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Abstract

The utility of reinforcement learning is limited by the alignment of reward functions1

with the interests of human stakeholders. One promising method for alignment is2

to learn the reward function from human-generated preferences between pairs of3

trajectory segments. These human preferences are typically assumed to be informed4

solely by partial return, the sum of rewards along each segment. We find this5

assumption to be flawed and propose modeling preferences instead as arising from6

a different statistic: each segment’s regret, a measure of a segment’s deviation from7

optimal decision-making. Given infinitely many preferences generated according8

to regret, we prove that we can identify a reward function equivalent to the reward9

function that generated those preferences. We also prove that the previous partial10

return model lacks this identifiability property without preference noise that reveals11

rewards’ relative proportions, and we empirically show that our proposed regret12

preference model outperforms it with finite training data in otherwise the same13

setting. Additionally, our proposed regret preference model better predicts real14

human preferences and also learns reward functions from these preferences that15

lead to policies that are better human-aligned. Overall, this work establishes that16

the choice of preference model is impactful, and our proposed regret preference17

model provides an improvement upon a core assumption of recent research.18

1 Introduction19

Improvements in reinforcement learning (RL) have led to notable recent achievements [1–6],20

increasing its applicability to real-world problems. Yet, like all optimization algorithms, even perfect21

RL optimization is limited by the objective it optimizes. For RL, this objective is created in large22

part by the reward function. Poor alignment between reward functions and the interests of human23

stakeholders limits the utility of RL and may even pose catastrophic risks [7, 8].24

Influential recent research has focused on reward learning from preferences over pairs of fixed-length25

trajectory segments. Nearly all of this recent work assumes that human preferences arise probabilis-26

tically from only the sum of rewards over a segment, i.e., the segment’s partial return [9–16]. That is,27

these works assume that people tend to prefer trajectory segments that yield greater rewards during the28

segment. However, this preference model ignores seemingly important information about the segment’s29

desirability, including the state values of the segment’s start and end states. Separately, this partial return30

preference model can prefer suboptimal actions with lucky outcomes, like buying a lottery ticket.31

This paper proposes an alternative preference model based on the regret of each segment, which is equiv-32

alent to the negated sum of an optimal policy’s advantage of each transition in the segment (Section 2
:::
2.2).33
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Figure 1 shows an intuitive example of when these two models disagree. Other classes of domains that34

the models will differ on are those with constant reward until the end, including competitive games like35

chess, go, and soccer as well as tasks for which the objective is to minimize time until reaching a goal.36
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Figure 1: Two segments of a car moving at high speed
near a brick wall. Assume the right segment is opti-
mal and the left segment is suboptimal (as defined in
Sec. 2.1). The left segment has a higher sum of reward,
so the partial return preference model tends to prefer
it. The regret preference model instead tends to prefer
the right segment because optimal segments have mini-
mal regret. If we also assume deterministic transitions,
then the regret model includes the difference in values
between the start state and the end state (Eq. 3), and
the right segment would tend to be preferred because
it greatly improves its state values from start to end,
whereas the left segment’s state values greatly worsen.
We suspect our human readers will also tend to prefer
the right segment.

For these two preference models, we first focus the-37

oretically on a normative analysis (Section 3)—i.e.,38

what preference model would we want humans39

to use if we could choose—proving that reward40

learning on infinite, exhaustive preferences with41

our proposed regret preference model identifies a42

reward function with the same set of optimal poli-43

cies as the reward function with which the prefer-44

ences are generated. We also prove that the par-45

tial return preference model is not guaranteed to46

identify such a reward function without preference47

noise. We follow up with a descriptive analysis of48

how well each of these proposed models align with49

actual human preferences by collecting a human-50

labeled dataset of preferences in a rich grid world51

domain (Section 4) and showing that the regret pref-52

erence model better predicts these human prefer-53

ences (Section 5). Finally, we find that the policies54

ultimately created through the regret preference55

model tend to outperform those from the partial56

return model learning—both when assessed with57

collected human preferences or when assessed with58

synthetic preferences (Section 6).59

2 Preference models for learning reward functions60

We assume that the task environment is a Markov decision process (MDP) specified by the tuple (S,A,61

T , γ,D0, r). S andA are the sets of possible states and actions, respectively. T is a transition function,62

T :S×A×→S
:::::::::::
T :S×A→S. γ is the discount factor andD0 is the distribution of start states. Unless63

otherwise stated, we assume undiscounted tasks (i.e., γ=1) that have terminal states, after which only64

0 reward can be received. r is a reward function, r :S×A×S→R, where the reward rt at time t is a65

function of st, at, and st+1. An MDP\r is an MDP without a reward function.66

Throughout this paper, r refers to the ground-truth reward function for some MDP; r̂ refers to a learned67

approximation of r; and r̃ refers to any reward function (including r or r̂). A policy (π :S×A→ [0,1])68

specifies the probability of an action given a state. Q∗r̃ and V ∗r̃ refer respectively to the state-action value69

function and state value function for an optimal policy, π∗, under r̃. The optimal advantage function is70

defined asA∗r̃(s,a),Q∗r̃(s,a)−V ∗r̃ (s). Throughout this paper, the ground-truth reward function r71

is used to algorithmically generate preferences when they are not human-generated, is hidden during72

reward learning, and is used to evaluate the performance of optimal policies under a learned r̂.73

2.1 Reward learning from pairwise preferences74

A reward function can be learned by minimizing the cross-entropy loss—i.e., maximizing the75

likelihood—of observed human preferences, a common approach in recent literature [9–11, 14, 16].76

Segments Letσ denote a segment starting at state sσ,0. Its length |σ| is the number of transitions within77

the segment. A segment includes |σ|+1 states and |σ| actions: (sσ,0,aσ,0,sσ,1,aσ,1,...,sσ,|σ|). In this78

problem setting, segments lack any reward information. As shorthand, we defineσt,(sσ,t,aσ,t,sσ,t+1).79

A segment σ is optimal with respect to r̃ if, for every i∈{1,...,|σ|-1}, Q∗r̃(sσ,i,aσ,i) =V ∗r̃ (sσ,i). A80

segment that is not optimal is suboptimal. Given some r̃ and a segment σ, r̃t, r̃(sσ,t,aσ,t,sσ,t+1),81

and the partial return of a segment σ is
∑|σ|−1
t=0 γtr̃t, denoted in shorthand as Σσ r.82
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Preference datasets Each preference over a pair of segments creates a sample (σ1,σ2,µ) in a83

preference datasetD�. Vector µ= 〈µ1,µ2〉 represents the preference; specifically, if σ1 is preferred84

over σ2, denoted σ1�σ2, µ=〈1,0〉. µ is 〈0,1〉 if σ1≺σ2 and is 〈0.5,0.5〉 for σ1∼σ2 (no preference).85

Loss function To learn a reward function from a preference dataset, D�, a common assumption86

is that these preferences were generated by a preference model P that arises from an unobservable87

ground-truth reward function r. We approximate r by minimizing cross-entropy loss to learn r̂:88

loss(r̂,D�)=−
∑

(σ1,σ2,µ)∈D�

µ1logP (σ1�σ2|r̂)+µ2logP (σ1≺σ2|r̂) (1)

This loss is under-specified untilP (σ1�σ2|r̂) is defined, which is the focus of this paper. We show that89

the common model of preference probabilities is flawed and introduce an improved preference model.90

Preference models A preference model determines the probability of one trajectory segment being91

preferred over another, P (σ1 � σ2|r̃). Preference models could be applied to model preferences92

provided by humans or other systems. Preference models can also directly generate preferences, and in93

such cases we refer to them as preference generators.94

2.2 Choice of preference model: partial return and regret95

Partial return Recent work assumes human preferences are generated by a Boltzmann distribution96

over the two segments’ partial returns [9–16], expressed here as a logistic function1:97

PΣr
(σ1�σ2|r̃)= logistic

(
Σσ1

r̃−Σσ2
r̃
)
. (2)

Regret We introduce an alternative preference model based on the regret of each transition in a98

segment. We first focus on segments with deterministic transitions. For a transition (st,at,st+1) in a99

deterministic segment, regretd(σt|r̃),V ∗r̃ (sσ,t)−[r̃t+V
∗
r̃ (sσ,t+1)]. For a full deterministic segment,100

101

regretd(σ|r̃),
|σ|−1∑
t=0

regretd(σt|r̃)=V ∗r̃ (sσ,0)−(Σσ r̃+V ∗r̃ (sσ,|σ|)), (3)

with the right-hand expression arising from cancelling out intermediate state values. Therefore,102

deterministic regret measures how much the segment reduces expected return from V ∗r̃ (sσ,0). An103

optimal segment, σ∗, always has 0 regret, and a suboptimal segment, σ¬∗, will always have positive104

regret, a intuitively appealing property that also plays a role in the identifiability proof of Theorem 3.1.105

Stochastic transitions, however, can result in regretd(σ∗|r̂)>regretd(σ¬∗|r̃), losing the property106

above. To retain it, we note that the effect on expected return of transition stochasticity from a107

transition (st,at,st+1) is [r̃t+V
∗
r̃ (st+1)]−Q∗r̃(st,at) and add this expression once per transition to108

get regret(σ), removing the subscript d that refers to determinism. The regret for a single transition109

becomes regret(σt|r̃) = [V ∗r̃ (sσ,t)− [r̃t + V ∗r̃ (sσ,t+1)]] + [[r̃t + V ∗r̃ (sσ,t+1)]−Q∗r̃(sσ,t,aσ,t)] =110

V ∗r̃ (sσ,t)−Q∗r̃(sσ,t,aσ,t)=−A∗r̃(sσ,t,aσ,t). Regret for a full segment is111

regret(σ|r̃)=

|σ|−1∑
t=0

regret(σt|r̃)=

|σ|−1∑
t=0

[
V ∗r̃ (sσ,t)−Q∗r̃(sσ,t,aσ,t)

]
=

|σ|−1∑
t=0

−A∗r̃(sσ,t,aσ,t). (4)

The regret preference model is the Boltzmann distribution over negated regret:112

Pregret(σ1�σ2|r̃), logistic
(
regret(σ2|r̃)−regret(σ1|r̃)

)
. (5)

Lastly, we note that if two segments have deterministic transitions, end in terminal states, and have the113

same starting state, this regret model reduces to the partial return model: Pregret(·|r̃)=PΣr
(·|r̃).114

::::::::::
Algorithms

::
in

:::
this

::::::
paper

::::
All

:::::::::
algorithms

::
in

:::
the

::::
body

::
of

::::
this

::::
paper

:::
are

:::::::
defined

::::::
simply

::
as

::::::::
“minimize115

:::::::
Equation

:::
1”.

:::::
They

:::::
differ

::::
only

:
in
::::
how

:::
the

:::::::::
preference

::::::::::
probabilities

:::
are

:::::::::
calculated.

::::
All

:::::
reward

:::::::
function116

:::::::
learning

:::
via

::::::
partial

:::::
return

::::
uses

::::::::
Equation

::
2.

::::
We

::::
use

:::
two

::::::::::
algorithms

:::
for

::::::
reward

:::::::
function

:::::::
learning117

1See Appendix B for a derivation of this logistic expression from a Boltzmann distribution with a temperature
of 1. Unless otherwise stated, we ignore the temperature because scaling reward has the same effect.
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::
via

::::::
regret.

:::::
The

:::::
theory

::
in
:::::::

Section
::
3

:::::::
assumes

:::::
exact

:::::::::::
measurement

::
of

::::::
regret,

:::::
using

::::::::
Equation

::
5.

:::::
Our118

::::::::::
experimental

::::::
results

::
in

::::::
Section

::
6
:::
use

::::::::
Equation

:
6
::
to

::::::::::
approximate

::::::
regret.

::::::::
Appendix

::
B
:::::::::
introduces

:::::
other119

:::::::::
algorithms

:::
that

:::
use

::::::::
Equation

::
1,

::
as

:::
well

:::
as

:::
one

::
in

::::::::
Appendix

:::
B.2

::::
that

:::::::::
generalizes

::::::::
Equation

::
1.120

Regret as a model for human preference Pregret makes at least three assumptions worth noting.121

First, it keeps the assumption that human preferences follow a Boltzmann distribution over some122

statistic, which is a common model of choice behavior in economics and psychology, where it is123

called the Luce-Shepard choice rule [17, 18]. Second, Pregret implicitly assumes humans can identify124

optimal and suboptimal segments when they see them, which will less true in domains where the human125

has less expertise. Lastly, Pregret assumes that in stochastic settings where the best outcome may only126

result from suboptimal decisions (e.g., buying a lottery ticket), humans instead prefer optimal decisions.127

We suspect humans are capable of expressing either type of preference—based on decision quality128

or desirability of outcomes—and can be influenced by training or the preference elicitation interface.129

In practice we determine that the regret model produces improvements over the partial-return model130

(Section 6), and its assumptions represent an opportunity for follow-up research.131

Alternative methods for learning reward functions Other methods for learning reward functions132

include inverse reinforcement learning from demonstrations [19, 20]
::::::::
(discussed

::
in

::::::::
Appendix

::::
B.5)

:
and133

inverse reward design from trial-and-error reward design in multiple instances of a task domain [21].134

3 Theoretical comparisons135

In this section, we consider how different ways of generating preferences affect reward inference, setting136

aside whether humans can be influenced to give preferences in accordance with a specific preference137

method. In economic terms, this analysis—and all of our analyses with synthetic preferences—could138

be considered a normative analysis. In artificial intelligence, this analysis might be cast as a step139

towards defining criteria for a rational preference model.140

Definition 3.1 (An identifiable preference model). For a preference model P , assume an infinite141

datasetD� of n-length pairs of segments is constructed by repeatedly choosing (σ1,σ2) and sampling142

a label µ∼P (σ1�σ2|r), using P as a preference generator. Further assume that in this dataset, all143

possible n-length segment pairs appear infinitely many times. For some MDP\r M , letMr̃ beM with144

the reward function r̃. Let Π∗r̃ be the set of optimal policies inMr̃. Let reward-equivalence class R be145

the set of all reward functions such that if r1,r2∈R then Π∗r1 =Π∗r2 . Preference modelP is identifiable146

if, for any choice of n and Mr , any r̂= argminr̃,D� [loss(r̃)]—for the cross-entropy loss (Eqn. 1),147

with P as the preference model—is in the same reward equivalence class as r. I.e., Π∗r=Π∗r̂ .148

