
Appendix

A Clarification about σ2
0

It is a common assumption that the random noise ηt in Eqn. (2) is a sub-Gaussian random variable in
GLM, and here we would briefly explain this assumption.
Lemma A.1. (Sub-Gaussian property for GLM residuals) For any generalized linear model with a
probability density function or probability mass function of the canonical form

f(Y = y; θ, φ) = exp

(
yθ − b(θ)

φ
+ c(y, φ)

)
,

where the function b(·) is Lipschitz with parameter kµ. Then we can conclude that the random
variable (Y − b′(θ)) = (Y − µ(θ)) satisfies sub-Gaussian property with parameter at most

√
φkµ.

Proof. We prove the Lemma A.1 based on its definition directly. For any t ∈ R, we have:

E [exp{t (Y − b′(θ))}] =

∫ +∞

−∞
exp

{
t(y − b′(θ)) +

yθ − b(θ)
φ

+ c(y, φ)

}
dy

=

∫ +∞

−∞
exp

{
(θ + φt)y − b(θ + φt)

φ
+ c(y, φ)

}
× exp

{
b(θ + φt)− b(θ)− φtb′(θ)

φ

}
dy

= exp

{
b(θ + φt)− b(θ)− φtb′(θ)

φ

}
(i)
= exp

{
t2φ b′′(θ + δφt)

2

}
≤ exp

{
t2 φkµ

2

}
:= exp

{
t2 σ2

0

2

}
,

where the equality (i) is based on the remainder of Taylor expansion.
This theorem tells us that it is a standard assumption that the noise ηt in Eqn. (2) is a sub-Gaussian
random variable. For instance, if we assume the inverse link function µ(·) is globally Lipschitz with
parameter kµ, we can simply take σ2

0 = kµφ. And this assumption also widely holds under a class of
GLMs such as the most popular Logistic model.

B Proof of Theorem 4.1

B.1 Useful Lemmas

Lemma B.1. (Sub-guassian moment bound) For sub-Gaussian random variable X with parameter
σ2, i.e.

E(exp(sX)) ≤ exp

(
σ2s2

2

)
, ∀s ∈ R.

Then we have Var(X) = E(X2) ≤ 4σ2.

Proof. It holds that,

E(X2) =

∫ +∞

0

P (X2 > t) dt

=

∫ +∞

0

P (|X| >
√
t) dt

≤ 2

∫ +∞

0

exp (
−t2

4σ2
) dt

= 4σ2

∫ +∞

0

e−u du, u = t/(2σ2)

= 4σ2
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Lemma B.2. (Generalized Stein’s Lemma, [8]) For a random variable X with continously differ-
entiable density function p : Rd → R, and any continuously differentiable function f : Rd → R. If
the expected values of both ∇f(X) and f(X) · S(X) regarding the density p exist, then they are
identical, i.e.

E[f(X) · S(X)] = E[∇f(X)].

This is a very famous result in the area of Stein’s method, and we would omit its proof.
Lemma B.3. ([27]) Let Y1, . . . , Yn ∈ Rd1×d2 be a sequence of independent real random matrices,
and assume that

σ2
n ≥ max

∥∥∥∥∥∥
n∑
j=1

E(YjY
>
j )

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
n∑
j=1

E(Y >j Yj)

∥∥∥∥∥∥
op

 .

Then for any t ∈ R+ and ν ∈ R+, it holds that,

P

∥∥∥∥∥∥
n∑
j=1

ψ̃ν(Yj)−
n∑
j=1

E(Yj)

∥∥∥∥∥∥
op

≥ t
√
n

 ≤ 2(d1 + d2) exp

(
νt
√
n+

ν2σ2
n

2

)

The detailed proof of this lemma is based on a series of work proposed in [27]. And we would omit it
here as well. Based on Lemma B.2 and B.3, we would propose the following Lemma B.4 adapted
from the work in [37]. And this Lemma serves as a crux for the proof of Theorem 4.1.
Lemma B.4. L : Rd1×d2 → R is the loss function defined in Eqn. (6). Then by setting

t =

√
2d1d2M(4σ2

0 + S2
f ) log

(
2(d1 + d2)

δ

)
,

ν =
t

(4σ2
0 + Sf )Md1d2

√
T1

=

√√√√ 2 log
(

2(d1+d2)
δ

)
T1d1d2M(4σ2

0 + S2
f )
,

we have with probability at least 1− δ, it holds that

P

(
‖∇L(µ∗Θ∗)‖op ≥

2t√
T1

)
≤ δ,

where µ∗ = E[µ′(〈X,Θ∗〉)] ≥ cµ > 0.

Proof. Based on the definition of our loss function L(·) in Eqn. (6), we have that

∇xL(µ∗Θ∗) = 2µ∗Θ∗ − 2

T1

T1∑
i=1

ψ̃ν(y · S(x))

= 2E[µ′(〈X1,Θ
∗〉)]Θ∗ − 2

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

(i)
= 2E[µ(〈X1,Θ

∗〉)S(X1)]− 2

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

(ii)
= 2

[
E(Y1 · S(X1))− 1

T1

T1∑
i=1

ψ̃ν(yi · S(Xi))

]
where we have (i) due to the generalized Stein’s Lemma (Lemma B.2), and (ii) comes from the fact
that the random noise η1 = y1 − µ(〈X1,Θ

∗〉) is zero-mean and independent with X1. Therefore, in
order to implement the Lemma B.3, we can see that it suffices to get σ2 defined as:

σ2 = max


∥∥∥∥∥∥
n∑
j=1

E[y2
jS(Xj)S(Xj)

>]

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
n∑
j=1

E[y2
jS(Xj)

>S(Xj)]

∥∥∥∥∥∥
op

 .
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It holds that,∥∥∥∥∥∥
T1∑
j=1

E[y2
jS(Xj)S(Xj)

>]

∥∥∥∥∥∥
op

≤ T1 ×
∥∥E[y2

1S(X1)S(X1)>]
∥∥

op

= T1 ×
∥∥E[(η1 + µ(〈X1,Θ

∗〉))2S(X1)S(X1)>]
∥∥

op

= T1 ×
∥∥E[η2

1S(X1)S(X1)>] + E[µ(〈X1,Θ
∗〉))2S(X1)S(X1)>]

∥∥
op

= T1 ×
∥∥E(η2

1)E[S(X1)S(X1)>] + E[µ(〈X1,Θ
∗〉))2S(X1)S(X1)>]

∥∥
op

(i)
≤ T1 ×

∥∥4σ2
0 E[S(X1)S(X1)>] + S2

f E[S(X1)S(X1)>]
∥∥

op

= (4σ2
0 + S2

f )T1 ×
∥∥E[S(X1)S(X1)>]

∥∥
op

where the inequality (i) comes from the fact that |µ(〈X1,Θ
∗〉)| ≤ Sf , and S(X1)S(X1)> is always

positive semidefinite. Next, since we know that E[S(X1)S(X1)>] is always symmetric and positive
semidefinite, and hence we have∥∥E[S(X1)S(X1)>]

∥∥
op ≤

∥∥E[S(X1)S(X1)>]
∥∥

nuc = trace(E[S(X1)S(X1)>])

= E[trace(S(X1)S(X1)>)] = E(

d1∑
i=1

d2∑
j=1

Sij(X1)2)

≤ d1d2M

Therefore, we have that∥∥∥∥∥∥
T1∑
j=1

E[y2
jS(Xj)S(Xj)

>]

∥∥∥∥∥∥
op

≤ (4σ2
0 + S2

f )d1d2T1M.

And similarly, we can prove that∥∥∥∥∥∥
T1∑
j=1

E[y2
jS(Xj)

>S(Xj)]

∥∥∥∥∥∥
op

≤ (4σ2
0 + S2

f )d1d2T1M.

Therefore, we can take σ2 = (4σ2
0 + S2

f )d1d2T1M consequently. By using Lemma B.3, we have

P

(
‖∇L(µ∗Θ∗)‖op ≥

2t√
T1

)
≤ 2(d1 + d2) exp

(
−νt

√
T1 +

ν2(4σ2
0 + S2

f )Md1d2T1

2

)
By plugging the values of t and ν in Lemma B.4, we finish the proof.

B.2 Proof of Theorem 4.1

Since the estimator Θ̂ minimizes the regularized loss function defined in Eqn. (6), we have

L(Θ̂) + λT1

∥∥∥Θ̂
∥∥∥

nuc
≤ L(µ∗Θ∗) + λT1 ‖µ∗Θ∗‖nuc .

And due to the fact that L(·) is a quadratic function, we have the following expression based on
multivariate Taylor’s expansion:

L(Θ̂)− L(µ∗Θ∗) = 〈∇L(µ∗Θ∗),Θ〉+ 2 ‖Θ‖2F , where Θ = Θ̂− µ∗Θ∗.

By rearranging the above two results, we can deduce that

2 ‖Θ‖2F ≤ −〈∇L(µ∗Θ∗),Θ〉+ λT1
‖µ∗Θ∗‖nuc − λT1

∥∥∥Θ̂
∥∥∥

nuc
(i)
≤ ‖∇L(µ∗Θ∗)‖op ‖Θ‖nuc + λT1

‖µ∗Θ∗‖nuc − λT1

∥∥∥Θ̂
∥∥∥

nuc
, (15)
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where (i) comes from the duality between matrix operator norm and nuclear norm. Next, we represent
the saturated SVD of Θ∗ in the main paper as Θ∗ = UDV > where U ∈ Rd1×r and V ∈ Rd2×r, and
here we would work on its full version, i.e.

