
P⌃r)

w=1003,
p=0.115

w=917,
p=0.007

w=739,
p=0.012

w=487,
p=0.007

w=284,
p<0.001

w=301,
p=0.002

w=289,
p=0.001

Stochastic
(Pregret vs.
P⌃r)

w=979,
p=0.541

w=1189.5,
p=0.018

w=891,
p=0.027

w=710,
p=0.018

w=285,
p<0.001

w=460,
p=0.002

w=199,
p<0.001

Additionally, we investigate whether Pregret and P⌃r learn near-optimal policies on the same MDPs1060

within this set of 100 randomly generated MDPs. Results for this analysis are shown below.1061

F.2.2 Varying segment size1062

Here we consider the effect of increasing the fixed length of segments in the preference data set.1063

Specifically, we learn a reward function using preference datasets that contained segments of lengths1064

n26,9,12,15,18,21 in the specific delivery task, where each dataset contained segments of the same1065

length. Each preference dataset contained 3000 segment pairs. Each segment was generated by1066

25

Table 5: A table showing the count of the number of MDPs where both, either, or neither of the models achieved
near optimal performance.

Model(s) |D�|=3 |D�|=10 |D�|=30 |D�|=100 |D�|=300 |D�|=1000 |D�|=3000
Both models 31 40 66 72 83 87 88
Only Pregret 20 26 17 18 14 8 8
Only P⌃r 10 12 7 8 3 3 3
Neither 39 22 10 2 0 2 1

choosing a non-terminal start state and n actions, all uniformly randomly. As in Appendix F.2.1, each1067

preference model acts as a preference generator to label these segment pairs, resulting in datasets that1068

differ only in their labels, and then the preference model is used for reward learning on the same dataset1069

it labeled. Unlike in Appendix F.2.1, all segments with termination reach terminal state on their final1070

transition, which we had already observed was problematic for P⌃r (and the motivation for the second1071

stage of data collection). Therefore, these results are intended to provide comparison between values1072

of n more so than between preference models.1073

Regardless of the value of n, Pregret always achieves the optimal mean return of 41.2. P⌃r always1074

achieves a mean return of -500.5. This analysis provides limited evidence that segment size does not1075

have a large effect, though further analysis is needed to make this assertion with confidence.1076

F.2.3 Policy learning without reward learning, using a regret estimator1077

Here we test the performance of policy learning from regret-based preferences without learning a1078

reward function, using a regret estimator, as described in Appendix B.4.1079

A set of 30 random MDPs is generated as described in Appendix F.2.1, except that the possible MDP1080

widths are instead sampled from the set {1,5,6,10} and the heights are sampled from {3,5,6,10}.1081

For each MDP, the preference dataset D� contains 3000 segment pairs, randomly sampled as in1082

Appendix F.2.1. If 3000 unique segment pairs do not exist, then each possible segment pair is used1083

once. Preference labels are given by Pregret.1084

Anticipating that a linear function over the six-element reward feature vector � would be insufficient to1085

estimate regret, we expanded � to include both the six reward components and an identity function for1086

each possible state-action pair, creating an addition to the feature vector of size |S|⇥|A| that contains1087

all zeroes except a single 1 indicating the state and action that initiates a transition.1088

Table 6 shows results for noiseless and stochastic preferences.1089

Table 6: Success of learning a regret estimator with noiseless and stochastic preferences.

Preference Model % of MDPs in which performance
was better than uniformly random

% of MDPs in which performance
was near optimal

Noiseless Pregret preference labels,
learning a regret estimator

90% 86.67%

Stochastic Pregret preference labels,
learning a regret estimator

80% 73.33%

F.2.4 Artificially lowering the discount factor1090

Almost all deep reinforcement learning algorithms artificially add discounting to tasks that are episodic1091

[9]. Considering that much of the past work that used partial return preference models also involved1092

deep RL, here we re-interpret results above to probe how such discounting affects performance of1093

this preference model if preferences are actually given by Pregret. Specifically, the analysis above1094

in Appendix F.2.3 on policy learning without reward learning is applicable to this topic. If the regret1095

estimator is instead considered a negated reward function, then taking a minimal-regret action is1096

equivalent to taking a maximum-value action under fully myopic discounting, �=0.1097

26

F.2.5 Reward learning in stochastic MDPs1098

Although we theoretically consider MDPs with stochastic transitions in Appendix C, we have not yet1099

empirically compared P⌃r and Pregret in tasks with stochastic transitions, which we do below.1100