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(σ1|r̃) <149

regret(σ2|r̃), Pregret(σ1�σ2|r̃)> 0.5, and if regret(σ1|r̃) = regret(σ2|r̃), Pregret(σ1�σ2|r̃) =150

0.5. Pregret is identifiable.151

This class of regret preference models includes but is not limited to the Boltzmann distribution of Eqn. 5152

:::
and

:::
the

:::::::
narrower

:::::
class

:::
that

::::::::
Theorem

:::
3.1

::::::
focuses

::::
upon.153

Proof sketch Make all assumptions in Definition 3.1. Since r̂ minimizes cross-entropy loss,154

Pregret(·|r)=Pregret(·|r̂) for all possible segment pairs. Also, by Equation 4 regret(σ|r̃) = 0 if155

and only if σ is optimal with respect to r̃. And regret(σ|r̃)>0 if and only if σ is suboptimal with r̃.156

With respect to some r̃, let σ∗ be any optimal segment and σ¬∗ be any suboptimal segment.157

regret(σ∗|r̃)<regret(σ¬∗|r̃). Pregret(σ
∗,σ¬∗|r̃)>0.5, which we refer to as being preferred by158

Pregret(·|r̃). In the total ordering created by Pregret(·|r̃), let Σ∗r̃ be the set of maximal segments in159

D� (i.e., the segments over which no segment is preferred by Pregret(·|r̃)). A policy π∈Π∗r̃ if and160

only if all state-action pairs producible by π are within one or more of the segments in Σ∗r̃ .161

Since Pregret(·|r)=Pregret(·|r̂), Σ∗r=Σ∗r̂ . Therefore Π∗r=Π∗r̂ .162

Theorem 3.2 (Noiseless PΣr is not identifiable). Let PΣr be any function such that if Σσ1 r̃ >Σσ2 r̃,163

PΣr (σ1�σ2|r̃)=1, and if Σσ1 r̃=Σσ2 r̃, PΣr (σ1�σ2|r̃)=0.5. There exists an MDP in which PΣr is164

not identifiable.165
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Appendix C contains a detailed proof of Theorem 3.1 and two proofs by example for Theorem 3.2,166

each focusing on a different weakness of PΣr .The first proof by example reveals issues when learning167

reward functions with stochastic transitions with either PΣr
or deterministic Pregretd . These issues168

directly correspond to the need for preferences over distributions over outcomes (i.e., lotteries) to169

construct a cardinal utility function (see Russell and Norvig [22, Ch. 16]). Note that the noiseless170

version of PΣr
in Theorem 3.2 is achieved in the limit as reward values are scaled higher; equivalently,171

one could include a Boltzmann temperature parameter in Equation 2 and scale it towards 0. Intuitively,172

Theorem 3.2 says that PΣr is not identifiable without the distribution over preferences providing173

information about the proportions of rewards with respect to each other. In contrast, to be identifiable,174

the regret preference model does not require this preference error (though it can presumably benefit175

from it in certain contexts).176

4 Creating a human-labeled preference dataset177

To empirically investigate the consequences of each preference model when learning reward from178

human preferences, we created a preference dataset labeled by human subjects via Amazon Mechanical179

Turk. This data collection was IRB-approved. Appendix D adds detail to the content below.180

4.1 The general delivery domain181

The delivery domain consists of a grid of cells, each of a specific road surface type. The delivery agent’s182

state is its location. The agent’s action space is moving one cell in one of the four cardinal directions.183

The episode can terminate either at the destination for +50 reward or in failure at a sheep for −50184

reward. The reward for a non-terminal transition is the sum of any reward components. Cells with a185

white road surface have a−1 reward component, and cells with brick surface have a−2 component.186

Additionally, each cell may contain a coin (+1) or a roadblock (−1). Coins do not disappear and at187

best cancel out the road surface cost. Actions that would move the agent into a house or beyond the188

grid’s perimeter result in no motion and receive reward that includes the current cell’s surface reward189

component but not any coin or roadblock components. In this work, the start state distribution,D0, is190

always uniformly random over non-terminal states. This domain was designed to permit subjects to191

easily identify bad behavior yet also to be difficult for them to determine optimal behavior from most192

states, which is representative of many common tasks.193

4.1.1 The delivery task194

Figure 2: The delivery task used to gather
human preferences. The yellow van is the
agent and the red inverted teardrop is the
destination.

We chose one instantiation of the delivery domain for gath-195

ering our dataset of human preferences. This specific MDP196

has a 10×10 grid. From every state, the highest return pos-197

sible involves reaching the goal, rather than hitting a sheep or198

perpetually avoiding termination. Figure 2 shows this task.199

4.2 The user interface and survey200

This subsection describes the three main stages of the ex-201

perimental session. A video showing the full experimental202

protocol can be seen at ....203

Teaching subjects about the task Subjects first view in-204

structions describing the general domain. To avoid the jargon205

of “return” and “reward,” these terms are mapped to equiv-206

alent values in US dollars, and the instructions describe the207

goal of the task as maximizing the delivery vehicle’s financial outcome, where the reward components208

are specific financial impacts. This information is shared amongst interspersed interactive episodes,209

in which the subject controls the agent in domain maps that are each designed to teach one or two210

concepts. Our intention during this stage is to inform the later preferences of the subject by teaching211

them about the domain’s dynamics and its reward function, as well as to develop the subject’s sense of212
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how desirable various behaviors are. At the end of this stage, the subject controls the agent for two213

episodes in the specific delivery task shown in Figure 2.214

Preference elicitation After each subject is trained to understand the task, they indicate their215

preferences between 40–50 randomly-ordered pairs of segments, using the interface shown in Figure 3.216

The users select a preference, no preference (“same"), or “can’t tell”. In this work, we exclude responses217

labeled “can’t tell”, though one might alternatively try to extract information from these responses.218

Users’ task comprehension Subjects then answered questions testing their understanding of the task,219

and we removed their data if they scored poorly. We also removed a subject’s data if they preferred220

colliding the vehicle into a sheep over not doing so, which we interpreted as poor task understanding or221

inattentiveness. This filtered dataset contains 1812 preferences from 50 subjects.222

4.3 Selection of segment pairs for labeling223

Figure 3: Interface shown to subjects during preference elicitation.

We collected human pref-224

erences in two stages, each225

with different methods for226

selecting which segment227

pairs to present for labeling.228

The second stage’s sole229

purpose was to improve230

the reward-learning per-231

formance of PΣr . Before232

this second stage
:::::::
Without233

::::::::::
second-stage

::::::
data, PΣr

234

compared even worse to235

Pregret than in the results236

described in Section 6 .
:::
(see237

::::::::
Appendix

:::
??).

:::::
Both

::::::
stages’

::::
data

:::
are

::::::::
combined

:::
and

::::
used

::
as

::
a

:::::
single

::::::
dataset.

:
These methods and their238

justification are described in Appendix D.3.239

5 Descriptive results240

Figure 4: Proportions at which subjects preferred each
segment in a pair, plotted by the difference in the seg-
ments’ changes in state values (x-axis) and partial returns
(y-axis). The diagonal line shows points of preference
indifference for Pregret. Points of indifference for PΣ

lie on the x-axis. The shaded gray area indicates where
the two models disagree, each giving a different segment
a preference probability greater than 0.5. Each circle’s
area is proportional to the number of samples it describes.

This section considers how well different prefer-241

ence models explain our dataset of human pref-242

erences.243

5.1 Correlations244

between preferences and segment statistics245

We hypothesize that the values of segments’ start246

and end states—which are included in Pregret247

but not in PΣ—affect human preferences, inde-248

pendent of partial return. To simplify analysis,249

we combine the two parts of regretd(σ|r) that250

are additional to Σσ r̃ and introduce the follow-251

ing shorthand: ∆σVr̃ , V ∗r̃ (sσ,|σ|)−V ∗r̃ (sσ,0).252

Note that with an algebraic manipulation (see Ap-253

pendix E.1), regretd(σ2|r̃)− regretd(σ1|r̃) =254

(∆σ1Vr̃−∆σ2Vr̃)+(Σσ1 r̃−Σσ2 r̃). Therefore,255

on the diagonal line in Figure 4, regretd(σ2|r)=256

regretd(σ1|r), making the Pregretd preference model indifferent.257

Preference model Loss
P (·)=0.5 (uninformed) 0.69
PΣr (partial return) 0.62
Pregret 0.57

Table 1: Mean cross-entropy test loss
over 10-fold cross validation (n=1812)
from predicting human preferences.
Lower is better.

The dataset of preferences is visualized in Figure 4. This plot258

shows how ∆σVr has influence independent of partial return259

by focusing only on points at a chosen y-axis value; if the colors260
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along the corresponding horizontal line reddens as thex-axis value261

increases, then ∆σVr appears to have independent influence. To262

statistically test for independent influence of ∆σVr on preferences,263

we consider subsets of data where Σσ1
r−Σσ2

r is constant. For264

Σσ1
r−Σσ2

r=−1 and Σσ1
r−Σσ2

r=−2, the only values with265

more than 30 samples that also include informative samples with both negative and positive values of266

regret(σ1|r)−regret(σ2|r), the Spearman’s rank correlations between ∆σVr and the preferences267

are significant (r>=0.3, p<0.0001). This result indicates that ∆σVr influences human preferences268

independent of partial return, validating our hypothesis that humans form preferences based on269

information about segments’ start states and end states, not only partial returns.270

5.2 Likelihood of human preferences under different preference models271

To examine how well each preference model predicts human preferences, we calculate the cross-272

entropy loss for each model (Eqn. 1)—i.e., the negative log likelihood—of the preferences in our273

dataset. Scaling reward by a constant factor does not affect the set of optimal policies. Therefore,274

throughout this work we ensure that our analyses of preference models are insensitive to reward scaling.275

To do so for this specific analysis, we conduct 10-fold cross validation to learn a reward scaling factor276

for each of Pregret and PΣr . Table 1 shows that the loss of Pregret is lower than that of PΣr , indicating277

that it is more reflective of how people actually express preferences.278

6 Results from learning reward functions279

Analysis of a preference model’s predictions of human preferences is informative, but such predictions280

are a means to the ends of learning human-aligned reward functions and policies. We now examine each281

preference model’s performance on these ends. In all cases, we learn a reward function r̂ according282

to Eqn. 1 and apply value iteration [23] to find the approximately optimalQ∗r̂ function. For thisQ∗r̂ ,283

we then evaluate the mean return of the maximum-entropy optimal policy—which chooses uniformly284

randomly among all optimal actions—with respect to the ground-truth reward function r, over D0.285

To compare performance across different MDPs, the mean return of a policy π, V πr , is normalized286

to (V πr −V Ur )/V ∗r , where V ∗r is the optimal expected return and V Ur is the expected return of the287

uniformly random policy (both givenD0). Normalized mean return above 0 is better than V Ur . Optimal288

policies have a normalized mean return of 1, and we consider above 0.9 to be near optimal.289

6.1 An algorithm to learn reward functions with regret(σσ|r̂)290

Algorithm 1 is a general algorithm for learning a linear reward function according to Pregret. Adding291

to our assumptions listed in Section 2, this algorithm introduces two more approximations. First, to292

avoid expensive evaluation of V ∗r̃ (sσ,t) andQ∗r̃(sσ,t,aσ,t)::::
This

::::::::::::
regret-specific

::::::::
algorithm

::::
only

::::::
changes293

::
the

:::::::::::
regret-based

::::::::
algorithm

::::
from

:::::::
Section

:::
2.2

::
by

::::::::
replacing

::::::::
Equation

::
5

::::
with

:
a
:::::::
tractable

::::::::::::
approximation294

::
of

:::::
regret,

:::::::
avoiding

:::::::::
expensive

:::::::
repeated

:::::::::
evaluation

::
of

:::::
V ∗r̂ (·)

:::
and

::::::
Q∗r̂(·,·) to compute Pregret(·|r̂) during295

reward learning.
:::::::::::

Specifically, successor features for a set of policies are used to approximate the296

optimal state values and state-action values for any reward function. Second, softmax weighting is297

used, as explained below.298

ApproximatingPregret with successor features Following the notation of Barreto et al. [24], assume299

the ground-truth reward is linear with respect to a feature vector extracted byφ :S×A×S→Rd and300

a weight vectorwr ∈Rd: r(s,a,s′) =φ(s,a,s′)>wr. During learning,wr̂ similarly expresses r̂ as301

r̂(s,a,s′)=φ(s,a,s′)>wr̂.302

Given a policy π, the successor features for (s,a) are the expectation of discounted reward features303

from that state-action pair when following π: ψπ
Q

(s,a)=Eπ[
∑∞
i=tγ

i−tφ(st,at,st+1)|st=s,at=a].304

Therefore,Qπr̂ (s,a)=ψπ
Q

(s,a)>wr̂. Additionally, state-based successor features can be calculated305

from theψπ
Q

above asψπ
V

(s)=
∑
a∈Aπ(a|s)ψπ

Q
(s,a), making V πr̂ (s)=ψπ

V
(s)>wr̂.306
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Algorithm 1 Linear reward learning with regret preference model (Pregret), using successor features
1: Input: a set of reward functions and a set of policies (where one set can be ∅)
2: Ψ←∅
3: for each reward function rSF or policy πSF in the input sets do
4: if rSF then πSF← estimate of optimal maximum-entropy policy for rSF
5: estimate ψπSF

Q
and ψπSF

V
(if not estimated already during step 4)