Θ∗ = (U,U⊥)

(
D 0
0 0

)
(V, V⊥)> = (U,U⊥)D∗(V, V⊥)>,

where we have U⊥ ∈ Rd1×(d1−r), D∗ ∈ Rd1×d2 and V⊥ ∈ Rd2×(d2−r). Furthermore, we define

Λ = (U,U⊥)>Θ(V, V⊥) =

(
U>ΘV U>ΘV⊥
U>⊥ΘV U>⊥ΘV⊥

)
= Λ1 + Λ2

where we write

Λ1 =

(
0 0
0 U>⊥ΘV⊥

)
, Λ2 =

(
U>ΘV U>ΘV⊥
U>⊥ΘV 0

)
Afterwards, it holds that∥∥∥Θ̂

∥∥∥
nuc

= ‖µ∗Θ∗ + Θ‖nuc =
∥∥(U,U⊥)(µ∗D∗ + Λ)(V, V⊥)>

∥∥
nuc

= ‖µ∗D∗ + Λ‖nuc + ‖µ∗D∗ + Λ1 + Λ2‖nuc

≥ ‖µ∗D∗ + Λ1‖nuc − ‖Λ2‖nuc

= ‖µ∗D‖nuc + ‖Λ1‖nuc − ‖Λ2‖nuc

= ‖µ∗Θ∗‖nuc + ‖Λ1‖nuc − ‖Λ2‖nuc ,

which implies that

‖µ∗Θ∗‖nuc −
∥∥∥Θ̂
∥∥∥

nuc
≤ ‖Λ2‖nuc − ‖Λ1‖nuc (16)

Combine Eqn. (15) and (16), we have that

2 ‖Θ‖2F ≤
(
‖∇L(µ∗Θ∗)‖op + λT1

)
‖Λ2‖nuc +

(
‖∇L(µ∗Θ∗)‖op − λT1

)
‖Λ1‖nuc

Then, we refer to the setting in our Lemma B.4, and we choose λ = 4t/
√
T1 where the value of t is

determined in Lemma B.4, i.e.

λT1
= 4

√
2(4σ2

0 + S2
f )Md1d2 log(2(d1 + d2)/δ)

T1
,

we know that λT−1 ≥ 2 ‖∇L(µ∗Θ∗)‖op with probability at least 1− δ for any δ ∈ (0, 1). Therefore,
with probability at least 1− δ, we have

2 ‖Θ‖2F ≤
3

2
λT1
‖Λ2‖nuc −

1

2
λT1
‖Λ1‖nuc ≤

3

2
λT1
‖Λ2‖nuc

. Since we can easily verify that the rank of Λ2 is at most 2r, and by using Cauchy-Schwarz Inequality
we have that

2 ‖Θ‖2F ≤
3

2
λT1

√
2r ‖Λ2‖F ≤

3

2
λT1

√
2r ‖Λ‖F =

3

2
λT1

√
2r ‖Θ‖F ,

which implies that

‖Θ‖F ≤
3

4

√
2rλT1 = 6

√
(4σ2

0 + S2
f )Md1d2r log( 2(d1+d2)

δ )

T1
,

and it concludes our proof.

C Theorem C.1 and its analysis

C.1 Theorem C.1

Theorem C.1. (Regret of LowGLM-UCB) Under Assumption 3.4 and 3.5, for any fixed failure rate
δ ∈ (0, 1), if we run the LowGLM-UCB algorithm with ρt(δ) = αt+T1

(δ/2) and

λ⊥ �
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
,

then the bound of regret for LowGLM-UCB (RegretT2
) achieves Õ(k

√
T + TS⊥), with probability

at least 1− δ.
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C.2 Proposition C.2 with its proof

We firstly present the following important Proposition C.2 for obtaining the upper confidence bound.

Proposition C.2. For any δ, t such that δ ∈ (0, 1), t ≥ 2, and for βxt (δ) defined in Eqn. (11) and
(12), with probablity 1− δ, it holds that

|µ(x>θ∗)− µ(x>θ̂t)| ≤ βxt+T1
(δ), (17)

simultaneously for all x ∈ R and all t ≥ 2.

C.2.1 Technical Lemmas

Lemma C.3. (Adapted from Abbasi-Yadkori et al., 2011, Theorem 1) Let {Ft}∞t=0 be a filtration and
{xt}∞t=0 be an Rd-valued stochastic process adapted to Ft. Let {ηt}∞t=0 be a real-valued stochastic
process such that ηt is adapted to Ft and is conditionally σ0-sub-Gaussian for some σ0 > 0, i.e.

E[exp(ληt)|Ft] ≤ exp

(
λ2σ2

0

2

)
, ∀λ ∈ R.

Consider the martingale St =
∑t
k=1 ηkxk and the process Vt =

∑t
k=1 xkx

>
k + Λ when t ≥ 2.

And Λ is fixed and independent with sample random variables after time m. For any δ > 0, with
probability at least 1− δ, we have the following result simultaneously for all t ≥ m+ 1:

‖St‖V −1
t
≤ σ0

√
log(det(Vt))− log(δ2 det(Λ)).

We defer the proof for this lemma to Section C.2.3 since a lot of technical details are involved.

Lemma C.4. For any two symmetric positive definite matrix A,B ∈ Rp×p such that A � B, we
have AB−1A � A.

Proof. SinceA � B and both of them are invertible matrices, we haveB−1 � A−1 directly based on
positive definiteness property. Conjugate with A on both sides we can directly obtain AB−1A � A.

Lemma C.5. (Valko et al., 2014, Lemma 5) For any T ≥ 1, let VT+1 =
∑T
i=1 xix

>
i + Λ ∈ Rp

where Λ = diag{λ1, . . . , λp}. And we assume that ‖xi‖2 ≤ S. Then:

log
|VT+1|
|Λ|

≤ max
{ti}pi=1

p∑
i=1

log

(
1 +

S2ti
λi

)
,

where the maximum is taken over all possible positive real numbers {ti}pi=1 such that
∑p
i=1 ti = T

Proof. We aim to bound the determinant |VT+1| under the coordinate constrains ‖xi‖2 ≤ S. Let’s
denote

U(x1, . . . , xT ) = |Σ +

T∑
t=1

xtx
>
t |.

Based on the property of the sum of rank-1 matrices (e.g. Valko et al., 2014, Lemma 4), we know
that the maximum of U(x1, . . . , xT ) is reached when all xt are aligned with the axes:

U(x1, . . . , xT ) = max
x1,...,xT ;

xt∈S·{e1,...,eN}

|Σ +

T∑
t=1

xtx
>
t | = max

t1,...,tNpositive integers;∑N
i=1 ti=T

|diag(λi + ti)|

≤ max
t1,...,tNpositive integers;∑N

i=1 ti=S
2T

N∏
i=1

(λi + S2ti).
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C.2.2 Proof of Proposition C.2

Proof. Recall our definition of gt(θ) and its gradient accordingly as

gt(θ) =

T1∑
i=1

µ(xs1,i
>θ)xs1,i +

t−1∑
k=1

µ(x>k θ)xk + Λθ,

∇θgt(θ) =

T1∑
i=1

µ′(xs1,i
>θ)xs1,ix

′
s1,i +

t−1∑
k=1

µ′(x>k θ)xkx
>
k + Λ

(i)
� cµMt(cµ), (18)

where the relation (i) holds if θ ∈ Θ0. Based on Assumptions, we know the gradient ∇θgt(θ) is
continuous. Then the Fundamental Theorem of Calculus will imply that

gt(θ
∗)− gt(θ̂t) = Gt(θ

∗ − θ̂t),

where

Gt =

∫ 1

0

∇θgt(sθ∗ + (1− s)θ̂t) ds.

Since we assume that the inverse link function µ(·) is kµ−Lipshitz, and the matrix Gt is always
invertible due to the fact that at least we have Gt � Λ, we can obtain the following result. Notice the
inequality (i) comes from the fact that Gt � cµMt(cµ) and hence Mt(cµ)−1/cµ � G−1

t .

|µ(x>θ∗)− µ(x>θ̂t)| ≤ kµ|x>(θ∗ − θ̂t)| = kµ|x>G−1
t (gt(θ

∗)− gt(θ̂t))|

≤ kµ ‖x‖G−1
t

∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥
G−1
t

(i)
≤ kµ
cµ
‖x‖Mt(cµ)−1

∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥
Mt(cµ)−1

.

In addition, based on the definition of θ̂t in Equation (10), we have gt(θ̂t)− gt(θ∗) =
∑T1

k=1(ys1,k −
µ(x>s1,kθ

∗))xs1,k +
∑t−1
k=1(yk − µ(x>k θ

∗))xk − Λθ∗ =
∑T1

k=1 ηs1,kxs1,k +
∑t−1
k=1 ηkxk − Λθ∗.