We randomly generated 20 MDPs, each with a 5⇥5 grid. Instead of terminal cells that are associated1101

with success or failure, these MDPs have terminal cells that are either risky or safe. A single terminal1102

safe cell was randomly placed, and the number of terminal risk cells was sampled from the set {1,2,7}1103

and then these terminal risk cells were likewise randomly placed. No other special cells were used1104

in this set of MDPs. To add stochastic transitions, the delivery domain was modified such that when1105

an agent moves into a terminal risk cell there is a 50% chance of receiving a lower reward, rlose, and1106

a 50% chance of receiving a higher reward, rwin. All other transitions are deterministic. As in the1107

unmodified delivery domain, moving to any non-terminal state results in a reward of -1. Moving to the1108

terminal safe state yields a reward of +50, like the terminal success state of the unmodified delivery1109

domain. Therefore, depending on the values of rwin and rlose, it may be better to move into a terminal1110

risk state than to avoid it. All segments were generated by choosing a start state and three actions, all1111

uniformly randomly. For each MDP, the preference dataset D� contains 3000 segment pairs.1112

The 10 MDPs of each condition differed from those of the other conditions by their ground-truth1113

reward function r, with different rwin and rlose values. The results are shown below, indicating that1114

for both noiseless and stochastic preference datasets, Pregret is always able to achieve near-optimal1115

performance, whereas P⌃r is not.1116

Table 7: Stochastic MDPs: % of MDPs in which performance was near optimal, with varied reward
functions.

Preference Model rwin=1 rwin=103 rwin=100 rwin=100
rlose=�50 rlose=�50 rlose=�1 rlose=�103

Noiseless Pregret 100% 100% 100% 100%
Stochastic Pregret 100% 100% 100% 100%
Noiseless P⌃r 100% 0% 100% 0%
Stochastic P⌃r 100% 0% 100% 100%

The results above expand upon and support the first proof of Theorem 3.2 in Appendix C.1117

F.3 Results from human preferences1118

In this section we provide further detail regarding the analysis in Section 6.3. For the Wilcoxon paired1119

signed-rank test, normalized mean returns were clipped to [�1,1] as in Appendix F.2.1. The result from1120

each test is shown in Table F.3.1121

Table 8: Results from Wilcoxon signed-rank tests.

5 partitions 10 partitions 20 partitions 50 partitions 100 partitions
Pregret vs. P⌃r w=0 w=6 w=24 w=216 w=939
preference models p=0.043 p=0.028 p=0.007 p=0.003 p=0.076

Figure Figure 13 show the same results as Figure 6, but with additional results from the expected1122

return preference model introduced in Appendix B.3. Figure 14 shows the same results with a different1123

threshold, that of performing better than uniformly random action selection, which receives a 0 on1124

our normalized mean return metric. The regret preference model matches or outperforms both other1125

preference models in all partitionings of the human data, at both thresholds (near optimal and better1126

than random).1127

As previously mentioned in Section D and Appendix D, when learning reward functions only from the1128

data from the first stage of human data collection, the partial return model does worse. The specific1129

performance of the partial return preference model on the full set of first-stage data (i.e., 1 partition) is a1130

normalized mean return of �3.8, whereas the regret preference model achieves 1.0, close to optimal1131

performance.1132

27

Figure 13: Performance comparison over various
amounts of human preferences. Each partition has
the number of preferences shown or one less. This
plot is identical to Figure 6 except that results for the
expected return preference model are included.

Figure 14: Performance comparison over various
amounts of human preferences. Each partition has
the number of preferences shown or one less. This
plot focuses on outperforming a uniformly random
policy, whereas Figure 6 thresholds on near-optimal
performance.

28

	Introduction
	Preference models for learning reward functions
	Reward learning from pairwise preferences
	Choice of preference model: partial return and regret

	Theoretical comparisons
	Creating a human-labeled preference dataset
	The general delivery domain
	The delivery task

	The user interface and survey
	Selection of segment pairs for labeling

	Descriptive results
	Correlations between preferences and segment statistics
	Likelihood of human preferences under different preference models

	Results from learning reward functions
	An algorithm to learn reward functions with regret(|)
	Results from synthetic preferences
	Results from human preferences

	Conclusion
	Limitations and ethics
	Limitations
	Ethical statement
	On the challenge of using regret preference models in practice

	Preference models for learning reward functions
	Logistic-linear preference model
	Adding a constant probability of uniformly distributed preference
	Expected return preference model
	Policy learning from regret-based preferences without learning a reward function
	Relationship to inverse reinforcement learning

	Theoretical comparisons
	Additional information for creating a human-labeled preference dataset
	The user interface and study overview
	Filtering subject data
	The two stages of data collection
	The study design pattern

	Descriptive results
	Derivation of regretd(2|)-regretd(1|) = (1 V-2 V) + (1 - 2)
	Losses of an expanded set of preference models on the human preferences dataset

	Results from learning reward functions
	An algorithm to learn reward functions with regret(|)
	Results from synthetic preferences
	Learning reward functions from 100 randomly generated MDPs
	Varying segment size
	Policy learning without reward learning, using a regret estimator
	Artificially lowering the discount factor
	Reward learning in stochastic MDPs

	Results from human preferences