6: add ψπSF
Q

to Ψ
Q

7: add ψπSF
V

to Ψ
V

8: end for
9: repeat

10: optimizewr̂ by loss of Eqn. 1, calculating P̃regret(σ1�σ2|r̂) via Eqn. 6, using Ψ
Q

and Ψ
V

11: until stopping criteria are met
12: return wr̂

Given a set Ψ
Q

of state-action successor feature functions and a set Ψ
V

of state successor feature func-307

tions for various policies and given a reward function viawr̂,Qπ
∗

r̂ (s,a)≥maxψ
Q
∈Ψ

Q
[ψπ

Q
(s,a)>wr̂]308

andV π
∗

r̂ (s)≥maxψ
V
∈Ψ

V
[ψπ

V
(s)>wr̂] [24], so we use these two maximizations as approximations of309

Q∗r̂(s,a) and V ∗r̂ (s), respectively. In practice, to enable gradient-based optimization with current tools,310

the maximization in this expression is replaced with the softmax-weighted average, making the loss311

function linear. Focusing first on the approximation of V ∗r̂ (s), for eachψV ∈Ψ
V

, a softmax weight is312

calculated forψπ
V

(s): softmaxΨ
V

(ψπ
V

(s)>wr̂), [(ψπ
V

(s)>wr̂)
1/T ]/[(

∑
ψ′

V
∈Ψ

V
ψ′π

V
(s)>wr̂)

1/T ],313

where temperature T is a constant hyperparameter. The resulting approximation of V ∗r̂ (s) is there-314

fore defined as Ṽ ∗r̂ (s) ,
∑
ψ

V
∈Ψ

V
softmaxΨ

V
(ψπ

V
(s)>wr̂)[ψ

π
V

(s)>wr̂]. Similarly, to approxi-315

mate Q∗r̂(s,a), softmaxΨ
Q

(ψπ
Q

(s,a)>wr̂) , [(ψπ
Q

(s,a)>wr̂)
1/T ]/[(

∑
ψ′

Q
∈Ψψ

′π
Q

(s,a)>wr̂)
1/T ]316

and Q̃∗r̂(s,a),
∑
ψ

Q
∈Ψ

Q
softmaxΨ

Q
(ψπ

Q
(s,a)>wr̂)[ψ

π
Q

(s,a)>wr̂]. Consequently, from Eqns. 4317

and 5, the corresponding approximation P̃regret of the regret preference model is:318

P̃regret(σ1�σ2|r̂)= logistic

(∑|σ2|-1
t=0

[
Ṽ ∗r̂ (sσ2,t)−Q̃∗r̂(sσ2,t,aσ2,t)

]
−
∑|σ1|-1
t=0

[
Ṽ ∗r̂ (sσ1,t)−Q̃∗r̂(sσ1,t,aσ1,t)

])
(6)

The algorithm In Algorithm 1, lines 9–12 describe the supervised-learning optimization using319

the approximation P̃regret, and the prior lines create Ψ
Q

and Ψ
V

. Specifically, given a set of reward320

functions, a corresponding set of policies is created (line 4), where each policy is an estimate of the321

maximum entropy policy for a reward function. Standard policy improvement methods can be used to322

create each such policy. Alternatively, some or all of the set of policies can be given as input directly,323

not derived from input reward functions. For each such policy πSF , successor feature functions ΨπSF
Q

324

and ΨπSF
V

are estimated (line 5), which by default would be performed by a minor extension of a325

standard policy evaluation algorithm as detailed by Barreto et al. [24]. Note that the reward function326

that is ultimately learned is not restricted to be in the input set of reward functions, which is used only327

to create an approximation of regret.328

The details of our instantiation of Algorithm 1 for the delivery domain can be found in Appendix F.1,329

along with guidance for extending it to reward functions that might be non-linear.330

6.2 Results from synthetic preferences331

Before considering human preferences, we first ask how each preference model performs when it is332

correct. In other words, we investigate empirically how well the preference model could perform if333

humans perfectly adhered to it. Recall that the ground-truth reward function, r, is used to create these334

preferences but is inaccessible to the reward-learning algorithms.335

Figure 5: Performance comparison over 100 randomly
generated deterministic MDPs

For these evaluations, either a stochastic or336

noiseless preference model acts a preference337

generator to create a preference dataset, and338
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then the stochastic version of the same model339

is used for reward learning. For the noiseless340

case, the deterministic preference generator com-341

pares a segment pair’s Σσr values for PΣr
or342

their regret(σ|r) values for Pregret. Note that343

through reward scaling the preference generators344

approach determinism in the limit, so this noise-345

less analysis examines minimal-entropy versions346

of the two preference-generating models. (The opposite extreme, uniformly random preferences,347

would remove all information from preferences and therefore is not examined.) In the stochastic case,348

for each preference model, each segment pair is labeled by sampling from that preference generator’s349

output distribution (Eqs 2 or 5), using the unscaled ground-truth reward function.350

We created 100 deterministic MDPs that instantiate variants of our delivery domain (see Section 4.1).351

To create each MDP, we sampled from sets of possible widths, heights, and reward component values,352

and the resultant grid cells were randomly populated with a destination, objects, and road surface types353

(see Appendix F.2 for details). Each segment in the preference datasets for each MDP was generated354

by choosing a start state and three actions, all uniformly randomly. For a set number of preferences,355

each method had the same set of segment pairs in its preference dataset. Figure 5 shows the percentage356

of MDPs in which each preference model results in near-optimal performance. The regret preference357

model outperforms the partial return model at every dataset size, both with and without noise. By a358

Wilcoxon paired signed-rank test on normalized mean returns, p<0.05 for 86% of these comparisons359

and p<0.01 for 57% of them, as reported in Appendix F.2.360

Further analyses can be found in Appendix F.2, including with stochastic transitions, with different361

segment lengths, and while artificially lowering the discount factor (as is common in deep RL and362

recent work on deep reward learning from preferences).363

6.3 Results from human preferences364

Figure 6: Performance comparison over various
amounts of human preferences. Each partition has
the number of preferences shown or one less.

We randomly assign human preferences from our gath-365

ered dataset to different numbers of same-sized parti-366

tions, resulting in different training set sizes, and test367

each preference model on each partition. Figure 6368

shows the results. With smaller training sets (20–100369

partitions), the regret preference model results in near-370

optimal performance more often. With larger training371

sets (1–10 partitions), both preference models always372

reach near-optimal return, but the mean return from373

the regret preference model is higher for all of these374

partitions except for 3 partitions in the 10-partition375

test. Applying a Wilcoxon paired signed-rank test on normalized mean return to each group with 5 or376

more partitions, p<0.05 for all numbers of partitions except 100 and p<0.01 for 20 and 50 partitions.377

7 Conclusion378

Over numerous evaluations with human preferences, our proposed regret preference model (Pregret)379

shows improvements summarized below over the previous partial return preference model (PΣr ).380

When each preference model generates the preferences for its own infinite and exhaustive training set,381

we prove that Pregret identifies the set of optimal policies, whereas PΣr
is not guaranteed to do so382

without preference noise that reveals the proportions of rewards with respect to each other. With finite383

training data of synthetic preferences, Pregret also empirically results in learned policies that tend to384

outperform those resulting from PΣr
. This superior performance of Pregret is also seen with human385

preferences. In summary, our analyses suggest that regret preference models are more effective both386

descriptively with respect to human preferences and also normatively, as the model we want humans to387

follow if we had the choice.388
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Independent of Pregret, this paper also reveals that segments’ changes in state values provide informa-389

tion about human preferences that is not fully provided by partial return. More generally, we show that390

the choice of preference model impacts the performance of learned reward functions.391

This study motivates several new directions for research. Future work could address any of the392

limitations detailed in Appendix A.1. Specifically, future work could further test the general superiority393

of Pregret or apply it to deep learning settings. Additionally, prescriptive methods could be developed394

via the user interface or elsewhere to nudge humans to conform more to Pregret or to other normatively395

appealing preference models. Lastly, subsequent efforts could seek preference models that are even396

more effective with preferences from actual humans, now that this work has provided conclusive397

evidence that the choice of preference model is impactful.398
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] See487

Appendix A.2.488
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include all assumptions.493
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Appendix C.495
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human preferences on Mechanical Turk, and the anonymized human preferences data500
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preferences over pairs of trajectory segments.502
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(e) Did you discuss whether the data you are using/curating contains personally identifiable519

information or offensive content? [Yes] See Appendix D520
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applicable? [Yes] Section 4.1.1 includes a link to a video of a full experimental session523

(with an author acting as the subject).524
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(IRB) approvals, if applicable? [Yes] We discuss participant risks from our crowdsourced526

study and provide a link to the IRB approval in Appendix D.527

(c) Did you include the estimated hourly wage paid to participants and the total amount528

spent on participant compensation? [Yes] See Appendix D.529
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After Appendix A, the appendix is organized according to the major sections and subsections of the530

main content. We consider Appendix C to be its most important addition to the main content.531

A Limitations and ethics532

A.1 Limitations533

Some limitations of the regret preference model are discussed in the paragraph “Regret as a model534

for human preference” in Section 2
:::
2.2, including assumptions that a person giving preferences can535

distinguish between optimal and suboptimal segments, that they follow a Boltzmann distribution (i.e.,536

a Luce Shepard choice rule), and that they base their preferences on the desirability of decisions even537

when transition stochasticity results in segment pairs for which the worse decision has a better outcome.538

Our proposed algorithm (Section 6.1) has a few additional limitations. Generating candidate succes-539

sor features for the approximations Q̃∗r̂ and Ṽ ∗r̂ may be difficult in complex domains. Specifically,540

challenges include choosing the set of policies or reward functions for which to compute successor541

features (line 3 of Algorithm 1) and creating a reward feature vector φ for non-linear reward functions542

(discussed in Appendix F.1). Additionally, although learning with Pregret is more sample efficient543

in our experiments, it is computationally slower than learning with PΣr because of the additional544

need to compute successor features and the use of the softmax function to approximateQ∗r̂ and V ∗r̂ .545

Nonetheless, we may accept the tradeoff of an increase in computational time that reduces the number546

of human samples needed or that improves the reward function’s alignment with human stakeholders’547

interests. Lastly, the loss during optimization with Pregret was unstable, which we addressed by taking548

the minimum loss over all epochs during training. Therefore, for more complex reward feature vectors549

(φ) than our 6-element vector for the delivery task, extra care might be needed to avoid overfitting r̂, for550

example by withholding some preference data to serve as a test set.551

We also generally assume that the RL algorithm and reward learning algorithm use the same discount552

factor as in the MDP\r specification. One weakness of contemporary deep RL is that RL algorithms553

require artificially lower discount factors than the true discount factor of the task. The interaction of this554

discounting with preference models is considered in Appendix F.2. Our expectation though is that this555

weakness of deep RL algorithms is likely a temporary one, and so we focused our analysis on simple556

tasks in which we do not need to artificially lower the RL algorithm’s discount factor. However, further557

investigation of the interaction between preference models and discount factors would aid near-term558

application of Pregret to deep RL domains.559

This work also does not consider which segment pairs should be presented for labeling with preferences560

used for reward learning. However, other research has addressed this problem through active learning561

[14][9][25], and it may be possible to simply swap our Algorithm 1 into these active learning methods,562

combining the improved sample efficiency of Pregret with that of these active learning methods.563

Regarding the human side of the problem of reward learning from preferences, further research could564

provide several improvements. First, we are confident that humans can be influenced by their training565

and by the preference elicitation interface, which is a particularly rich direction for follow-up study.566

We also do not consider how to handle learning reward functions from multiple human stakeholders567

who have different preferences, a topic we revisit in Appendix A.2. Lastly, we expect humans to568

deviate from any simple model, including Pregret, and a fine-grained characterization of how humans569

generate preferences could produce preference models that further improve the alignment of the reward570

functions that are ultimately learned from human preferences.571

A.2 Ethical statement572

This work is meant to address ethical issues that arise when autonomous systems are deployed without573

properly aligning their objectives with those of human stakeholders. It is merely a step in that direction,574

and overly trusting in our methods—even though they improve on previous methods for alignment—575

could result in harm caused by poorly aligned autonomous systems.576
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When considering the objectives for such systems, a critical ethical question is which human stakehold-577

ers’ interests the objectives should be aligned with and how multiple stakeholders’ interests should578

be combined into a single objective for an autonomous system. We do not address these important579

questions, instead making the convenient-but-flawed assumption that many different humans’ prefer-580

ences can simply be combined. In particular, care should be taken that vulnerable and marginalized581

communities are adequately represented in any technique or deployment to learn a reward function from582

human preferences in high-impact settings. The stakes are high: for example, a reward function that is583

only aligned with a corporation’s financial interests could lead to exploitation of such communities or584

more broadly to exploitation of or harm to users.585

In this specific work, our filter for which Mechanical Turk Workers could join our study is described586

in Appendix D. We did not gather demographic information and therefore we cannot assess how587

representative our subjects are of any specific population.588

A.3
:::
On

:::
the

::::::::
challenge

::
of

:::::
using

::::::
regret

:::::::::
preference

::::::
models

:::
in

:::::::
practice589

:::
We

::::
have

::::::::
provided

::::::::::::::::::::
evidence—theoretically

::::
and

::::
with

:::::::::::::::::::
experimentation—that

:::
the

:::::
regret

:::::::::
preference590

:::::
model

::
is

:::::
more

:::::::
effective

:::::
when

::::::::
precisely

:::::::::
measured

::
or

:::::::::
effectively

::::::::::::
approximated.

:::::
The

::::::::
challenge

::
of591

::::::::
efficiently

:::::::
creating

::::
such

:::::::::::::
approximations

::::::
presents

::::
one

::::
clear

:::
path

:::
for

:::::
future

:::::::
research

:::
and

::::
does

:::
not

::::::
justify592

::::::
staying

:::::
within

:::
the

::::
local

:::::::::
maximum

::
of

:::
the

:::::
partial

::::::
return

::::::::
preference

::::::
model.