Therefore,

|µ(x>θ∗)− µ(x>θ̂t)| ≤
kµ
cµ
‖x‖Mt(cµ)−1

∥∥∥gt(θ̂t)− gt(θ∗)∥∥∥
M−1
t (cµ)

≤ kµ
cµ
‖x‖Mt(cµ)−1

∥∥∥∥∥
T1∑
k=1

ηs1,kxs1,k +

t−1∑
k=1

ηkxk

∥∥∥∥∥
M−1
t (cµ)

+ ‖Λθ∗‖M−1
t (cµ)

 . (19)

Now, let’s use Lemma C.3 to bound the term
∥∥∥∑T1

k=1 ηs1,kxs1,k +
∑t−1
k=1 ηkxk

∥∥∥
M−1
t (cµ)

. If we define

the filtration Ft := {{xt, xt−1, ηt−1, . . . , x1, η1} ∪ {xs1,k, ηs1,k}
T1

k=1}, then for any δ ∈ (0, 1), with
probability 1− δ, it holds that for all t ≥ 2,∥∥∥∥∥

T1∑
k=1

ηs1,kxs1,k +

t−1∑
k=1

ηkxk

∥∥∥∥∥
M−1
t (cµ)

≤ σ0

√√√√log

(
|Mt(cµ)|
| Λ
cµ
|

)
− 2 log(δ),

where based on Lemma C.5,

log

(
|Mt(cµ)|
| Λ
cµ
|

)
≤ max

ti≥0,∑t
i=1 ti=t+T1

p∑
i=1

log

(
1 +

cµS
2
0ti
λi

)

≤ k log

(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+ (d− k) log

(
1 +

cµS
2
0

(d− k)λ⊥
(t+ T1)

)
≤ k log

(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+
cµS

2
0

λ⊥
(t+ T1). (20)
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And next by Lemma C.4, we have

‖Λθ∗‖M−1
t (cµ) = cµ

∥∥∥∥ Λ

cµ
θ∗
∥∥∥∥
M−1
t (cµ)

≤ √cµ ‖θ∗‖Λ ≤
√
cµ(
√
λ0S0 +

√
λ⊥S⊥). (21)

Combine Equation (20) and (21) into Equation (19), we finish our proof.

Since Equation (17) in Proposition C.2 holds simultaneously for all x ∈ R and t ≥ 1, the following
conclusion holds.

Corollary C.6. For any random variable z defined in R, we have the following holds

|µ(z>θ∗)− µ(z>θ̂t)| ≤ βzt+T1
(δ),

with probability at least 1 − δ. Furthermore, for any sequence of random variable {zt}Tt=2, with
probability 1− δ it holds that

|µ(z>t θ
∗)− µ(z>t θ̂t)| ≤ β

zt
t+T1

(δ),

simultaneously for all t ≥ 1.

C.2.3 Proof of Lemma C.3

For the proof of Lemma C.3 we will need the following two lemmas, and we will use the same
notations as in Lemma C.3 in this section.

Lemma C.7. Let λ ∈ Rd be arbitrary and consider any t ≥ 0

Mλ
t = exp

(
t∑

s=1

[
ηs(λ

>xs)

σ0
− 1

2
(λ>xs)

2

])
.

Let τ be a stopping time with respect to the filtration {Ft}+∞t=0 . Then Mλ
t is a.s. well defined and

E(Mλ
τ ) ≤ 1.

Proof. We claim that {Mλ
t } is a supermartingale. Let

Dλ
t = exp

(
ηs(λ

>xs)

σ0
− 1

2
(λ>xs)

2

)
Observe that by conditional σ0-sub-Gaussianity of ηt we have E[Dλ

t |Ft−1] ≤ 1. Clearly, Dλ
t and

Mλ
t is Ft-measurable. Moreover,

E[Mλ
t |Ft−1] = E[Mλ

1 · · ·Dλ
t−1D

λ
t |Ft−1] = Dλ

1 . . . D
λ
t−1E[Dλ

t |Ft−1] ≤Mλ
t−1,

which implies that Mλ
t is a supermartingale with its expected value upped bounded by 1. To show

that Mλ
t is well defined. By the convergence theorem for nonnegative supermartingales, limt→∞Mλ

t

is a.s. well-defined, which indicates that Mλ
τ is also well-defined for all τ ∈ N+∪{+∞}. By Fatou’s

Lemma, it holds that

E[Mλ
τ ] = E[lim inf

t→∞
Mλ

min{t,τ}] ≤ lim inf
t→∞

E[Mλ
min{t,τ}] ≤ 1.

Lemma C.8. For any positive semi-definite matrix P ∈ Rd×d and positive definite matrixQ ∈ Rd×d,
and any x, a ∈ Rd, it holds that

‖x− a‖2P + ‖x‖2Q =
∥∥x− (P +Q)−1Pa

∥∥2

P+Q
+ ‖a‖2P − ‖Pa‖

2
(P+Q)−1 .

This lemma could be easily proved based on elementary calculation and hence its proof would be
omitted here.
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Lemma C.9. Let τ be a stopping time with τ > m on the filtration {Ft}∞t=0. Then for δ > 0, with
probability 1− δ,

||Sτ ||2V −1
τ
≤ 2σ2

0 log

(
det(Vτ )1/2det(Λ)−1/2

δ

)
.

Proof. W.l.o.g., assume that σ0 = 1. Denote

Ṽt = Vt − Λ =

t∑
s=1

xsx
>
s , Mλ

t = exp

(
(λ>St)−

1

2
||λ||2

Ṽt

)
.

Note by Lemma C.7, we naturally have that E[Mλ
t ] ≤ 1.

Since in round m+ 1, we get the diagonal positive definite matrix Λ with its elements independent
with samples after round m. Let z be a Gaussian random variable that is independent with other
random variables after round m with covariance Λ−1. Define

Mt = E[Mz
t |F∞], t > m,

where F∞ is the tail σ-algebra of the filtration. Clearly, it holds that E[Mτ ] = E[E[Mz
τ |z,F∞]] ≤

E[1] ≤ 1. Let f be the density of z and for a positive definite matrix P let c(P ) =
√

(2π)d/det(P ).
Then for t > m it holds that,

Mt =

∫
Rd

exp

(
(λ>St)−

1

2
||λ||2

Ṽt

)
f(λ)dλ

=
1

c(Λ)
exp

(
1

2
‖St‖2Ṽ −1

t

)∫
Rd

exp

(
−1

2

{∥∥∥λ− Ṽ −1
t St

∥∥∥2

Ṽt
+ ‖λ‖2Λ

})
dλ.

Based on Lemma C.8, it holds that∥∥∥λ− Ṽ −1
t St

∥∥∥2

Ṽt
+ ‖λ‖2Λ =

∥∥λ− V −1
t St

∥∥2

Vt
+
∥∥∥Ṽ −1

t St

∥∥∥2

Ṽt
− ‖St‖2V −1

t

, and this implies that

Mt =
1

c(Λ)
exp

(
1

2
‖St‖2V −1

t

)∫
Rd

exp

(
−1

2

∥∥λ− V −1
t St

∥∥2

Vt

)
dλ

=

(
det(Λ)

det(Vt)

)1/2

exp

(
−1

2

∥∥λ− V −1
t St

∥∥2

Vt

)
.

Now, from E[Mτ ] ≤ 1, we have that for τ > m

P

(
‖Sτ‖2V −1

τ
> log

(
det(Vτ )

δ2det(Λ)

))
= P

 exp
(

1
2 ‖Sτ‖

2
V −1
τ

)
δ−1(det(Vτ )/det(Λ))1/2

> 1


≤ E

 exp
(

1
2 ‖Sτ‖

2
V −1
τ

)
δ−1(det(Vτ )/det(Λ))1/2

 ≤ E[Mτ ]δ ≤ δ.

Combining Lemma C.7-C.9. We now contruct a stopping time and define the bad event:

Bt(δ) :=

{
w : ‖St‖2V −1

t
> σ2

0 log

(
det(Vt)
δ2det(Λ)

)}
.

And we are interested in bounding the probability that ∪t>mBt(δ) happens. Define τ(w) = min{t >
m : w ∈ Bt(δ)}. Then τ is a stopping time and it holds that,

∪t>mBt(δ) = {w : τ(w) <∞}.
Then we have that

P [∪t>mBt(δ)] = P [m < τ <∞] = P

[
‖Sτ‖2V −1

τ
> σ2

0 log

(
det(Vτ )

δ2det(Λ)

)
, τ > m

]
≤ δ.

This concludes our proof of Lemma C.3.
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C.3 Proposition C.10 with its proof

We denote the optimal action x∗ = arg maxx∈X0 µ(x>θ∗).

Proposition C.10. For all δ ∈ (0, 1), with probability 1− δ, it holds that

µ(x∗>θ∗)− µ(x>t θ
∗) ≤ 2βxtt+T1

(
δ

2

)
,

simultaneously for all t ∈ {2, 3, . . . , T2}.

Proof. According to Corollary C.6, outside of the event of measure can be bounded by δ/2:

µ(x>t θ̂t)− µ(x>t θ
∗) ≤ βxtt+T1

(
δ

2

)
for all t ∈ {2, 3, . . . , T2}.

Similarly, with probability at least 1− δ/2 it holds that

µ(x∗>θ∗)− µ(x∗>θ̂t) ≤ βx
∗

t+T1

(
δ

2

)
for all t ∈ {2, 3, . . . , T2}.

Besides, by the choice of xt in Algorithm 2

µ(x∗>θ̂t)− µ(x>t θ̂t) = µ(x∗>θ̂t) + βx
∗

t+T1

(
δ

2

)
− µ(x>t θ̂t)− βx

∗

t+T1

(
δ

2

)
≤ µ(x>t θ̂t) + βxtt+T1

(
δ

2

)
− µ(x>t θ̂t)− βx

∗

t+T1

(
δ

2

)
= βxtt+T1

(
δ

2

)
− βx

∗

t+T1

(
δ

2

)
.

By combining the former inequalities we finish our proof.

C.4 Proof of Theorem C.1

Proof. Based on Proposition C.10 we have

µ(x∗>θ∗)− µ(x>t θ
∗) ≤ 2βxtt+T1

(
δ

2

)
= 2αt+T1

(
δ

2

)
‖xt‖M−1

t (cµ) ≤ 2αT

(
δ

2

)
‖xt‖M−1

t (cµ) .

Since we know that µ(x∗>θ∗)− µ(x>θ∗) ≤ kµ(x∗>θ∗ − x>θ∗) ≤ 2kµS
2
0 for all possible action x,

and we can safely expect that αT2(δ/2) > kµS
2
0 (at least by choosing σ0 = kµ max{S2

0 , 1}), then
the regret of Algorithm 2 can be bounded as

RegretT2
≤ 2kµS

2
0 +

T2∑
t=2

min{µ(x∗>θ∗)− µ(x>t θ
∗), 2kµS

2
0}

≤ 2kµS
2
0 + 2αT

(
δ

2

) T2∑
t=2

min{‖xt‖M−1
t (cµ) , 1}

(i)
≤ 2kµS

2
0 + 2αT

(
δ

2

)√
T2

√√√√ T2∑
t=2

min{‖xt‖2M−1
t (cµ) , 1}.

where the ineuqlity (i) comes from Cauchy-Schwarz inequality. And a commonly-used fact (e.g. [1],
Lemma 11) yields that

t∑
i=2

min{‖xi‖2M−1
i (cµ) , 1} ≤ 2 log

(
|Mt+1(cµ)|
|M2(cµ)|

)
≤ 2 log

(
|Mt+1(cµ)|
| Λ
cµ
|

)

≤ k log

(
1 +

cµS
2
0

kλ0
(t+ T1)

)
+
cµS

2
0

λ⊥
(t+ T1).
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Finally, by using the argument in Eqn. (20) and then plugging in the chosen value for λ⊥ =
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
, we have

RegretT2
≤ 2kµS

2
0+

2kµ
cµ

σ0

√
2k log

(
1 +

cµS2
0

kλ0
T

)
− 2 log

(
δ

2

)
+
√
cµ

√λ0S0 +

√√√√ cµS2
0T

k log
(

1 +
cµS2

0

kλ0
T
)S⊥




×
√
T2

√
4k log

(
1 +

cµS2
0

kλ0
T

)
,

which gives us the final bound in Theorem C.1.

D Consistency of θ̂new
t in Algorithm 2

W.l.o.g. we assume that {θ : ‖θ − θ∗‖2 ≤ 1} ⊆ Θ∗, or otherwise we can modify the contraint of cµ
in Assumption 3.5 as cµ := inf{x∈X0,‖θ−θ∗‖2≤1} µ

′(x>θ) > 0. And we also assume that ‖x‖2 ≤ 1
for x ∈ X0.

Adapted from the proof of Theorem 1 in [23], define G(θ) = g(θ) − g(θ∗) =
∑T1

i=1(µ(x>s1,iθ) −
µ(s1, i

>θ∗))xs1,i +
∑n
i=1(µ(x>i θ)− µ(x>i θ

∗))xi + Λ(θ − θ∗). W.l.o.g we suppose cµ ≤ 1 based
on argument in Appendix G. Then it holds that for any θ1, θ2 ∈ Rp

G(θ1)−G(θ2) =[
T1∑
i=1

(µ′(x>s1,iθ)− µ(s1, i
>θ∗))xs1,ix

>
s1,i +

n∑
i=1

(µ′(x>i θ)− µ(x>i θ
∗))xix

>
i + Λ

]
(θ1 − θ2).

By denoting V =
∑T1

i=1 xs1,ix
>
s1,i

+
∑n
i=1 xix

>
i + Λ. We have

(θ1 − θ2)>(G(θ1)−G(θ2)) ≥ (θ1 − θ2)>(cµV )(θ1 − θ2) > 0

Therefore, the rest of proof would be identical to that of Step 1 in the proof of Theorem 1 in [23].
Based on the step 1 in the proof of Theorem 1 in [23], we have

‖G(θ)‖2V −1 ≥ c2µλmin(V ) ‖θ − θ∗‖22 .

as long as ‖θ − θ∗‖2 ≤ 1. Then Lemma A of [6] and Lemma 7 of [23] suggest that we have∥∥∥θ̂ − θ∗∥∥∥ ≤ 4σ

cµ

√
p+ log(1/δ)

σ2
≤ 1,

when λmin(V ) ≥ 16σ2[p + log(1/δ)]/c2µ for any δ > 0. Therefore, it suffices to show that the
condition λ1 ≥ 16σ2[p+ log(1/δ)]/c2µ for any δ > 0 holds with high probability (e.g. 1− δ), and
we utilize the Proposition 1 of [23], which is given as follows:
Proposition (Proposition 1 of [23]): Define Vn =

∑n
t=1 xtx

>
t (+Λ) where xi is drawn iid from some

distribution ν with suppost in the unit ball, Bd. Furthermore, let Σ = E(xtx
>
t ) be the second moment

matrix, and B and δ be two positive constants. Then, there exists positive universal constants C1 and
C2 such that λmin(Vn) ≥ B with probability at least 1− δ, as long as

n ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σ)

)2

+
2B

λmin(Σ)

Therefore, we can dedeuce that
∥∥∥θ̂t − θ∗∥∥∥

2
≤ 1 holds with probability at least 1 − δ as long as

T1 ≥ ((Ĉ1
√
p+ Ĉ2

√
log(1/δ))/λ1)2 + 2B/λ1 holds for some absolute constants Ĉ1, Ĉ2 with the
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definition B := 16σ2(p+ log(1/δ))/c2µ. Notice that this condition could easily hold if λ1 � σ2 is
not diminutive in magnitude. Otherwise, we believe a tighter bound exists in that case, and we will
leave it as a future work.

We also present an intuitive explanation for this consistency result: [23] proved the consistency of
the MLE θ̂t without the regularizer. Regarding the penalty θ>Λθ, for the first k entries of θ̂t the
penalized parameter λ0 is small, and hence it will have mild effect after sufficient warm-up rounds
T1. For the remaining (p − k) elements suffering large penalty, the estimated θ̂t,k+1:p would be
ultra small in magnitude as desired since we argue that after the transformation θ∗k+1:p will also be

insignificant. This implies that
∥∥∥θ̂t,k+1:p − θ∗k+1:p

∥∥∥
2

is well contronlled. As a result, the estimated

θ̂t tends to be consistent.

E Analysis of Theorem 4.2

E.1 Proof of Theorem 4.2

Proof. Let us define rt = maxX∈X µ(〈X,Θ∗〉) − µ(〈Xt,Θ
∗〉), the instantaneous regret at time t.

We can easily bound the regret for stage 1 as
∑T1

t=1 rt ≤ 2SfT1. For the second stage, we have a
bound according to Theorem C.1 (Theorem H.1):

T∑
t=T1+1

rt ≤ Õ(k
√
T +

√
λ0kT + TS⊥) ≤ Õ

(
k
√
T +

√
λ0kT + T

d1d2r

T1D2
rr

log

(
d1 + d2

δ

))
.

Therefore, the overall regret is:
T∑
t=1

rt ≤ Õ
(

2SfT1 + k
√
T +

√
λ0kT + T

d1d2r

T1D2
rr

log

(
d1 + d2

δ

))
.

After plugging the choice of T1 given in Theorem 4.2, it holds that
T∑
t=1

rt ≤ Õ
(

(

√
rd1d2

Drr
+
√
λ0k + k)

√
T

)
. Õ

(
(

√
rd1d2

Drr
+ k)
√
T

)
= Õ

(
(d1 + d2)r

√
T
)
.

F Details of Theorem 4.3

F.1 Proof of Theorem 4.3

Proof. Here we will overload the notation a little bit. Under the new arm feature set and parameter
set after rotation, let X∗ be the best arm and Xt be the arm we pull at round t for stage 2. And we
denote xt,sub be the vectorization of Xt after removing the last p − k covariates, and similarly
define x∗sub and θ∗sub as the subtracted version of vec(X∗) and vec(Θ∗) respectively. We use
rt = µ(〈X∗,Θ∗〉) − µ(〈Xt,Θ

∗〉) as the instantaneous regret at round t for stage 2. Then it holds
that, for t ∈ [T2]

rt = µ(〈X∗,Θ∗〉)− µ(x∗sub
>θ∗sub) + µ(x∗sub

>θ∗sub)− µ(x>t,subθ
∗
sub) + µ(x>t,subθ

∗
sub)− µ(〈Xt,Θ

∗〉)
≤ kµ|〈X∗,Θ∗〉 − x∗sub>θ∗sub|+ kµ|〈Xt,Θ

∗〉 − x>t,subθ∗sub|+ µ(x∗sub
>θ∗sub)− µ(x>t,subθ

∗
sub)

≤ kµ(
∥∥∥Û>⊥X∗V̂⊥∥∥∥

F
+
∥∥∥Û>⊥XtV̂⊥

∥∥∥
F

)
∥∥∥Û>⊥UDV >V̂⊥∥∥∥

F
+ µ(x∗sub

>θ∗sub)− µ(x>t,subθ
∗
sub)

≤ 2kµS0
d1d2r

T1D2
rr

log

(
d1 + d2

δ

)
+ µ(x∗sub

>θ∗sub)− µ(x>t,subθ
∗
sub).