:
593

::::
Like

:::
the

:::::
regret

::::::::
preference

::::::
model,

::::::
inverse

::::::::::::
reinforcement

:::::::
learning

:::::
(IRL)

::::
was

:::::::
founded

::
on

::
an

::::::::
algorithm594

:::
that

:::::::
requires

::::::
solving

:::
an

:::::
MDP

::
in

::
an

:::::
inner

::::
loop

::
of

::::::::
learning

:
a
::::::
reward

::::::::
function.

::::
For

:::::::
example,

:::
see

:::
the595

::::::
seminal

:::::
work

:::
on

:::
IRL

:::
by

:::
Ng

:::
and

:::::::
Russell

::::
[19].

:::::
This

::::::::
challenge

::::
has

:::
not

:::::::
stopped

:::
IRL

:::::
from

:::::
being

::
an596

::::::::
impactful

:::::::
problem,

::::
and

::::::::
handling

:::
this

:::::::::
inner-loop

::::::::::::
computational

:::::::
demand

::
is
:::
the

:::::
focus

:::
of

:::::
much

::::
IRL597

:::::::
research.

:
598

:::::
Future

:::::
work

:::
on

:::
the

:::::::::
application

::
of

:::
the

::::::
regret

:::::::::
preference

:::::
model

::::
can

::::
face

:::
the

::::::::
challenge

::
of

::::::
scaling

::
to599

::::
more

:::::::
complex

:::::::::
problems.

:::::
Given

::::
that

:::
IRL

::::
has

::::
made

::::::::::
tremendous

:::::::
progress

::
in
::::
this

:::::::
direction

::::
and

:::::
Brown600

:
et
:::
al.

::::::::
[26] have

:::::
scaled

::
an

:::::::::
algorithm

::::
with

::::::
similar

:::::
needs

::
to

::::
those

::
of

:::::::::
Algorithm

::
1,

:::
we

:::
are

::::::::
optimistic

:::
that601

::
the

::::::::
methods

::
to

:::::
scale

:::
can

::
be

::::::::::
developed,

:::::
likely

::::
with

::::
light

:::::::::
adaptation

::::
from

:::::::
existing

::::::::
methods

::::
(e.g.,

::
in602

:::::
Brown

::
et
:::
al.

::
or

::
in

:::::::::
Appendix

:::
F.1,

:::::
under

::::::::::::
“Instantiating

::::::::
Algorithm

::
1
:::
for

::::::
reward

::::::::
functions

:::
that

::::
may

::
be603

::::::::::
non-linear”).

:
604

B Preference models for learning reward functions605

For the reader’s convenience, below we derive the logistic expression of a function that is based on two606

subtracted values from the Boltzmann distribution (i.e., softmax) representation that is more common607

in past work. These values are specifically the same function f applied to each segment, which is a608

general expression of both of the preference models considered here.609

P (σ1�σ2)=
exp [f(σ1)]

exp [f(σ1)]+exp [f(σ2)]

=
1

1+ exp [f(σ2)]
exp [f(σ1)]

=
1

1+exp [f(σ2)−f(σ1)]

= logistic(f(σ1)−f(σ2)).

(7)

B.1 Logistic-linear preference model610

In Appendix E.2, we also consider preference models that arise by making the noiseless preference611

model a linear function over the 3 components of Pregretd . Building upon Eqn. 7 above, we set612

f(σ) = ~w · 〈V ∗r̃ (sσ,0),Σσ ,V
∗
r̃ (sσ,|σ|)〉. This preference model, Plog−lin, can be expressed after613

algebraic manipulation as614
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Plog−lin(σ1�σ2|r̃)=615

logistic([~w·〈V ∗r̃ (sσ1,0)−V ∗r̃ (sσ2,0),Σσ1−Σσ2 , V
∗
r̃ (sσ1,|σ1|)−V

∗
r̃ (sσ2,|σ2|)〉). (8)

This logistic-linear preference model is a generalization of PΣr
and also of Pregretd , the regret616

preference model for deterministic transitions. Specifically, if ~w = 〈0,1,0〉, then Plog−lin(·|r̃) =617

PΣr
(·|r̃). And if ~w=〈−1,1,1〉, then Plog−lin(·|r̃)=Pregretd(·|r̃).618

B.2 Adding a constant probability of uniformly distributed preference619

Some of our analysis in the appendix—but not in the body of this paper—includes
::::::::
Appendix

:::
E.2

:::
also620

::::::::
considers adaptations of PΣr

, Pregretd , and Plog−lin that add a constant probability of uniformly621

distributed preference, as was done by Christiano et al. [9].
:::
The

::::
body

:::
of

::
the

:::::
paper

::::
does

:::
not

::::::::
consider622

::::
these

::::::::::
adaptations.

:
623

We create this adaptation, which we will call P ′ here, from another preference model P by P ′(σ1�624

σ2) = [(1− logistic(c))∗P (σ1�σ2)]+[logistic(c)/2], where c is a constant that in practice we fit625

to data and logistic(c) is the constant probability of uniformly random preference. The logistic(c)626

allows any constant c to result in a the constant probability of uniformly distributed preference to be627

in (0,1). The term logistic(c)/2 gives half of the constant probability to σ1 and half to σ2. The term628

[1−logistic(c)] scales the P (σ1�σ2) probability—which could be PΣr
, Pregretd , or Plog−lin—to a629

proportion of the remaining probability. The only difference in this adaptation and Christiano et al.’s630

0.1 probability of uniformly distributed preference is that we learn the value of c from training data (in631

a k-fold cross-validation setting), as we see in Appendix E, whereas Christiano et al. do not share how632

0.1 was chosen.633

B.3
::::::::
Expected

::::::
return

:::::::::
preference

::::::
model634

::
In

::::::::
Appendix

:::
F.3,

:::
we

:::
test

::::::
reward

:::::::
learning

::
on

:
a
::::
third

:::::::::
preference

::::::
model.

::::
This

::::::::
expected

:::::
return

::::::::
preference635

:::::
model

::
is

::::::
derived

:::
by

::::::
making

::::::::::::::::::::::::
f(σ)=−(Σσ r̃+V ∗r̃ (sσ,|σ|)),::

in
::::::::
Equation

::
7.

::::
This

:::::::
segment

::::::
statistic

:::::
f(σ)636

:::
can

::
be

:::::::::
considered

:::
be

::
in

:::::::
between

:::::::::::
deterministic

:::::
regret

:::::::::
(Equation

::
3)

:::
and

::::::
partial

::::::
return,

:::::::
differing

::::
from637

::::
each

::
by

:::
one

:::::
term.638

:::
We

::::::
include

:::
this

:::::::::
preference

::::::
model

:::::::
because

::::::
judging

:::
by

:::::::
expected

:::::
return

::
is
:::::::::
intuitively

::::::::
appealing

::
in

:::
that639

:
it
::::::::
considers

:::
the

:::::
partial

::::::
return

:::::
along

::
the

::::::::
segment

:::
and

:::
the

:::
end

::::
state

:::::
value

::
of

:::
the

:::::::
segment,

::::
and

::
we

:::::
found640

:
it
::::::::
plausible

:::
that

::::::
human

:::::::::
preference

::::::::
providers

:::::
might

::::
tend

::
to

::::::
ignore

::::
start

::::
state

:::::
value,

::
as

::::
this

::::::::
preference641

:::::
model

:::::
does.

:::::::::
However,

::::::
reward

:::::::
learning

::::
with

:::
the

:::::
regret

::::::
model

::::::::::
outperforms

:::
or

:::::::
matches

:::
that

:::
by

:::
this642

:::::::
expected

:::::
return

:::::::::
preference

::::::
model,

::
as

:::
we

::::
show

::
in

:::::::::
Appendix

:::
F.3.643

B.4 Policy learning from regret-based preferences without learning a reward function644

When preferences are based upon regret, an entirely different method of policy learning appears645

reasonable. This method is motivated by regret itself differentiating which of two segments is more646

desirable, including differentiating an optimal segment from a suboptimal segment.647

When learning a reward function is not desired, one can instead learn a segment scoring function that648

estimates the regret of a segment directly. Such a regret estimator can be learned by following the same649

algorithm for reward learning with the partial return preference model that is defined in Section 2
::
2.2650

and used throughout this paper, with two changes. First, each preference sample’s segment ordering651

needs to be reversed before training. Second, the learned “reward function” is instead interpreted as a652

regret function, outputting a regret estimate for any segment. (Without reversing the order, the learned653

function would be negated regret.) If we assume the regret estimator perfectly models regret, any action654

that minimizes expected regret is an optimal action. Therefore, the policy is defined by choosing such a655

regret-minimizing action.656

Though theoretical analysis of this approach is beyond the scope of this paper, we suspect that it would657

be possible to show that the above algorithm will result in an optimal policy for noiseless or stochastic658
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preferences, given the infinite and exhaustive dataset described in Definition 3.1. In Appendix F.2.3,659

we provide limited empirical evidence supporting this approach.660

Even when learning a reward function, this approach could be used to help create reward features for661

reward functions that are non-linear or have unknown reward features (as discussed in Appendix F.1)662

and to identify a policy for which to learn successor features.663

B.5
:::::::::::
Relationship

::
to

::::::
inverse

::::::::::::
reinforcement

::::::::
learning664

:::
The

::::::
inputs

::
to

::::::
inverse

::::::::::::
reinforcement

::::::::
learning

:::::
(IRL)

::::
and

:::::::
learning

::::::
reward

::::::::
functions

:::::
from

:::::::
pairwise665

:::::::::
preferences

:::
are

::::::::
different:

::::
IRL

::::::
requires

:::::::::::::
demonstrations,

:::
not

::::::::::
preferences

::::
over

:::::::
segment

:::::
pairs.

::::::::
However,666

::::::
because

::
a

:
a

::::::::::
regret-based

:::::::::
preference

:::::
model

::::::
always

:::::
prefers

:::::::
optimal

::::::::
segments

:::
over

::::::::::
suboptimal

::::::::
segments,667

:
at
:::::

least
:::
one

::::::::::
connection

::::
can

::
be

::::::
made.

:::
If

:::
one

::::::::
assumes

:::
that

::
a
::::::::::::
demonstrated

::::::::
trajectory

:::::::
segment

::
is668

:::::::::
noiselessly

::::::::::
optimal—as

::
in

:::
the

:::::::::::
foundational

::::
IRL

:::::
paper

::
on

::::::::::::
apprenticeship

:::::::
learning

::::::::::
[27])—then

::::
such669

:
a
::::::::::::
demonstration

::
is

::::::::
equivalent

::
to

:::::::::
expressing

:::::::::
preference

::
or

::::::::::
indifference

:::
for

:::
the

:::::::::::
demonstrated

:::::::
segment670

:::
over

:::
all

:::::
other

::::::::
segments

:::
(or,

:::::::::::
equivalently,

::::
that

::
no

:::::
other

:::::::
segment

::
is

::::::::
preferred

::::
over

:::
the

:::::::::::
demonstrated671

::::::::
segment).

:::::::::
However,

::::
IRL

:::
has

:::
its

::::
own

:::::::::::
identifiability

::::::
issues

::
in

::::::::
noiseless

:::::::
settings

:::::
(e.g.,

:::
see

::::
Kim

::
et672

::
al.

::::
[28])

:::::
that,

::::::
viewed

::::
from

:::
the

::::
lens

::
of

:::::::::::
preferences,

::::
come

:::
in

:::
part

:::::
from

:::
the

::::::::::::
“indifference”

:::
part

:::
of

::
the673

:::::
above

::::::::
statement:

:::::
since

:::::
there

:::
can

:::
be

:::::::
multiple

:::::::
optimal

::::::
actions

::::
from

::
a
:::::
single

:::::
state,

::
it

:
is
::::

not
::::::::
generally674

::::::
correct

::
to

::::::
assume

::::
that

:
a
::::::::::::
demonstration

:::
of

:::
one

:::::
such

:::::
action

::::::
shows

:
a
:::::::::
preference

::::
over

:::
all

::::::
others,

:::
and675

:::::::
therefore

::
it

::::::
remains

:::::::
unclear

:
in
::::
IRL

::::
what

:::::
other

::::::
actions

::
are

:::::::
optimal.

:::::
Note

:::
that

::::
since

::::::::::::::::
partial-return-based676

:::::::::
preferences

:::
can

::::::
prefer

:::::::::
suboptimal

::::::::
segments

::::
over

:::::::
optimal

::::::::
segments,

:::
the

:::::::
common

::::::::::
assumption

::
in

::::
IRL677

:::
that

:::::::::::::
demonstrations

::
are

:::::::
optimal

::::
does

:::
not

::::
map

::
as

::::::
cleanly

::
to

::::::::::::::::
partial-return-based

::::::::::
preferences.