Therefore, the overall regret can be bounded as

2SfT1 +

T2∑
t=1

rt ≤ 2SfT1 + 2kµS0
d1d2r

D2
rrT1

T2 +

T2∑
t=1

µ(x∗sub
>θ∗sub)− µ(x>t,subθ

∗
sub).
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Since efficient low dimensional generalized linear bandit algorithm can achieve regret Õ(d
√
T )

where d is the dimension of parameter and T is the time horizon when no sparsity (low-rank structure)
presents in the model. After plugging our carefully chosen T1, the regret is

2SfT1 + 2kµS0
d1d2r

T1D2
rr

log

(
d1 + d2

δ

)
T2 + Õ(k

√
T2) = Õ

(
(

√
rd1d2

Drr
+ k)
√
T

)
= Õ

(
dr
√
T
)
. (22)

And here we use the condition that Drr = Θ(1/
√
r) since Θ∗ has a low rank structure with

rank(Θ∗) = r.

F.2 Modified Theorem 4.3 with finite action sets

Our ESTS framework could be used and attain a better regret bound when the action set is finitely large,
and we only need to choose appropriate generalized linear bandit algorithms in stage 2 accordingly.
When the action set is finite, we know that some state-of-the-art generalized linear bandit algorithms
(e.g. SupCB-GLM [23]) could achieve regret bound as O(

√
dT ) with d-dimensional contextual

information over T rounds, and it is also the minimax lower bound for this problem [21]. By using
the same values for parameters in Theorem 4.3, we can show that the overall regret is after modifying
Eqn. (22):

2SfT1 + 2kµS0
d1d2r

T1D2
rr

log

(
d1 + d2

δ

)
T2 + Õ(

√
kT2) = Õ

(
(

√
rd1d2

Drr
+
√
k)
√
T

)
= Õ

(√
d1d2rT

Drr

)
.

Note here we get an improved regret bound when the action set is finite, and this regret bound is
better than the optimal bound Õ((

√
rd1d2/Drr + k)

√
T ) for generalized low-rank matrix bandit

with arbitrary arm set by omitting the term Õ(k
√
T ).

G Explanation of Vt replacing Mt(cµ)

Technically we can always assume cµ ∈ (0, 1] since we can always choose cµ = 1 when it can take
values greater than 1. And when cµ ≤ 1 it holds that,

Mt(cµ) =

t−1∑
i=1

xix
>
i +

Λ

cµ
�

t−1∑
i=1

xix
>
i + Λ = Vt.

Therefore, we can easily keep the exactly identical outline of our proof of the bound of regret for
Algorithm 2 after replacing Mt(cµ) by Vt everywhere, and the result only change by a constant factor
of 1/

√
cµ, which would not be too large in most cases. However, in our algorithm and proof we still

use Mt(cµ) for a better theoretical bound.

H Additional Algorithms

H.1 PLowGLM-UCB

We could modify Algorithm 2 by only recomputing θ̂t and whenever |Mt(cµ)| increases by a constant
factor C > 1 in scale, and consequently we only need to solve the Eqn. (10) for O(log(T2)) times up
to the horizon T2, which significantly alleviate the computational complexity. The pseudo-code of
PLowGLM-UCB is given in Algorithm 4.

Theorem H.1 shows the regret bound of PLowGLM-UCB under Assumption 3.4 and 3.5.

Theorem H.1. (Regret of PLowGLM-UCB) For any fixed failure rate δ ∈ (0, 1), if we run the
PLowGLM-UCB algorithm with ρt(δ) = αt+T1

(δ/2) and

λ⊥ �
cµS

2
0T

k log(1 +
cµS2

0T
kλ0

)
.
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Algorithm 4 PLowGLM-UCB

Input: T2, k,X0, the probability rate δ, penalization parameters (λ0, λ⊥), the constant C.
1: Initialize M1(cµ) =

∑T1

i=1 xs1,i x
>
s1,i

+ Λ/cµ.
2: for t ≥ 1 do
3: if |Mt(cµ)| > C|Mτ (cµ)| then
4: Estimate θ̂t according to (10).
5: τ = t
6: end if
7: Choose arm xt = arg maxx∈X0

{µ(x>θ̂τ ) + ρτ (δ) ‖x‖M−1
t (cµ)}, receive yt.

8: Update Mt+1(cµ)←−Mt(cµ) + xtx
>
t .

9: end for

Then the regret of PLowGLM-UCB (RegretT2
) satisfies, with probability at least 1− δ

Õ(k
√
T2 +

√
λ0kT + TS⊥) ·

√
C= Õ(k

√
T + TS⊥) ·

√
C.

Similarly, for PLowUCB-GLM we can also prove that the regret bound increase at most by a constant
multiplier

√
C by using the same lemma and argument we show in the following Section H.2. And

we can get the bound of regret for PLowGLM-UCB in problem dependence case, and the bound will
be exactly the same as that we have shown in Theorem C.1 except a constant multiplier

√
C.

H.2 Proof of Theorem H.1

We use similar sketch of proof for Theorem 5 in [1]. First, we show the following lemma:

Lemma H.2. ([1], Lemma 12) Let A and B be two positive semi-definite matrices such that A � B.
Then, we have that

sup
x6=0

x>Ax

x>Bx
≤ |A|
|B|

.

Then we can outline the proof of Theorem H.1 as follows.

Proof. Let τt be the value of τ at step t in Algorithm H.1. By an argument similar to the one used in
proof of Theorem C.1, we deduce that for any x ∈ R and all t ≥ 2 simultaneously,

|µ(x>θ∗)− µ(x>θ̂τt)| ≤
kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1
τt (cµ)

‖x‖M−1
τt (cµ)

=
kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1
τt (cµ)

∥∥∥M− 1
2

τt (cµ)x
∥∥∥

2

≤ kµ
cµ

∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥
M−1
τt (cµ)

∥∥∥M− 1
2

t (cµ)x
∥∥∥

2

√
|M−1

τt (cµ)|
|M−1

t (cµ)|

≤ kµ
cµ

√
C
∥∥∥gτt(θ∗)− gτt(θ̂τt)∥∥∥

M−1
τt (cµ)

‖x‖M−1
t (cµ) ≤

√
Cβxt+T1

(δ).

where the last inequality comes from the proof of Proposition C.2 similarly. The rest of the proof will
be mostly identical to that of Theorem C.1 and hence we would copy it here for completeness:

Based on Proposition C.10 we have

µ(x∗>θ∗)− µ(x>t θ
∗) ≤ 2

√
Cβxtt+T1

(
δ

2

)
= 2
√
Cαt+T1

(
δ

2

)
‖xt‖M−1

t (cµ)

≤ 2
√
CαT

(
δ

2

)
‖xt‖M−1

t (cµ) .
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Algorithm 5 Generalized Explore Subspace Then Transform (G-ESTT)

Input: Action set {Xt}, T, T1,D, the probability rate δ, parameters for stage 2: λ, λ⊥.
Stage 1: Subspace Estimation

1: Randomly choose Xt ∈ X according to D and record Xt, Yt for t = 1, . . . T1.
2: Obtain Θ̂ by solving the following equation:

Θ̂ = arg min
Θ∈Rd1×d2

1

T1

T1∑
i=1

{b(〈Xi,Θ〉)− yi〈Xi,Θ〉}+ λT1 ‖Θ‖nuc .

3: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]> where Û and V̂ contains the first r left-singular
vectors and the first r right-singular vectors respectively.

Stage 2: Almost Low Rank Generalized Linear Bandit
4: Rotate the admissible parameter space: Θ ′ := [Û , Û⊥]>Θ [V̂ , V̂⊥], and transform the parameter

set as:

Θ0 := {vec(Θ ′1:r,1:r), vec(Θ ′r+1:d1,1:r), vec(Θ ′1:r,r+1:d2), vec(Θ ′r+1:d1,r+1:d2)}.

5: for t ≥ T − T1 do
6: Rotate the arm feature set: X ′t := [Û , Û⊥]>Xt[V̂ , V̂⊥].
7: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are almost

negligible:

X0,t := {vec(X ′{1:r,1:r},t), vec(X ′{r+1:d1,1:r},t), vec(X ′{1:r,r+1:d2},t), vec(X ′{r+1:d1,r+1:d2},t)}.

8: Invoke LowGLM-UCB (PLowGLM-UCB or LowUCB-GLM) with the arm set X0,t, the
parameter space Θ0, the low dimension k = (d1 +d2)r−r2 and penalization parameter (λ0, λ⊥)
for one round. Update the matrix Mt(cµ) or Vt accordingly.