:
678

:::
The

:::::
regret

:::::::::
preference

:::::
model

::::
also

::::::
relates

::
to

:::
IRL

::
in

::::
that

:::
the

::::
most

::::
basic

:::::::
version

::
of

:::
IRL

:::::::
requires

::::::
solving679

::
an

:::::
MDP

:
in
:::
the

:::::
inner

::::
loop,

::
as

:::::::
appears

::::::::
necessary

:::
for

:
a
::::::
perfect

:::::::
measure

::
of

:::::
regret

::::
while

:::::::
learning

::
a

:::::
reward680

:::::::
function

:::::::::::::::
[29, Algorithm 1].681

C Theoretical comparisons682

For convenience, Theorems 3.1 and 3.2 from Section 3 are reprinted below. Consider reviewing the683

definitions of optimal segments and suboptimal segments in Section 2.1 and Definition 3.1 before684

proceeding.685

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(σ1|r̃) <686

regret(σ2|r̃), Pregret(σ1�σ2|r̃)> 0.5, and if regret(σ1|r̃) = regret(σ2|r̃), Pregret(σ1�σ2|r̃) =687

0.5. Pregret is identifiable.688

Proof Make all assumptions in Definition 3.1. Since r̂ minimizes cross-entropy loss, Pregret(·|r)=689

Pregret(·|r̂) for all possible segment pairs. Also, by Equation 4 regret(σ|r̃) = 0 if and only if σ is690

optimal with respect to r̃. And regret(σ|r̃)>0 if and only if σ is suboptimal with r̃.691

With respect to some r̃, let σ∗ be any optimal segment and σ¬∗ be any suboptimal segment.692

regret(σ∗|r̃) < regret(σ¬∗|r̃). Pregret(σ
∗ � σ¬∗|r̃) > 0.5, which we refer to as be-693

ing preferred by Pregret(·|r̃). Pregret(·|r̃) induces a total ordering over segments, defined by694

regret(σ1|r̃) < regret(σ2|r̃)⇐⇒Pregret(σ1 � σ2|r̃) > 0.5⇐⇒σ1 > σ2 and regret(σ1|r̃) =695

regret(σ2|r̃)⇐⇒Pregret(σ1 � σ2|r̃) = 0.5⇐⇒σ1 = σ2. Because regret has a minimum (0), there696

must be a set of segments which are ranked highest under this ordering, denoted Σ∗r̃ . These segments in697

Σ∗r̃ are exactly those that achieve the minimum regret (0) and so are optimal with respect to r̃.698

Since the dataset (D�) contains all segments by assumption, Σ∗r̃ contains all optimal segments with699

respect to r̃. If a state-action pair (s,a) is in an optimal segment, then by the definition of an optimal700

segment Q∗r̃(s,a) = V ∗r̃ (s). The set of optimal policies Π∗r̃ for r̃ is all π such that, for all (s,a), if701

π(s,a)>0, thenQ∗r̃(s,a)=V ∗r̃ (s). In short, Σ∗r̃ determines the set of every state-action pair (s,a) such702

thatQ∗r̃(s,a)=V ∗r̃ (s), and that set determines Π∗r̃ . Therefore Σ∗r̃ determines Π∗r̃ , and we will refer to703

this determination as the function g.704
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We now focus on the reward function used to generate preferences, r, and on the learned reward705

function, r̂. Since Pregret(·|r)=Pregret(·|r̂), r and r̂ induce the same total ordering over segments,706

and so Σ∗r=Σ∗r̂ . Therefore g(Σ∗r)=g(Σ∗r̂). Since g(Σ∗r)=Π∗r and g(Σ∗r̂)=Π∗r̂ , Π∗r=Π∗r̂ .707

Theorem 3.2 (Noiseless PΣr is not identifiable). Let PΣr be any function such that if Σσ1 r̃>Σσ2 r̃,708

PΣr (σ1�σ2|r̃)=1, and if Σσ1 r̃=Σσ2 r̃, PΣr (σ1�σ2|r̃)=0.5. There exists an MDP in which PΣr is709

not identifiable.710

Below we present two proofs of Theorem 3.2. Each are proofs by counterexample. Though only one711

proof is needed, we present two because each counterexample demonstrates a qualitatively different712

category of how the partial return preference model can fail to identify the set of optimal policies.713

Proof based on stochastic transitions: Assume the following class of MDPs, illustrated in Figure 7.714

The agent always begins at start state s0. From s0, action asafe always transitions to ssafe, getting a715

reward of 0. From s0, action arisk transitions to swin with probability 0.5, getting a reward of rwin,716

and transitions to slose with with probability 0.5, getting a reward of−10. In all MDPs in this class,717

rwin>0. All 3 possible resulting states (ssafe, swin, and slose) are absorbing states, from which all718

further reward is 0.719
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Figure 7: A class of MDPs in which, if
rwin>0, the partial return preference model
fails the test for identifiability.

If rwin ≥ 10, arisk is optimal in s0. If rwin ≤ 10, asafe720

is optimal in s0. Three single-transition segments exist:721

(s0, asafe, ssafe), (s0, arisk, swin), and (s0, arisk, slose).722

By noiseless PΣr
, (s0,arisk,swin) � (s0,asafe,ssafe) �723

(s0,arisk,slose), regardless of the value of rwin. In other724

words, PΣr
is insensitive the what the optimal action is725

from s0 in this class of MDPs.726

Now assume MDP M , where rwin = 11. In linear form,727

the weight vector for the reward function rM can be ex-728

pressed as wrM1
=<−10,0,11>. Let r̂M have wr̂M =<729

−10,0,9>. Both rM and r̂M have the same preferences as730

above, meaning that r̂M minimizes loss on an infinite pref-731

erences dataset D� created by PΣr
, yet it has a different732

optimal policy. Therefore, noiseless PΣr
is not identifi-733

able.734
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Figure 8: An MDP (M1) where Π∗r = Π∗r̂ is not guaranteed
for the partial return preference model, failing the test for iden-
tifiability with segments of length 1. The ground truth reward
function is shown to the left, and an MDP M ′1 with an alterna-
tive reward function is shown to the right. Under partial return,
both create the same set of preferences despite having different
optimal actions from s0.

In contrast, note that by noiseless Pregret,735

the preferences are different than those736

above for PΣr
. If rwin > 10, then737

(s0, arisk, swin) ∼ (s0, arisk, slose) �738

(s0, asafe, ssafe), If rwin < 10, then739

(s0, asafe, ssafe) � (s0, arisk, swin) ∼740

(s0,arisk,slose). Intuitively, this difference741

comes from Pregret always giving higher742

preference probability to optimal actions,743

even if they result in bad outcomes. Another744

perspective can be found from the utility the-745

ory of Von Neumann and Morgenstern [30].746

Specifically,PΣr
gives preferences over out-747

comes, which in the terms of utility theory748

can only learn an ordinal utility function. Or-749

dinal utility functions are merely consistent750

with the preference ordering over outcomes and do not generally capture preferences over actions when751

their outcomes are stochastically determined. The deterministic regret preference model,Pregretd , also752

has this weakness in tasks with stochastic transitions. On the other hand, Pregret forms preferences753
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over so-called lotteries—the distribution over possible outcomes—and can therefore learn a cardinal754

utility function, which can explain preferences over risky action.755

Since the proof above is focused on stochastic settings, we show the lack of identifiability for noiseless756

PΣr can be found for quite different reasons in a deterministic MDP.757

Proof based on segments of fixed length: Consider the MDPM1 in Figure 8 and assume preferences758

are given over segments with length 1 (i.e., containing one transition). The optimal policy forM1 is to759

move rightward from s0, whereas optimal behavior forM ′1 is to move leftward from s0. In bothM1760

andM ′1, preferences by PΣr
are as follows, omitting the action for brevity: (sa,s0)∼ (sa,sterm)∼761

(s0,sa)� (s0,sterm). As in the previous proof, PΣr is insensitive to certain changes in the reward762

function that alter the set of optimal policies. Whenever this characteristic is found, Π∗r = Π∗r̂ is not763

guaranteed, failing the test for identifiability. Here specifically, the reward function for M ′1 would764

achieve 0 cross-entropy loss on an exhaustive preference dataset created in M1 with the noiseless765

preferences from the partial return preference model, despite the optimal policy inM ′1 conflicting with766

the ground truth optimal policy.767
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Figure 9: An MDP (M2) where Π∗r = Π∗r̂ is not guaranteed
for the partial return preference model, failing the test for iden-
tifiability with segments of length 2. The ground truth reward
function is shown in the top diagram, and an MDP M ′2 with
an alternative reward function is shown in the bottom diagram.
Under partial return, both create the same set of preferences
despite having different optimal actions from s0.

The logic of this proof can be applied for tra-768

jectories of length 2 in the MDPM2 shown769

in Figure 9. Together, M1 and M2 sug-770

gest a rule for constructing an MDP where771

Π∗r =Π∗r̂ is not guaranteed for PΣr , failing772

the identifiability test for any fixed segment773

length, |σ|: set the number of states to the774

right of s0 to |σ| (not counting sterm), set775

the reward rfail for (s0, sterm) such that776

rfail<0, and set the reward for each other777

transition to c+rfail/(|σ|+1), where c>0.778

Given an MDP constructed this way, an al-779

ternative reward function that results in the780

same preferences underPΣr
yet has a differ-781

ent optimal action from s0 can then be con-782

structed by changing all reward other than783

rfail to c+ rfail/(|σ|+ 1), where c now784

is constrained to c < 0 and c×|σ|< rfail.785

Note that the set of preferences for each of786

these MDPs is the same even when includ-787

ing segments that reach terminal state before788

|σ| transitions (which can still be considered789

to be of length |σ| if the terminal state is an790

absorbing state from which reward is 0).791

:::
The

:::::::::
relevance

::
of

::::::::
noiseless

:::::::::
preference

::::::::::
generators

::::::
Because

:::
we

:::::
model

::::::::::
preferences

::
as

:::::::::
stochastic

:
in792

::::::
Section

::
2,

::
at

:::
this

:::::
point

:::
one

:::::
might

:::::::::
reasonably

:::::::
wonder

::::
how

:::
the

:::::
above

:::::::::
theoretical

:::::::
analysis

::
of

:::::::
noiseless793

::::::::
preference

:::::::::
generators

:::
are

:::::::
relevant.

:::
We

:::::
offer

:::
four

:::::::::
arguments

::::::
below.794

::::
First,

::::::
having

:::::::::
structured

::::
noise

::::::::
provides

::::::::::
information

:::
that

::::
can

::::
help

::::
both

:::::::::
preference

:::::::
models,

:::
but

::::
these795

:::::
proofs

:::::
show

:::
that

:::::
there

::
are

:::::
cases

:::::
where

:::
the

:::::
signal

::::::
behind

:::
the

:::::::::::
noise—either

:::::
regret

::
or

::::::
partial

::::::::
return—is796

:::
not

:::::::
sufficient

::
in

:::
the

::::::
partial

:::::
return

::::
case

::
to

::::::
identify

:::
an

::::::::
equivalent

::::::
reward

::::::::
function.

:::
So,

::
in

:
a
:::::
rough

::::::
sense,797

:::::
regret

::::
more

:::::::::
effectively

::::
uses

::::
both

:::
the

::::::
signal

:::
and

:::
the

::::::
noise,

:::::
which

:::::
might

:::::::
explain

::
its

:::::::
superior

::::::
sample798

::::::::
efficiency

::
in

:::
our

::::::::::
experiments

::::::
across

::::
both

:::::
human

::::::
labels

:::
and

::::::::
synthetic

:::::
labels.

:::::::::
Relatedly,

:::
the

:::::::
noiseless799

:::::
setting

::::
can

:::
help

:::
us

:::::::::
understand

::::
each

:::::::::
preference

::::::
model’s

::::::
sample

:::::::::
efficiency

::
in

:
a
::::::::
low-noise

::::::
setting.

:
800

::::::
Second,

::::::::
noiseless

::::::::::
preferences

::::
are

::::
also

:::::::
feasible,

:::::
even

::
if

::::
they

:::
are

::::
rare.

::::::::::
Therefore,

::::::::::::
understanding801

::::
what

:::
can

:::
be

::::::
learned

:::::
from

::::
them

::
is
:::::::::::

worthwhile.
::::::::
Theorem

:::
3.2

::::::
shows

:::
that

:::::
there

:::
are

::::::
MDPs

::
in

:::::
which802

::::
there

::
is

::
no

::::
class

::
of

:::::::::
preference

::::::::::::::::
models—stochastic

::
or

::::::::::::::::
deterministic—that

::::
can

::::::
identify

:::
an

::::::::
equivalent803
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:::::
reward

::::::::
function

::::
from

::::::::::::::::
partial-return-based

::::::::::
preferences

:
if
:::
the

:::::::::
preference

::::::::
generator

:::::::::
noiselessly

::::::
prefers804

::::::::
according

::
to

::::::
partial

:::::
return.

:::::::::::
Specifically,

:::
we

:::::
show

:::
that

:::
the

::::::::
mapping

::::
from

:::
two

::::::
reward

::::::::
functions

::::
with805

:::::::
different

:::
sets

:::
of

::::::
optimal

:::::::
policies

::
to

:::::::::::
partial-return

:::::
based

::::::::::
preferences

::
is

:
a
:::::::::::::::::::
many-to-one-mapping,

:::
and806

:::::::
therefore

:::
the

::::::::::
information

::::::
simply

::::
does

:::
not

::::
exist

::
to

:::::
invert

::::
that

:::::::
mapping

:::
and

:::::::
identify

:
a
::::::
reward

:::::::
function807

::::
with

:::
the

::::
same

:::
set

:::
of

::::::
optimal

::::::::
policies.

:::
In

:::::::
contrast,

::::::::
Theorem

:::
3.1

::::::
shows

:::
that

::::::::::
preferences

::::::::
generated808

:::::::::
noiselessly

::::
(and

::
in

::::::
certain

::::::::
stochastic

:::::::
settings)

::
by

:::::
regret

:::
do

:::
not

::::
have

:::
this

:::::
issue.

:
809

:::::
Third,

::::::
noise

::
is

:::::
often

:::::::::
motivated

:::
as

:::::::::
modeling

:::::::
human

:::::
error.

:::::::::
Having

:::
an

:::::::::
algorithm

::::
rely

:::
on810

::::::::::::::
noise—structured

::
in

:
a
::::
very

:::::::
specific,

::::::::::::::::
Boltzmann-rational

:::::::
way—is

:::
an

:::::::::
undesirable

::::::
crutch.

:
811

:::::
Lastly,

:::::
there

:
is
::::::::
precedent

:::
for

::::::::::
considering

:::::::
noiseless

::::::
human

::::
input

:::
for

::::::
theory

::
or

:::::::::
derivations.

:::
For

::::::::
instance,812

::
the

:::::::::::
foundational

:::
IRL

:::::::
research

:::
by

::::::
Abbeel

:::
and

:::
Ng

::
on

::::::::::::
apprenticeship

:::::::
learning

::::::::
[27] treats

::::::::::::
demonstrations813

::
as

:::::::::
noiselessly

:::::::
optimal.

::::::
Recent

::::
work

:::
by

:::
Kim

::
et

::
al.

:::::::::::
[28] focuses

::
on

::::::
reward

:::::::::::
identifiability

::::
with

::::::::
noiseless,814

::::::
optimal

:::::::::::::
demonstrations.

:
815

D Additional information for creating a human-labeled preference dataset816

D.1 The user interface and study overview817

Here we share miscellaneous details about the user interface from which we collected human subjects’818

preferences. This description builds on Section 4.2.819

In selecting preferences, subjects had four options. They could prefer either trajectory (left or right), or820

they could express their preference to be the same or indistinguishable. To provide these preferences,821

subjects could either click on each of the buttons labeled "LEFT", "RIGHT", "SAME", or "CAN’T822

TELL" (shown in Figure 3) or by using the arrow keys to select amongst these choices.823

For the interface, all icons used to visualize the task were obtained from icons8.com under their Paid824

Universal Multimedia Licensing Agreement.825

We paid all subjects $5 per experiment (i.e., for each a Mechanical Turk HIT), which was chosen826

using the median time subjects took during a pilot study and then calculating the payment to result in827

$15 USD per hour. This hourly rate of $15 was chosen because it is commonly recommended as an828

improved US federal minimum wage. The human subject experiments cost $2,145 USD in total.829

The NeurIPS submission checklist triggered a conversation among the authors, since the
::
An830

::::::::::
experimental

:::::
error

:::::::
resulted

::
in

:::
the

:
IRB-approved consent form was not

:::
not

:::::
being presented to hu-831

man subjects after Mechanical Turk Workers accepted our study. It is our understanding that due to the832

nature of the study, which may be considered low-risk data labeling, explicit consent for this use was833

not needed or is implicit by the nature of the study being accepted on the Mechanical Turk interface.834

We are confirming with the IRB and will include a statement to this effect in the next version.
::
We835

:::::::
reported

:::
this

::::
error

::
to

:::
our

::::
IRB

:::
and

:::::::
received

::::
their

::::::::
approval

::
to

:::
use

:::
the

::::
data.836

A copy of our IRB letter of approval can be read here. Link inactivated during review to maintain this837

submission’s anonymity.838

D.2 Filtering subject data839

Before someone could join our study via Amazon Mechancial Turk, they had to meet the following840

criteria. They had to be located in the United States, have an approval rating of at least 99%, and have841

completed at least 100 other MTurk HITs. We selected these criteria to improve the probability of842

collecting data from subjects who would attentively engage with our study and who would understand843

our training protocol.844

We assessed each subject’s understanding of the delivery domain and filtered out those who did not845

comprehend the task, as described below. Specifically, subjects completed a task-comprehension846

survey, through which we assigned them a task-comprehension score. The questions and answer847

choices are shown in Table 2. Each fully correct answer was worth 1 point and each partially correct848

answer was worth 0.5 points. Task-comprehension scores were bounded between 0 and 7. We removed849
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Table 2: The task comprehension survey, designed to test participant’s comprehension of the domain for the
purpose of filtering data. Each full credit answer earned 1 point; each partial credit answer earned 0.5 points. We
discarded the data of participants who scored less than 4.5 points overall.

Question Full credit answer Partial credit answer Other answer choices
What is the goal of
this world? (Check
all that apply.)

• To maximize profit • To get to a specific location.

• To maximize profit

Partial credit was given if both
answers were selected.

• To drive as far as possible to explore
the world.

• To collect as many coins as possible.

• To collect as many sheep as possible.

• To drive sheep to a specific location.

What happens when
you run into a
house? (Check all
that apply.)

• You pay a gas penalty.

• You can’t run into a house;
the world doesn’t let you
move into it.

Full credit was given if both
answers were selected.

• You pay a gas penalty.

• You can’t run into a house;
the world doesn’t let you
move into it.

Partial credit was given if only
one answer was selected.

• The episode ends.

• You get stuck.

• To collect as many sheep as possible.

What happens when
you run into a sheep?
(Check all that ap-
ply.)

• The episode ends.

• You are penalized for run-
ning into a sheep.

Full credit was given if both
answers were selected.

• The episode ends.

• You are penalized for run-
ning into a sheep.

Partial credit was given if only
one answer was selected.

• You are rewarded for collecting a
sheep.

What happens when
you run into a road-
block? (Check all
that apply.)

• You pay a penalty. • The episode ends.

• You get stuck.

• You can’t run into a roadblock; the
world doesn’t let you move into it.

Is running into a
roadblock ever a
good choice in any
town?

• Yes, in certain circum-
stances.

• No.

What happens when
you go into the brick
area? (Check all that
apply.)

• You pay extra for gas. • The episode ends.

• You get stuck in the brick area.

• You can’t go into the brick area; the
world doesn’t let you move into it.

Is entering the brick
area ever a good
choice?

• Yes, in certain circum-
stances

• No

the data from subjects who scored below a threshold of 4.5. The threshold of 4.5 was chosen based on850

visual analysis of a histogram of scores, attempting to balance high standards for comprehension with851

retaining sufficient data for analysis.852

In addition to filtering based off the task comprehension survey, we also removed a subject’s data if853

they ever preferred colliding the vehicle into a sheep over not doing so. Since such collisions are highly854

undesirable in this task, we interpreted this preference as evidence of either poor task understanding or855

inattentiveness.856

In total, we collected data from 143 subjects. 58 of these subjects were removed based on their857

responses to the survey, and another 35 were removed for making preference errors. After filtering by858

both the comprehension survey and subject error, we used the data from 50 subjects. This included859

1812 preferences over 1245 unique segment pairs.860

Regarding potential risks to subjects, this data collection had limited or no risk. No offensive content was861

shown to subjects while they completed the HIT. Mechanical Turk collected Worker IDs, which were862

used only to link preference data with the results from the task-comprehension survey for filtering data863

(see Appendix D.2) and then were deleted from our data. No other potentially personally identifiable864

information was collected.865
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D.3 The two stages of data collection866

We collected the human preference dataset in two stages, as mentioned in Section 4.2. Here we provide867

more detail on each stage. These stages differed largely by their goals for data collection and, following868

those goals, how we chose which segment pairs were presented to subjects for their preference.869

Coordinates from which segment pairs were sampled from during the first stage of data collection. The870

x-axis is state value differences between the two segments and the y-axis is partial return differences871

between the two segments. The areas of the circles are proportional to the number of samples at that872

point, and the proportionality is consistent across this plot and the 3 subplots of Figure 11.873

First stage The first stage of data collection involved choosing segment pairs to present to the874

subjects. Figure 10 illustrates the coordinates that segment pairs were sampled from
::
in

::
the

::::
first

::::
stage875

::
of

::::
data

::::::::
collection, varying by state value differences and by differences in partial returns over the876

segments. We sought a range of points that would allow a characterization of human preferences that877

is well distributed across different parts of the plot. To better differentiate the consequences of each878

preference model, we intentionally chose a large number of points in the gray area of Figure 4, where879

the regret and partial return preference models would disagree (i.e., each giving a different segment880

a preference probability greater than 0.5). The segments pairs at these points presented to subjects881

included882

Figure 10:
:::::::::
Coordinates

::::
from

::::
which

:::::::
segment

::::
pairs

::::
were

::::::
sampled

:::
from

::::::
during

:::
the

:::
first

:::::
stage

::
of

:::
data

::::::::
collection.

:::::
The

::::::
x-axis

::
is
::::

state
::::
value

::::::::
differences

:::::::
between

:::
the

:::
two

:::::::
segments

:::
and

:::
the

:::::
y-axis

::
is
:::::
partial

::::
return

:::::::::
differences

::::::
between

:::
the

:::
two

:::::::
segments.

::::
The

::::
areas

::
of
:::

the
:::::
circles

::
are

::::::::::
proportional

::
to

:::
the

::::::
number

::
of

::::::
samples

::
at
::::

that
::::::

point,
::::

and
:::

the
:::::::::::
proportionality

::
is

:::::::
consistent

:::::
across

:::
this

::::
plot

:::
and

::::
the

::
3

:::::::
subplots

::
of

:::::
Figure

::
11.

:::
We

::::
now

:::::::
describe

:::
our

:::::::::::
segment-pair

::::::::
sampling

::::::
process

:::::
more

::::::::::
specifically.

::::
We

:::
first

:::
we

::::::::::
constructed

::
all883

:::::
unique

::::::::
segments

::
of

::::::
length

:
3
:::
and

::::
then

::::::::::
exhaustively

::::::
paired

::::
them,

::::::::
resulting

::
in

:::::
nearly

::
30

:::::::
million

::::::
segment884

::::
pairs.

:::::
Each

:::::::
segment

:::::
pair’s

:::::
partial

::::::
returns,

:::::::::
start-state

:::::
values,

::::::::
end-state

:::::
values

:::::
place

:::
the

:::::::
segment

:::
pair

::
on885

:
a
:::::::::
coordinate

::
in

:::::
Figure

::
4,
::::
and

:::::::
segment

::::
pairs

::::
that

::
are

:::
not

:::
on

:::
any

::
of

:::
the

::::
dots

::
in

:::::
Figure

::
4
::::
were

:::::::::
discarded.886

:::
For

:::
the

:::::::
segment

::::
pairs

::
at

::::
each

:::::::::
coordinate,

:::
we

::::::
further

::::::
divided

::::
them

::::
into

:
5
:::::
bins: non-terminal segments887

with the same start state and different end states, non-terminal segments with different start states888

and different end states, terminal segments with the same start state and same end state, and terminal889

segments with a different start states and the same end state. ,
:::
and

:::
bin

::
of

:::::::
segment

:::::
pairs

:::
that

::
fit

::
in

::::
none890

::
of

:::
the

::::
other

::::
bins.

::::::::
Segment

::::
pairs

::
in

:::
the

:::
5th

:::
bin

::::
were

:::::::::
discarded.

:::::
From

::::
each

::
of

:::
the

:
4
::::
bins

:::::::::::
corresponding891

::
to

::::
each

:::::
point

::
in

::::::
Figure

::
4,

:::
we

::::::::
randomly

:::::::
sampled

:::
20

:::::::
segment

:::::
pairs.

::
If
:::
the

::::
bin

:::
did

:::
not

::::
have

::
at

::::
least892

::
20

:::::::
segment

:::::
pairs,

:::
all

:::::::
segment

::::
pairs

::
in

:::
the

:::
bin

:::::
were

:::::::::
“sampled”.

::::
All

:::::::
sampled

:::::::
segment

:::::
pairs

::::
from

::
all893

:::
bins

:::
for

:::
all

:::::
points

::
in
::::::

Figure
::
4
:::::
made

::
up

:::
the

:::::
pool

::
of

:::::::
segment

::::
pairs

:::::
used

::::
with

::::::::::
Mechanical

:::::
Turk.

::::
For894

::::
each

::::::
subject,

:::
50

:::::::
segment

:::::
pairs

::::
were

::::::::
randomly

::::::::
sampled

::::
from

::::
this

::::
pool.

::::
We

:::::::
gathered

::::
data

:::::
until

::
we895

:::
had

:::::::
roughly

::
20

::::::
labeled

:::::::
segment

:::::
pairs

:::
per

:::
bin.

:::::
After

:::::::
filtering

::::::
subject

::::
data,

::::
this

:::
first

:::::
stage

:::::::::
contributed896

::::
1501

:::::::
segment

::::
pairs

:::
out

:::
of

::
the

:::::
1812

::::
pairs

::::
used

::
in
::::
our

:::::
reward

::::::::
learning

::::::::::
experiments

::
in

::::::
Section

:::
6.3

:::
and897

::::::::
Appendix

:::
F.3.

:
898

Figure 11: Coordinates from which segment pairs were sampled from during the second stage of data collection.
The points are in 3 distant clusters, so they are presented in 3 separate subplots for readability. The areas of the
circles are proportional to the number of samples at that point, and the proportionality is consistent across these 3
subplots and Figure 10.

Second stage When we conducted the reward-learning evalu-899

ation in Section 6 with only the data from
:::
the first stage, PΣr

900

performed very poorly, always performing worse than uniformly901

random.
::::
This

::::::::::
performance

::::::::
difference

::
is
::::::
shown

::
in

::::::::
Appendix

:::
??. In902

contrast Pregret performed well, always achieving near-optimal903
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performance. To better assess PΣr , we investigated its results in904

detail with synthetic preferences
::
in

:::::
detail and speculated that two905

types of additional segment pairs would aid its performance. The906

first of these two types are pairs of segments between terminal907

and
::::::
include

:::
one

::::::::
segment

::::
that

::
is

:::::::
terminal

::::
and

::::
one

::::
that

::
is

:
non-908

terminalsegments, which may ,
:::::
which

:::
we

::::::::
expected

::
to help differ-909

entiate the reward for reaching terminal states from that of reaching910

non-terminal ones. The second of these two types are pairs of911

:::
two

:
segments that each terminate at different transitions, which912

we speculated
:
t
::::::
values.

:::
For

::::::::
example,

::::
one

:::::::
segment

:::::::::
terminates

::
on913

::
its

:::
end

:::::
state,

:::::
sσ,|σ|,::::

and
::::::
another

:::::::::
terminates

::::
after

::
its

::::
first

::::::::
transition,914

:
at
:::::
sσ,1.

:::::
These

::::::::::::::
early-terminating

::::::::
segments

:::
can

:::
be

::::::
viewed

:::::
either

::
as915

::::::
shorter

::::::::
segments

::
or

::
as

::::::::
segments

:::
of

:::
the

::::
same

::::::
length

::
as

:::
the

:::::
other916

:::::::
segments

::::::::
(|σ|=3),

::::::
where

::::
they

::::
reach

:::::::::
absorbing

::::
state

:::::
from

:::::
which917

::
no

:::::
future

::::::
reward

::::
can

::
be

::::::::
received.