9: end for

Since we have that αT2(δ/2) > kµS
2
0 , the Regret of Algorithm 4 can be bounded as

RegretT2
≤ 2kµS

2
0 +

T2∑
t=2

min{µ(x∗>θ∗)− µ(x>t θ
∗), 2kµS

2
0}

≤ 2kµS
2
0 + 2

√
CαT

(
δ

2

) T2∑
t=2

min{‖xt‖M−1
t (cµ) , 1}

≤ 2kµS
2
0 + 2

√
CαT

(
δ

2

)√
T2

√√√√ T2∑
t=2

min{‖xt‖2M−1
t (cµ) , 1}.

where the last ineuqlity comes from Cauchy-Schwarz inequality. Finally, by a self-normalized
martingale inequality ( [1], Lemma 11) and and then plugging in the chosen value for λ⊥ =

cµS
2
0T

k log(1 +
cµS2

0T
kλ0

)
, we have

RegretT2 ≤ 2kµS
2
0 +

2kµ
cµ

√
C

×

σ0

√
2k log

(
1 +

cµS2
0

kλ0
T

)
− 2 log

(
δ

2

)
+
√
cµ

√λ0S0 +

√√√√ cµS2
0T

k log
(

1 +
cµS2

0

kλ0
T
)S⊥




×
√
T2

√
4k log

(
1 +

cµS2
0

kλ0
T

)
,

which gives us the final bound in Theorem H.1.
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Algorithm 6 Generalized Explore Subspace Then Subtract (G-ESTS)

Input: Action set {Xt}, T, T1,D, the probability rate δ, parameters for stage 2: λ, λ⊥.
Stage 1: Subspace Estimation

1: for t = 1 to T1 do
2: Pull arm Xt ∈ X according to the distribution D, observe payoff yt.
3: end for
4: Obtain Θ̂ by solving the following equation:

Θ̂ = arg min
Θ∈Rd1×d2

1

T1

T1∑
i=1

{b(〈Xi,Θ〉)− yi〈Xi,Θ〉}+ λT1
‖Θ‖nuc .

5: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]> where Û and V̂ contains the first r left-singular
vectors and the first r right-singular vectors respectively.

Stage 2: Low Rank Generalized Linear Bandit
6: Rotate the admissible parameter space: Θ ′ := [Û , Û⊥]>Θ [V̂ , V̂⊥], and transform the parameter

set as:

Θ0 := {vec(Θ ′1:r,1:r), vec(Θ ′r+1:d1,1:r), vec(Θ ′1:r,r+1:d2), vec(Θ ′r+1:d1,r+1:d2)}.

7: for t ≥ T − T1 do
8: Rotate the arm feature set: X ′t := [Û , Û⊥]>Xt[V̂ , V̂⊥].
9: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are almost

negligible, and then drop the last (d1 − r) · (d2 − r) components:

X0,sub,t := {vec(X ′{1:r,1:r},t), vec(X ′{r+1:d1,1:r},t), vec(X ′{1:r,r+1:d2},t)}.

10: Invoke any modern generalized linear (contextual) bandit algorithm with the arm set X0,sub,t,
the parameter space Θ0,sub, and the low dimension k = (d1 + d2)r − r2 for one round.

11: end for

H.3 Algorithms for the Contextual Setting

To show algorithm G-ESTT and G-ESTS for the contextual setting, where the arm set Xt = {Xi,t}
may vary over time t = [T ], we would firstly update some notations besides the ones we have defined
in Section 4.2. We denote the time-dependent action set Xt after rotation as:

X ′t = [Û , Û⊥]>X [V̂ , V̂⊥],

And we modify the notations of the vectorized arm set for G-ESTT and G-ESTS defined in Eqn. (3),
(13) accordingly for each iteration:

X0,t := {vec(X ′{1:r,1:r},t), vec(X ′{r+1:d1,1:r},t), vec(X ′{1:r,r+1:d2},t), vec(X ′{r+1:d1,r+1:d2},t)},
X0,sub,t := {vec(X ′{1:r,1:r},t), vec(X ′{r+1:d1,1:r},t), vec(X ′{1:r,r+1:d2},t)}.

Details can be found in Algorithm 5 and 6.

I Additional Experimental Details

I.1 Parameter Setup for Simulations

Here we present our parameter setting for algorithms involved in our experiment in Section 5.
Basic setup: horizon T = 45000. For the case where d1 = d2 = 12 and r = 2 we extend the
horizon until 75000 in figures to display the superiority of our proposed algorithms more clearly. The
480 (1000) random matrices are sampled uniformly from d1d2-dimensional unit sphere.

LowESTR: (same setup as in [26])

• failure rate: δ = 0.01, the standard deviation: σ = 0.01 and the steps of stage 1: T1 = 1800.

• penalization parameter in stage 1: λT1 = 0.01
√

1
T1

, and the gradient decent step size: 0.01.
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• B = 1, B⊥ = σ2(d1+d2)3r
T1D2

r,r
, λ = 1, λ⊥ = T2

k log(1+T2/λ) , grid search for
√
βt with multiplier in

{0.2, 1, 5}.
SGD-TS: (details in [9])

• grid search for exploration rates in {0.1, 1, 10}.
• grid search for C in {1, 3, 5, 7}.
• grid search for initial step sizes in {0.01, 0.1, 1, 5, 10}.
G-ESTT: (LowGLM-UCB in Stage 2)

• failure rate: δ = 0.01, and the steps of stage 1: T1 = 1800.
• S0 = 1,Θ = {X ∈ Rd1×d2 : ‖X‖F ≤ 1} for the case r = 1, and S0 = 5,Θ = {X ∈ Rd1×d2 :
‖X‖F ≤ 5} for the case r = 2.

• penalization in solving Eqn. (6) with λT1
suggested in Theorem 4.1. (We believe that a simple grid

search near this value would be better.)
• pij set to be centered normal distribution with standard deviation 1/d in Stage 1. Specifically, at

each round we randomly select a matrix Xrand,t based on this {pij} elementwisely, and then pull
the arm that is closest to Xrand,t w.r.t. ‖·‖F among all candidates in the arm set.

• proximal gradient descent with backtracking line search solving Eqn. (6), step size set to 0.1.

• λ0 = 1, λ⊥ =
c2µS

2
0T2

k log

(
1+

cµS
2
0T2

kλ0

) , S⊥ = d1d2r
T1D2

rr
log
(
d1+d2
δ

)
, grid search for exploration bonus with

multiplier in {0.2, 1, 5}.
G-ESTS: (SGD-TS in Stage 2)

• The steps of stage 1: T1 = 1800.
• penalization in solving Eqn. (6) with λT1 suggested in Theorem 4.1. (We believe that a simple grid

search near this value would be better.)
• pij set to be centered normal distribution with standard deviation 1/d in Stage 1. Specifically, at

each round we randomly select a matrix Xrand,t based on this {pij} elementwisely, and then pull
the arm that is closest to Xrand,t w.r.t. ‖·‖F among all candidates in the arm set.

• proximal gradient descent with backtracking line search solving Eqn. (6), step size set to 0.1.
• use the same setup for SGD-TS as we have listed.

I.2 Additonal experimental results

Here we display the regret curves of algorithms under four settings with 1000 arms in Figure 2,
where our proposed G-ESTS and G-ESTT also dominate other methods regarding both accuracy and
computation.

I.3 Comparison between G-ESTT and G-ESTS

In this section we compare the performance of our two frameworks G-ESTT and G-ESTS, and
it is obvious that both these two proposed methods work better than the existing LowESTR and
state-of-the-art generalized linear bandit algorithms under our problem setting based on Figure 1 and
2. Notice that G-ESTT and G-ESTS perform similarly well under the scenario r = 1 (G-ESTS is
slightly better). However, for the case r = 2, we find that G-ESTT achieve less cumulative regret
than G-ESTS does. We believe it is because that, on the one hand, G-ESTS depends more on the
precision of estimate Θ̂, which becomes more challenging for the case r = 2. On the other hand, for
G-ESTS how to reuse the random-selected actions in stage 1 is also tricky, and we will leave it as a
future work. Therefore, G-ESTT (with LowUCB-GLM) quickly takes the lead in the very beginning
of stage 2 since LowUCB-GLM can yield a consistent estimator early in stage 2 by reclaiming the
randomly-chosen actions.
However, we find that G-ESTS is incredibly faster than other methods (including G-ESTT) as it
only spends about one tenth of the running time of LowESTR until convergence as shown in Table
2. Notice that G-ESTT with LowUCB-GLM is a little bit slower since it utilizes more samples for
estimation in each iteration for better performance. Moreover, we conduct another simulation for the
case r = 2, d1 = d2 = 12 where we additionally choose T1 = 3200, and the results are displayed
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Figure 2: Plots of regret curves of algorithm G-ESES, SGD-TS and LowESTR under four settings
(1000 arms). (a): diagonal Θ∗ d1 = d2 = 10, r = 1; (b): diagonal Θ∗ d1 = d2 = 12, r = 1; (c):
non-diagonal Θ∗ d1 = d2 = 10, r = 2; (d): non-diagonal Θ∗ d1 = d2 = 12, r = 2.
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Figure 3: Plots of regret curves of algorithm G-ESES the scenario d1 = d2 = 12, r = 2 under
T1 = 1800 and T1 = 3200 (a): fixed 480 arms; (b): fixed 1000 arms.

in Figure 3 after 100 times repeated simulations. We observe that by appropriately enlarging the
length of stage 1 (T1), G-ESTS would perform better in the long run as we expect, since a more
accurate estimation of Θ∗ could be obtained. Therefore, we can conclude our proposed G-ESTS
could perform prominently with parsimonious computation by mildly tuning the length of stage 1
(T1).

I.4 Comparison with other matrix subspace detection methods

To pre-check the efficiency of our Stein’s lemma-based method for subspace estimation, we also tried
the nuclear-norm regularized log-likelihood maximization with its details introduced in the following
Appendix I. Particularly, we could solve the regularized negative log-likelihood minimization problem
with nuclear norm penalty as shown in Eqn. (23).

Specifically, we consider the two cases of our simulations: 480 arms, d =10, r =1 (Figure 1(a) case)
and 480 arms, d =10, r =2 (Figure 1(c) case). We used the same setting as described in Appendix I
above (T1=1800, T=45000), and implemented proximal gradient descent with the backtracking line
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Table 3: Comparison between our proposed Stein’s lemma-based method and the log-likelihood
maximization method for low-rank matrix subspace estimation.

Case Low-rank detection method Regret Transformed error

Figure 1(a) Stein’s lemma-based method G-ESTT:723.27, G-ESTS:510.80 0.086
Log-likelihood maximization G-ESTT:724.96, G-ESTS:515.25 0.089

Figure 1(c) Stein’s lemma-based method G-ESTT:1088.26, G-ESTS:1106.71 0.542
Log-likelihood maximization G-ESTT:1136.54, G-ESTS:1198.39 0.583

search for optimization. The average regret cumulative regret along with the average transformed
error

∥∥∥θ∗(k+1):p

∥∥∥
2

defined in Eqn. (8) are reported in Table 3.

Therefore, we can see that our low-rank matrix detection method outperforms the regularized log-
likelihood maximization method, especially when the underlying parameter matrix is complicated
(Figure 1(c) case). This is also consistent with our theoretical analysis, as we will show in the

following Appendix J that the theoretical bound of loss
∥∥∥Θ̂−Θ∗

∥∥∥2

F
is of order d3r/T1 using the

regularized log-likelihood maximization method, which is worse than the convergence rate of our
proposed method in Theorem 4.1.

J Bonus: Matrix Estimation with Restricted Strong Convexity

J.1 Methodology

As we have mentioned in our main paper, we can achieve a better matrix recovery rate regarding
the Frobenius norm by using generalized first-order Stein’s Lemma on Eqn. (6) other than using the
restricted strong convexity [35]. Specifically, [26] provided a line of proof to show the convergence
rate as ∥∥∥Θ̂−Θ∗

∥∥∥
F

= O

√ (d1 + d2)3r

T1


only in the linear reward framework during time horizon T1. Therefore, it implies that we may
not be not able to find a better bound than O(

√
d1 + d2)3r/T1) in GLM since the linear model is

a special case of GLM. This fact implies that our matrix estimation method is superior regarding
the theoretical bound. However, for the completeness of our work, we also approach the matrix
estimation problem by using the restricted strong convexity theory to see whether we could get the
same covergence rate O(

√
d1 + d2)3r/T1) in GLM as in the linear case. Specifically, we use the

regularized negative log-likelihood minimization with nuclear norm penalty for the loss function in
stage 1, and consequently we are able to get the same bound as in the linear case. Notice that this
work is also non-trivial since constructing the restricted strong convexity for the generalized linear
low-rank matrix estimation requires us to use a truncation argument and a peeling technique [30],
which is completely different that used in simple linear case [26]. Therefore, to facilitate further study
in this area and for the completeness of our work, we would present the detailed proof here in the
following as a bonus. Notice that if we use the following method in stage 1, we could get achieve the
same regret bound as a scale of Õ((d1 + d2)3/2

√
rT ) in time T by using both G-ESTT or G-ESTS

with stage 2 invariant as our main paper. And this alternative bound is worse than the one we get in
our main work.

Loss function: we consider the following well-defined regularized negative log-likelihood minimiza-
tion problem with nuclear norm penalty in stage 1:

Θ̂ = arg min
Θ∈Rd1×d2

LT1
(Θ) + λT1

‖Θ‖nuc , where

LT1(Θ) =
1

T1

T1∑
i=1

{b(〈Xi,Θ〉)− yi〈Xi,Θ〉}, (23)

Different assumptions with notations reloaded:
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Assumption J.1. There exists a sampling distribution D over X with covariance matrix of vec(X)
as Σ ∈ Rd1d2×d1d2 , such that λmin(Σ) = λ1 and vec(X) is sub-Gaussian with parameter σ = λ2

such that λ1/λ
2
2 can be absolutely bounded.

Assumption J.2. The norm of true parameter Θ∗ and feature matrices in X is bounded: there exists
S ∈ R+ such that for all arms X ∈ X , ‖X‖F , ‖Θ∗‖F ≤ S; ‖X‖op , ‖Θ∗‖op ≤ S2 (S2 ≤ S).

Assumption J.3. The inverse link function µ(·) is continuously differentiable, Lipschitz with constant
kµ. cµ ≥ infΘ∈Θ,X∈X µ

′(〈X,Θ〉) > 0 and cµ ≥ inf{|x|<(S+2)σc2} µ
′(x) > 0 for some constant c2.

Here we could safely choose σ = 1/
√
d1d2 [26] as default. Without loss of generality, we can assume

that c−σ2 ≤ {λ1, λ
2
2} ≤ c+σ

2 for some absolute constant c−, c+ for the simplicity of following
theoretical analysis. Assumption J.1 implies that if X is sampled from the distribution D, then for
any ∆ ∈ Rd1×d2 satisfying ‖∆‖F ≤ 1, we have:

E[〈X,∆〉2] = vec(∆)>Σvec(∆) ≥ λ1 ≥ c− σ2 := α; (24)

E[〈X,∆〉4] ≤ 16λ4
2 ≤ 16c2+ σ

4 := β. (25)

J.2 Theorem

Theorem J.4. (Bounds for GLM via another loss function in Eqn. (23)) For any low-rank generalized
linear model with samples X1 . . . , XT1

drawn from X according to D in Assumption J.1, and
Assumption J.2, J.3 hold. Then the optimal solution to the nuclear norm regularization problem (23)
with λT1 = Ω(σ

√
(d− log(δ))/T1) would satisfy:∥∥∥Θ̂−Θ∗

∥∥∥2

F
� d

T1 σ2
r � d3r

T1
, (26)

with probability at least 1− δ given the condition d r . σ2T1 and (1 + σ)2d r . T1 hold.

To prove this theorem, roughly speaking we firstly deduce the restricted strong convexity condition
for our optimization problem with high probability, and then extend some previous results on the
oracle inequality of estimation error.

Remark. We explain why in theory our Stein’s-lemma-based method is better than this classic matrix
estimation approach for our problem setting here: Intuitively, we take advantage of the fact that only
singular subspaces spanned by Θ∗ are required for our transformation in stage 2, but its exact singular
values are not necessary. Therefore, we introduced our Stein’s-lemma-based quadratic optimization
problem, which particularly focuses on subspace detection and hence is more appropriate for our
explore-then-commit frameworks. In other words, our Stein’s-lemma-based matrix recovery method
could only detect the subspace precisely, but cannot estimate the exact singular values since there are
some unknown non-zero constant µ∗ in the loss

∥∥∥Θ̂−Θ∗
∥∥∥
F

. However, our frameworks only rely on

the singular subspaces spanned by the estimate Θ̂ instead of its exact singular values in stage 2, and
hence this sacrifice (introducing µ∗) does not affect the Stage 2 and regret bound at all. Note that all
existing low-rank matrix estimation methods (e.g. log-likelihood maximization shown here) would
waste some information for exact singular value recovery, and hence are inefficient for our problem.

J.3 Restricted Strong Convexity

Definition J.5. (Restricted strong convexity (RSC), [28]). Given the cost function LT1
(Θ) defined

in (6) and X1, . . . , XT1 ∈ Rd1×d2 , the first-order Taylor-series error is defined as:

ET1(∆) := LT1(Θ∗ + ∆)− LT1(Θ∗)− 〈∇LT1(Θ∗),∆〉.

For a given norm ‖·‖ and regularizer Φ(·), the cost function satisfies a restricted strong convexity
(RSC) condition with radius R > 0, curvature κ > 0 and tolerance τ2 if

ET1
(∆) ≥ κ

2
‖∆‖2F − τ

2
T1

Φ2(∆), for all ‖∆‖F ≤ R.
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Theorem J.6. (RSC for GLM under distribution D). Consider any low-rank generalized linear
model with samples X1 . . . , XT1 drawn from X according to D in Assumption J.1, and Assumption
J.2 and J.3 hold. Then there exists constants c3, c4 such that with probability 1− δ, we have the RSC
condition holds:

ET1
(∆) ≥ c3σ2cµ ‖∆‖2F −(c4σ

2 + 2σ)

(√
d1

T1
+

√
d2

T1

)
cµ ‖∆‖2nuc for all ‖∆‖F ≤ 1

(27)

with κ = c3σ
2cµ, τ

2
T1

= (c4σ
2+2σ)

(√
d1

T1
+

√
d2

T1

)
cµ, R = 1, ‖·‖ = ‖·‖F and Φ(·) = ‖·‖nuc

for T1 = O(log(log2(d)/δ)).