:::
We

:::::::::
speculated

::::
that

:::
this

::::::
second918

:::
type

:::
of

:::::::
segment

::::
pairs would help learn the reward

:::::::
negative

::::::
reward

:::::::::
component

:
for each move (i.e., the919

gas cost). Specifically, in the first stage’s data, both segments in a pair always have the same number of920

non-terminal transitions, seemingly preventing preferences from providing information about whether921

on extra transition of movement
::
an

::::
extra

::::::::
transition

:::::
(from

:::::::::::::
non-absorbing

::::
state)

:
generally resulted in922

positive or negative reward. These segment pairs were included in all results unless otherwise stated.923

:::
We

::::
now

:::::::
describe

:::
our

:::::::::::
segment-pair

::::::::
sampling

::::::
process

:::
for

:::
the

::::::
second

:::::
stage

::::
more

::::::::::
specifically.

::::
For

::
the924

:::
first

:::::::::
additional

:::
type

:::
of

:::::::
segment

::::
pair,

:::::
where

:::
one

:::::::
segment

::
is

:::::::
terminal

::::
and

:::
one

::
is

:::
not,

:::
we

::::::::
randomly

::::
pair925

:::::::
terminal

:::
and

:::::::::::
non-terminal

::::::::
segments

::::
from

:::
the

::::::::
first-stage

::::
pool

::
of

:::::::
segment

:::::
pairs

:::::
drawn

::::
from

::
to

::::::
present926

::
to

:::::::
subjects.

::
In

:::
this

:::::::
pairing,

::::
each

:::::::
segment

::
is

::::
only

::::
used

::::
once,

::::
and

::::::
pairing

::::
stops

:::::
when

:::
one

::
of

::
all

:::::::
terminal927

:::::::
segments

:::
or

::
all

:::::::::::
non-terminal

::::::::
segments

::::
have

:::::
been

::::::
paired.

::::
The

::::::::::::
corresponding

::::::::::
coordinates

:::
for

::::
these928

::::
pairs

:::
are

::::::
shown

::
in

:::
the

:::
two

::::
right

:::::
most

::::
plots

::
of

::::::
Figure

:::
11.

::::
For

:::
the

::::::
second

::::::::
additional

::::
type

::
of

:::::::
segment929

::::
pair,

::
we

::::::
utilize

::
all

:::::::
terminal

::::::::
segments

::::
from

:::
the

:::
pool

::
of
:::::::
segment

:::::
pairs

:::::
shown

::
to

:::::::
subjects

::
in

::
the

::::
first

:::::
stage.930

:::
For

::::
each

::
of

::::
these

:::::::
terminal

::::::::
segments,

:::
we

::::::::
construct

:::
two

::::::::
additional

::::::::
segments:

::::
one

:::
that

:::::
shifts

:::
the

::::::
segment931

::::::
earlier,

::::::::
removing

:::
the

:::
first

::::
state

::::
and

:::::
action

:::
and

:::::
adds

:
a
:::::::
dummy

::::::::
transition

:::::
within

:::::::::
absorbing

::::
state

::
at

::
the932

:::
end,

::::
and

::::::
another

::::
that

:::::
shifts

:::
the

:::::::
segment

:::
two

::::::::
timesteps

::::::
earlier

:::
and

::::
adds

::::
two

::::
such

:::::::
dummy

::::::::
transitions933

:
at
:::

the
::::

end.
::::::

These
::::
two

:::::
newly

::::::::::
constructed

::::::::
segments

:::
are

::::
then

::::
each

::::::
paired

::::
with

:::
the

:::::::
original

::::::::
segment,934

::::::::
producing

:::
two

::::
new

::::
pairs

:::
for

::::
each

:::::::
terminal

:::::::
segment

::
in

:::
the

::::
data

:::
set.

:::
The

::::::::::::
corresponding

::::::::::
coordinates

:::
for935

::::
these

:::::::
segment

::::
pairs

:::
are

::::::
shown

::
in

:::
the

:::
left

::::
most

::::
plot

::
of

:::::
Figure

:::
11.

:
936

:::
All

::
of

::::
both

:::::
types

::
of

:::::::::
additional

::::::::
segments

::::
pairs

::::
are

::::
then

:::::::::::
characterized

:::
by

:::
the

:::::::::
coordinates

::::::
shown

::
in937

:::::
Figure

:::
11.

:::::
Then,

::
as

::::
with

:::
the

::::
first

:::::
stage,

::
we

::::::::
randomly

::::::::
sampled

::
20

:::::::
segment

::::
pairs

:::::
from

::::
each

::::::::
coordinate938

::
to

::::
make

:::
the

:::::::::::
experimental

::::
pool

::
for

:::
the

::::::
second

:::::
round

::
of

::::::::::
Mechanical

::::
Turk

::::
data

::::::::
collection.

::
If
:::
20

::::::
segment939

::::
pairs

::::
were

:::
not

::::::::
available

::
at

:
a
::::::::::
coordinate,

::
we

::::
used

:::
all

:::::::
segment

::::
pairs

:::
for

::::
that

:::::::::
coordinate.

:::
As

::
in

:::
the

:::
first940

:::::
stage,

::
50

:::::::
segment

::::
pairs

:::::
were

::::::::
randomly

:::::::
sampled

::::
from

:::
this

::::
pool

::
to
:::
be

::::::::
presented

::
to

::::
each

::::::
subject

:::::
during941

::::::::
preference

:::::::::
elicitation.

:::::
After

:::::::
filtering

::::::
subject

::::
data,

:::
this

::::
first

::::
stage

::::::::::
contributed

:::
311

:::::::
segment

::::
pairs

:::
out

::
of942

::
the

:::::
1812

::::
pairs

::::
used

::
in

:::
our

::::::
reward

:::::::
learning

::::::::::
experiments

::
in

:::::::
Section

::
6.3

::::
and

::::::::
Appendix

:::
F.3.

:
943

D.4 The study design pattern944

This work follows an experimental design pattern that is often945

used for studying methods that take human input for evaluating946

the desirability of behaviors or outcomes. In this pattern, human947

subjects are taught to understand a specific task metric and/or are948

incentivized to align their desires with this metric. The human949

subjects then provide input to some algorithm that has no knowledge950

of the performance metric, and this algorithm or learned model is951

evaluated on how well its output performs with respect to the hidden952

metric. For another example, see Cui et al. [31].953
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E Descriptive results954

E.1 Derivation of regretd(σ2|r̃)−regretd(σ1|r̃)=955

(∆σ1
Vr̃−∆σ2

Vr̃)+(Σσ1
r̃−Σσ2

r̃)956

The derivation below supports our assertion in the first paragraph957

of Section 5.1.958

regretd(σ2|r̃)−regretd(σ1|r̃)959

=
(

[V ∗r̃ (sσ2,0)−(Σσ2
r̃+V ∗r̃ (sσ2,|σ2|)]−[V ∗r̃ (sσ1,0)−(Σσ1

r̃+V ∗r̃ (sσ1,|σ1|)]
)

=
(

[V ∗r̃ (sσ2,0)−V ∗r̃ (sσ2,|σ2|)]−[V ∗r̃ (sσ1,0)−V ∗r̃ (sσ1,|σ1|)]
)
−
(

Σσ2
r̃−Σσ1

r̃
)

=
(

[V ∗r̃ (sσ1,|σ1|)−V
∗
r̃ (sσ1,0)]−[V ∗r̃ (sσ2,|σ2|)−V

∗
r̃ (sσ2,0)]

)
+
(

Σσ1
r̃−Σσ2

r̃
)

=(∆σ1
Vr̃−∆σ2

Vr̃)+(Σσ1
r̃−Σσ2

r̃)
(9)

E.2 Losses of an expanded960

set of preference models on the human preferences dataset961

Table 3 shows an expansion of Table 1, including models intro-962

duced in Appendix B. The logistic linear preference model provides963

a lower bound in most cases, given that it can express anything the964

other preference models can and the rarity of overfitting its 3 pa-965

rameters. Therefore, the intended comparisons are either between966

Pregret and PΣr
without the constant probability of a uniformly967

random response or between them with it. We embolden the result968

with lower loss between these two preference models for each such969

comparison.970

F Results from learning reward functions971

Table 3: Expanding on Table 1, mean cross-entropy
test loss over 10-fold cross validation (n=1812) from
predicting human preferences. Lower is better.

Loss
Preference model (n=1,812)

P (·)=0.5 (uninformed) 0.69
PΣr (partial return) 0.62
Pregret (regret) 0.57
Plog-lin (logistic linear) 0.55
PΣr with prob of uniform response 0.63
Pregret with prob of uniform response 0.59
Plog-lin with prob of uniform response 0.57

This section provides additional implementation972

details for Section 6, discussion of potential im-973

provements, and additional analyses that themat-974

ically fit in Section 6.975

F.1 An algorithm976

to learn reward functions with regret(σσ|r̂)977

We describe below additional details of our in-978

stantiation of Algorithm 1.979

Because the ordering of preference pairs is arbi-980

trary, for all preference datasets we double the amount of data by duplicating each preference sample981

with the opposite ordering and the reversed preference. This provides more training data and avoids982

learning any segment ordering effects.983

For this specific instantiation, we compute successor feature functions by first randomly creating a984

large number of reward functions. Specifically, each reward function is created by sampling with985

replacement each element of its weight vector,wr̃, from {−50,−10,−2,−1,0,1,5,10,50}. We also986

included the ground-truth reward function, r, at this point, resulting in 70 reward functions. For each987

reward function, we create its maximum entropy optimal policy through value iteration. In practice, we988

learned the successor feature functions as part of the value iteration process. Finally, we remove any989

successor feature functions for redundant policies and then also remove the successor features function990
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for the optimal policy for r. Note that the only effect of including r in the earlier step was to allow us to991

remove any policies for other reward functions that were also optimal for r, making the regret-based992

learning problem more difficult. We ensured that the ground-truth reward function was not represented993

to better approximate real-world reward learning applications, in which one would be unlikely to have994

the optimal policy for learning a successor features function. (However, the policy from the regret995

estimator described in Appendix B.4 could be used to learn a successor features function, gaining the996

benefit of having a successor features function for at least one policy that is likely to perform decently997

in the task.)998

During training, the loss for the Pregret model tended to show cyclical fluctuations, reaching low loss999

and then spiking. To handle this volatility, we used the r̂ that achieved the lowest loss over all epochs of1000

training, not the final r̂. A better understanding of these cyclical fluctuations could further improve1001

learning with Pregret.1002

Despite the delivery domain being an episodic task, a low-performing policy can endlessly avoid1003

terminal states, resulting in negative-infinity values for both its return and successor features based on1004

the policy. To prevent such negative-infinity values, we apply a discount factor of γ= 0.999 during1005

value iteration—which is also where successor feature functions are learned—and when assessing1006

the mean returns of policies with respect to the ground-truth reward function, r. We chose this high1007

discount factor to have negligible effect on the returns of high-performing policies (since relatively1008

quick termination is required for high performance) while still allowing value iteration to converge1009

within a reasonable time.1010

Below we describe the other specific hyperparameters used for learning a reward function with both1011

preference models. These hyperparameters were used across all experiments. For all models, the1012

learning rate, softmax temperature, and number of training iterations were tuned on the noiseless1013

synthetic preference data sets such that each model achieved an accuracy of 100% on our specific1014

delivery task and then were tuned further on stochastic preferences on our specific delivery task.1015

Reward learning with the partial return preference model learning rate: 2; number of training epochs:1016

30,000; and optimizer: Adam (with β1 =0.9 and β2 =0.999, and eps= 1e−08).1017

Reward learning with the regret preference model learning rate: 0.5; number of training epochs:1018

5,000; optimizer: Adam (with β1 = 0.9, β2 = 0.999, and eps=1e− 08); and softmax temperature:1019

0.001.1020

Logistic regression with both preference models, for the likelihood analysis in Section 5.2 and Ap-1021

pendix E.2 learning rate: 0.5; number of training iterations: 3,000; optimizer: stochastic gradient1022

descent; and evaluation: 10-fold cross validation.1023

The computer used to run all experiments had the following specification. Processor: 1x Core™1024

i9-9980XE (18 cores, 3.00 GHz) & 1x WS X299 SAGE/10G | ASUS | MOBO; GPUs: 4x RTX 20801025

Ti; Memory: 128 GB; and operating system drive: 2 TB NVMe (3,500 MB/s read).1026

Pytorch 1.7.1 [32] was used to implement all reward learning models, and statistical analyses were1027

performed using Scikit-learn 0.23.2 [33].1028

Instantiating Algorithm F.1
:
1
:
for reward functions that may be non-linear Algorithm 1 assumes1029

that the reward function can be expressed as a linear combination of reward features that are provided1030

by a reward-features functionφ that is input to the algorithm. Here we address situations when that1031

assumption does not hold. If the reward features are unknown or the reward is known to be non-linear,1032

one method is to create a reward features function that permits a linear approximation of the reward1033

function. Several methods to derive some or all of these reward features appear promising:1034

• Reward features can be learned by minimizing several auxiliary losses in a self-supervised1035

fashion, as by Brown et al. [26]. After optimizing for these various objectives using a1036

single neural network, the activations of the penultimate layer of this network can be used as1037

reward features. Such auxiliary tasks may include minimizing the mean squared error of the1038

reconstruction loss for the current state from a lower-dimensional embedding and the original1039
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state, predicting how much time has passed between states by minimizing the mean squared1040

error loss (i.e., learning a temporal difference model), predicting the action taken between1041

two states by minimizing the cross entropy loss (i.e., learning an inverse dynamics model),1042

predicting the next state given the current state and action by minimizing the mean squared1043

error loss(i.e., learning a forward dynamics model), and predicting which of two segments is1044

preferred given a provided ranking by minimizing the t-rex loss.1045

• An additional auxiliary objective that may be promising is to use a neural network to learn a1046

regret estimator as described in Appendix B.4 and then use the activations of its penultimate1047

layer as reward features.1048

• Reward features could also be learned by first learning a reward function represented as a1049

neural network using a partial return preference model, and then using the activations of the1050

penultimate layer of this neural network to provide reward features.1051

F.2 Results from synthetic preferences1052

F.2.1 Learning reward functions from 100 randomly generated MDPs1053

Here we describe how each MDP in the set of 100 MDPs discussed in section 6.2 was generated. We1054

also extend the analysis to illustrate how often each preference model performs better than uniformly1055

random and give further details on our statistical tests.1056

Design choices The 100 MDPs are all instances of the delivery domain, but they have different reward1057

functions. The height for each MDP is sampled from the set {5,6,10}, and the width is sampled from1058

{3,6,10,15}. The proportion of cells that are terminal failure states is sampled from the set {0,0.1,0.3}.1059

There is always exactly one terminal success state. The proportion of “mildly bad” cells were selected1060

from the set {0,0.1,0.5,0.8}, and the proportion of “mildly good” cells were selected from {0,0.1,0.2}.1061

Mildly good cells and mildly bad cells respectively correspond to cells with coins and roadblocks in1062

our specific delivery task, but the semantic meaning of coins and roadblocks is irrelevant here. Each1063

sampled proportion is translated to a number of cells (rounding down to an integer when needed) and1064

then cells are randomly chosen to fill the grid with each of the above types of states until the proportions1065

are satisfied.1066

Then, the ground truth reward component for each of the above cell types were sampled from the1067

following sets:1068

• Terminal failure states: {0,1,5,10,50}1069

• Terminal success states: {−5,−10,−50}1070

• Mildly bad cells: {−2,−5,−10}1071

Mildly good cells always have a reward component of 1, and the component for white road surface1072

cells is always -1. There are no cells with a higher road surface penalty (analogous to the bricks in the1073

delivery domain).1074

Figure 12: Comparison of performance over 100 ran-
domly generated deterministic MDPs, showing the per-
centage of MDPs in which each model performed better
than an agent taking actions by a uniformly random pol-
icy. This plot complements Figure 5, which shows the
percentage of MDPs in which the models perform near-
optimally.

Better than random performance Figure 121075

complements the results in Figure 5, showing the1076

percentage of MDPs in which each preference1077

model outperforms a policy that chooses actions1078

according to a uniformly random probability dis-1079

tribution. We can see that at this performance1080

threshold, lower than that in Figure 5, the regret1081

preference model outperforms the partial return1082

preference model in most conditions. Even when1083

their performance in this plot—based on outper-1084

forming uniformly random actions—is nearly1085
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identical, Figure 5 shows that the regret prefer-1086

ence model achieves near optimal performance1087

at a higher proportion.1088

Details for statistical tests We performed a1089

Wilcoxon signed-rank test on the normalized av-1090

erage returns achieved by each model over the1091

set of 100 randomly generated MDPs. All normalized average returns below−1 were replaced with1092

−1, so that all such returns were in the range [−1,1]. This clipping was done because any normalized1093

average return below 0 is worse than uniformly random, so the difference between a normalized return1094

of−1 and−1000 is relatively unimportant compared to the difference between 1 and 0. Results are1095

shown in Table 4.1096

Table 4: Results of the Wilcoxon signed-rank test on normalized average returns for each preference model.

Preference
generator type

|D�|=3 |D�|=10 |D�|=30 |D�|=100 |D�|=300 |D�|=1000 |D�|=3000

Noiseless
(Pregret vs.
PΣr

)

w=1003,
p=0.115

w=917,
p=0.007

w=739,
p=0.012

w=487,
p=0.007

w=284,
p<0.001

w=301,
p=0.002

w=289,
p=0.001

Stochastic
(Pregret vs.
PΣr

)

w=979,
p=0.541

w=1189.5,
p=0.018

w=891,
p=0.027

w=710,
p=0.018

w=285,
p<0.001

w=460,
p=0.002

w=199,
p<0.001

Additionally, we investigate whether Pregret and PΣr
learn near-optimal policies on the same MDPs1097

within this set of 100 randomly generated MDPs. Results for this analysis are shown below.1098

Table 5: A table showing the count of the number of MDPs where both, either, or neither of the models achieved
near optimal performance.

Model(s) |D�|=3 |D�|=10 |D�|=30 |D�|=100 |D�|=300 |D�|=1000 |D�|=3000
Both models 31 40 66 72 83 87 88
Only Pregret 20 26 17 18 14 8 8
Only PΣr

10 12 7 8 3 3 3
Neither 39 22 10 2 0 2 1

F.2.2 Varying segment size1099

Here we consider the effect of increasing the fixed length of segments in the preference data set.1100

Specifically, we learn a reward function using preference datasets that contained segments of lengths1101

n∈6,9,12,15,18,21 in the specific delivery task, where each dataset contained segments of the same1102

length. Each preference dataset contained 3000 segment pairs. Each segment was generated by1103

choosing a non-terminal start state and n actions, all uniformly randomly. As in Appendix F.2.1, each1104

preference model acts as a preference generator to label these segment pairs, resulting in datasets that1105

differ only in their labels, and then the preference model is used for reward learning on the same dataset1106

it labeled. Unlike in Appendix F.2.1, all segments with termination reach terminal state on their final1107

transition, which we had already observed was problematic for PΣr
(and the motivation for the second1108

stage of data collection). Therefore, these results are intended to provide comparison between values1109

of nmore so than between preference models.1110

Regardless of the value of n, Pregret always achieves the optimal mean return of 41.2. PΣr
always1111

achieves a mean return of -500.5. This analysis provides limited evidence that segment size does not1112

have a large effect, though further analysis is needed to make this assertion with confidence.1113

F.2.3 Policy learning without reward learning, using a regret estimator1114

Here we test the performance of policy learning from regret-based preferences without learning a1115

reward function, using a regret estimator, as described in Appendix B.4.1116

A set of 30 random MDPs is generated as described in Appendix F.2.1, except that the possible MDP1117

widths are instead sampled from the set {1,5,6,10} and the heights are sampled from {3,5,6,10}.1118
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For each MDP, the preference dataset D� contains 3000 segment pairs, randomly sampled as in1119

Appendix F.2.1. If 3000 unique segment pairs do not exist, then each possible segment pair is used1120

once. Preference labels are given by Pregret.1121

Anticipating that a linear function over the six-element reward feature vector φwould be insufficient to1122

estimate regret, we expanded φ to include both the six reward components and an identity function for1123

each possible state-action pair, creating an addition to the feature vector of size |S|×|A| that contains1124

all zeroes except a single 1 indicating the state and action that initiates a transition.1125

Table 6 shows results for noiseless and stochastic preferences.1126

Table 6: Success of learning a regret estimator with noiseless and stochastic preferences.

Preference Model % of MDPs in which performance
was better than uniformly random

% of MDPs in which performance
was near optimal

Noiseless Pregret preference labels,
learning a regret estimator

90% 86.67%

Stochastic Pregret preference labels,
learning a regret estimator

80% 73.33%

F.2.4 Artificially lowering the discount factor1127

Almost all deep reinforcement learning algorithms artificially add discounting to tasks that are episodic1128

[9]. Considering that much of the past work that used partial return preference models also involved1129

deep RL, here we re-interpret results above to probe how such discounting affects performance of1130

this preference model if preferences are actually given by Pregret. Specifically, the analysis above1131

in Appendix F.2.3 on policy learning without reward learning is applicable to this topic. If the regret1132

estimator is instead considered a negated reward function, then taking a minimal-regret action is1133

equivalent to taking a maximum-value action under fully myopic discounting, γ=0.1134

F.2.5 Reward learning in stochastic MDPs1135

Although we theoretically consider MDPs with stochastic transitions in Appendix C, we have not yet1136

empirically compared PΣr
and Pregret in tasks with stochastic transitions, which we do below.1137

We randomly generated 20 MDPs, each with a 5×5 grid. Instead of terminal cells that are associated1138

with success or failure, these MDPs have terminal cells that are either risky or safe. A single terminal1139

safe cell was randomly placed, and the number of terminal risk cells was sampled from the set {1,2,7}1140

and then these terminal risk cells were likewise randomly placed. No other special cells were used1141

in this set of MDPs. To add stochastic transitions, the delivery domain was modified such that when1142

an agent moves into a terminal risk cell there is a 50% chance of receiving a lower reward, rlose, and1143

a 50% chance of receiving a higher reward, rwin. All other transitions are deterministic. As in the1144

unmodified delivery domain, moving to any non-terminal state results in a reward of -1. Moving to the1145

terminal safe state yields a reward of +50, like the terminal success state of the unmodified delivery1146

domain. Therefore, depending on the values of rwin and rlose, it may be better to move into a terminal1147

risk state than to avoid it. All segments were generated by choosing a start state and three actions, all1148

uniformly randomly. For each MDP, the preference datasetD� contains 3000 segment pairs.1149

The 10 MDPs of each condition differed from those of the other conditions by their ground-truth1150

reward function r, with different rwin and rlose values. The results are shown below, indicating that1151

for both noiseless and stochastic preference datasets, Pregret is always able to achieve near-optimal1152

performance, whereas PΣr is not.1153

The results above expand upon and support the first proof of Theorem 3.2 in Appendix C.1154

F.3 Results from human preferences1155
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Table 7: Stochastic MDPs: % of MDPs in which performance was near optimal, with varied reward
functions.

Preference Model rwin =1 rwin =103 rwin =100 rwin =100
rlose =−50 rlose =−50 rlose =−1 rlose =−103

Noiseless Pregret 100% 100% 100% 100%
Stochastic Pregret 100% 100% 100% 100%
Noiseless PΣr 100% 0% 100% 0%
Stochastic PΣr 100% 0% 100% 100%

Figure 13:
:::::::::
Performance

:::::::::
comparison

::::
over

::::::
various

::::::
amounts

::
of

:::::
human

::::::::::
preferences.

::::
Each

:::::::
partition

:::
has

::
the

::::::
number

::
of

:::::::::
preferences

:::::
shown

::
or

:::
one

::::
less.

::::
This

:::
plot

:
is
:::::::
identical

::
to

:::::
Figure

:
6
:::::
except

:::
that

:::::
results

::
for

:::
the

::::::
expected

:::::
return

::::::::
preference

:::::
model

::
are

:::::::
included.

::::::

Figure 14: Performance comparison over various
amounts of human preferences. Each partition has
the number of preferences shown or one less. This
plot focuses on outperforming a uniformly random
policy, whereas Figure 6 thresholds on near-optimal
performance.

::
In

:::
this

::::::
section

:::
we

::::::
provide

::::::
further

:::::
detail

::::::::
regarding

::
the

:::::::
analysis

::
in

:::::::
Section

:::
6.3.

:::
For

:::
the

::::::::
Wilcoxon

:::::
paired1156

:::::::::
signed-rank

::::
test,

::::::::::
normalized

:::::
mean

::::::
returns

::::
were

:::::::
clipped

::
to

::::::
[−1,1]

::
as

::
in

::::::::
Appendix

:::::
F.2.1.

::::
The

:::::
result1157

::::
from

::::
each

:::
test

::
is

:::::
shown

::
in
:::::
Table

::::
F.3.1158

Table 8: Results from Wilcoxon signed-rank tests.

5 partitions 10 partitions 20 partitions 50 partitions 100 partitions
Pregret vs. PΣr w=0 w=6 w=24 w=216 w=939
preference models p=0.043 p=0.028 p=0.007 p=0.003 p=0.076

1159

In this section we provide further detail regarding the analysis in Section 6.3. For the Wilcoxon paired1160

signed-rank test, normalized mean returns were clipped to [−1,1] as
:::::
Figure

::::::
Figure

::
13

:::::
show

:::
the

::::
same1161

:::::
results

::
as

::::::
Figure

::
6,

::
but

::::
with

:::::::::
additional

:::::
results

::::
from

:::
the

::::::::
expected

:::::
return

::::::::
preference

::::::
model

:::::::::
introduced in1162

Appendix F.2.1. The result from each test is shown above. Figure ?? shows a visualization of the results1163

that complements Figure 6.
::::
B.3.

::::::
Figure

::
14

::::::
shows

:::
the

::::
same

::::::
results

::::
with

:
a
:::::::
different

:::::::::
threshold,

:::
that

::
of1164

:::::::::
performing

:::::
better

::::
than

::::::::
uniformly

::::::
random

::::::
action

::::::::
selection,

:::::
which

:::::::
receives

:
a
:
0
:::
on

:::
our

:::::::::
normalized

::::
mean1165

:::::
return

::::::
metric.

::::
The

:::::
regret

:::::::::
preference

:::::
model

:::::::
matches

::
or

:::::::::::
outperforms

::::
both

::::
other

:::::::::
preference

::::::
models

::
in1166

::
all

:::::::::::
partitionings

::
of

::
the

::::::
human

::::
data,

::
at
::::
both

:::::::::
thresholds

::::
(near

:::::::
optimal

:::
and

:::::
better

::::
than

::::::::
random).1167

::
As

:::::::::
previously

:::::::::
mentioned

::
in

::::::
Section

::
D

:::
and

::::::::
Appendix

::
D,

:::::
when

:::::::
learning

::::::
reward

::::::::
functions

:::
only

:::::
from

::
the1168

:::
data

:::::
from

:::
the

:::
first

:::::
stage

::
of

::::::
human

::::
data

:::::::::
collection,

:::
the

:::::
partial

::::::
return

:::::
model

::::
does

::::::
worse.

::::
The

::::::
specific1169

::::::::::
performance

::
of

:::
the

:::::
partial

::::::
return

::::::::
preference

::::::
model

::
on

:::
the

:::
full

:::
set

::
of

::::::::
first-stage

::::
data

::::
(i.e.,

:
1
::::::::
partition)

:
is1170

:
a
:::::::::
normalized

:::::
mean

:::::
return

::
of

:::::
−3.8,

:::::::
whereas

:::
the

:::::
regret

:::::::::
preference

:::::
model

:::::::
achieves

::::
1.0,

::::
close

::
to

::::::
optimal1171

:::::::::::
performance.1172
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