Remark J.7. The radius R in Theorem J.6 can be adapted to any finite positive constant keeping the
same proof outline. And the required sample size T1 only change in logarithmic power, which can be
easily satisfied.

J.3.1 Proof of Theorem J.6

To prove theorem J.6, we use a truncation argument and the peeling technique [30, 35]:

Using the property of the remainder in the Taylor series, we have

ET1
(∆) =

1

T1

T1∑
i=1

µ′ (〈Xi,Θ
∗〉+ t〈Xi,∆〉) 〈Xi,∆〉2,

for some t ∈ [0, 1]. Based on (24) and (25) we will set two truncation parameters K2
1 = 4β/α and

K2
2 = 4βS2/α for further use. For any ‖∆‖F = δ ∈ (0, 1], we set τ = K1δ and a trunction function

φτ (v) = v2 · I{|v|≤2τ}. Then we have:

ET1(∆) ≥ 1

T1

T1∑
i=1

µ′ (〈Xi,Θ
∗〉+ t〈Xi,∆〉)φτ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2}.

The right hand side would always be 0 if |〈Xi,Θ
∗〉 + t〈Xi,∆〉| > 2K1 + K2, which implies the

following result based on Assumption J.3:

ET1(∆) ≥ cµ
1

T1

T1∑
i=1

φτ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2}.

Therefore, it suffices to how that for all δ ∈ (0, 1] and for ‖∆‖F = δ, we have:

1

T1

T1∑
i=1

φτ(δ)(〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} ≥ a1δ
2 − a2 ‖∆‖nuc δ, (28)

for some parameters a1 and a2 since the inequality ‖∆‖F ≤ ‖∆‖nuc always holds. Note the fact that
φτ(δ)(〈Xi,∆〉) = δ2φτ(1)(〈Xi,∆/δ〉), then for any ‖∆‖F = δ such that δ ∈ (0, 1], we can apply
bound (28) to the rescaled unit-norm matrix ∆/δ to obtain:

1

T1

T1∑
i=1

φτ (1)(〈Xi,∆/δ〉)I{|〈Xi,Θ∗〉|≤K2} ≥ a1 − a2 ‖∆/δ‖nuc ,

which implies that it suffices to show (28) holds when δ = 1, i.e.

1

T1

T1∑
i=1

φτ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} ≥ a1 − a2 ‖∆‖nuc , for all ‖∆‖F = 1.
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Then we can construct another truncation function φ̃τ (v) with parameter at most 2τ = 2K1 as

φ̃τ (v) = v2I{|v|≤τ} + (v − 2τ)2I{τ<v≤2τ} + (v + 2τ)2I{−2τ≤v<−τ}.

Then it suffices to show that

1

T1

T1∑
i=1

φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} ≥ a1 − a2 ‖∆‖nuc , for all ‖∆‖F = 1.

And for a given radius r ≥ 1, define the random variable

ZT1(r) = sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} − E
(
φ̃τ (〈X,∆〉)I{|〈X,Θ∗〉|≤K2}

)∣∣∣∣∣ .

Firstly, we can prove that

E[φ̃τ (〈X,∆〉)I{|〈X,Θ∗〉|≤K2}] ≥
1

2
α, (29)

by using the chosen values for K1 and K2 to show that

E[φ̃τ (〈X,∆〉)] ≥ 3

4
α, E[φ̃τ (〈X,∆〉)I{|〈X,Θ∗〉|>K2}] ≤

1

4
α.

Specifically, since we have

E[φ̃τ (〈X,∆〉)] ≥ E[〈X,∆〉2I{|〈X,Θ∗〉|≤τ}] ≥ α− E[〈X,∆〉2I{|〈X,Θ∗〉|>τ}]

And we can show that the last term is at most α/4 based on the Markov’s inequality and Cauchy-
Schwarz inequality:

E[〈X,∆〉2I{|〈X,Θ∗〉|>τ}] ≤
√
E[〈X,∆〉4]

√
P ([|〈X,Θ∗〉| > τ ]) ≤

√
β

√
β

τ4
≤ α

4
.

And similarly we can prove that E[φ̃τ (〈X,∆〉)I{|〈X,Θ∗〉|>K2}] ≤ α/4. On the other hand, by our
choice τ = K1, the empirical process defining ZT1

(r) is based on functions bounded in absolute
value by K2

1 . Thus, the functional Hoeffding inequality (Theorem 3.26 in [35]) implies that

P

(
ZT1(r) ≥ E(ZT1(r)) + σr

(√
d1

T1
+

√
d2

T1

)
+
α

4

)
≤

exp

−n
(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2

4K4
1

 . (30)
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To bound the expected value term E(ZT1(r)), we introduce an i.i.d sequance of Rademacher variables
{εi}T1

i=1 and then use the symmetrization argument:

E(ZT1
(r)) = E

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} − E
(
φ̃τ (〈X,∆〉)I{|〈X,Θ∗〉|≤K2}

)∣∣∣∣∣


= E

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} − E

(
1

T1

T1∑
i=1

φ̃τ (〈Yi,∆〉)I{|〈Yi,Θ∗〉|≤K2}

)∣∣∣∣∣


≤ EXi,Yi

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} −
1

T1

T1∑
i=1

φ̃τ (〈Yi,∆〉)I{|〈Yi,Θ∗〉|≤K2}

∣∣∣∣∣


= EXi,Yi,εi

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εi

(
φ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2} − φ̃τ (〈Yi,∆〉)I{|〈Yi,Θ∗〉|≤K2}

)∣∣∣∣∣


≤ 2EXi,εi

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εiφ̃τ (〈Xi,∆〉)I{|〈Xi,Θ∗〉|≤K2}

∣∣∣∣∣


(i)
≤ 8K1EXi,εi

 sup
‖∆‖F=1,
‖∆‖nuc≤r

∣∣∣∣∣ 1

T1

T1∑
i=1

εi〈∆, Xi〉

∣∣∣∣∣
 (ii)
≤ 8K1 r · EXi,εi

∥∥∥∥∥ 1

T1

T1∑
i=1

εiXi

∥∥∥∥∥
op

 , (31)

where the inequality (i) comes from Rademacher contraction property and (ii) is by the duality
between matrix ‖·‖2 and ‖·‖nuc norms. Using the previous conclusion (Exercise 9.8 in [35]), we have

EXi,εi

∥∥∥∥∥ 1

T1

T1∑
i=1

εiXi

∥∥∥∥∥
op

 ≤ σc5c+(√d1

T1
+

√
d2

T1

)
, (32)

where c5 is an independent absolute constant. Combine (30), (31) and (32), we have

P

(
ZT1

(r) ≥ (8K1c5c+ + 1)σr

(√
d1

T1
+

√
d2

T1

)
+
α

4

)
≤ exp

−T1

(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2

4K4
1

 .

(33)

According to (29) and (33), we prove the following conclusion for any fixed value of radium r:

P

 sup
‖∆‖F=1,
‖∆‖nuc≤r

ET1(∆) <
1

4
αcµ − (8K1c5c+ + 1)

(√
d1

T1
+

√
d2

T1

)
σcµr

 ≤

exp

−T1

(
σr
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2

4K4
1

 . (34)

35



Since we have ‖∆‖F = 1, based on Cauchy-Schwarz inequality we have 1 ≤ ‖∆‖nuc ≤
√
d. To

prove the RSC we use a peeling argument to extend r to all possible values. Define the event:

E :=

{
There exists ∆ s.t. ‖∆‖F = 1, ET1

(∆) <
1

4
αcµ − (16K1c5c+ + 2)

×

(√
d1

T1
+

√
d2

T1

)
σcµ ‖∆‖nuc

}
(35)

Vi := {2i−1 ≤ ‖∆‖nuc < 2i}, i = 1, . . . ,

⌈
1

2
log2(d)

⌉
+ 1.

Then we can conclude that E ⊆
⋃d 1

2 log2(d)e+1

i=1 (E ∩ Vi). And we can show the probability of each
partition event (E ∩ Vi) can be upper bounded by (34):

P (E ∩ Vi) =P

 sup
‖∆‖F=1,

2i−1≤‖∆‖nuc<2i

ET1(∆) <
1

4
αcµ − (16K1c5c+ + 2)

(√
d1

T1
+

√
d2

T1

)
σcµ ‖∆‖nuc



≤ P

 sup
‖∆‖F=1,

2i−1≤‖∆‖nuc<2i

ET1(∆) <
1

4
αcµ − (8K1c5c+ + 1)

(√
d1

T1
+

√
d2

T1

)
σcµ2i


≤ exp

−T1

(
2iσ

(√
d1
T1

+
√

d2
T1

)
+ α

4

)2

4K4
1

 ,

which implies that

P (E) ≤ log2(d) exp

−T1

(
2σ
(√

d1
T1

+
√

d2
T1

)
+ α

4

)2

4K4
1

 .

We complete our proof of Theorem J.6 by noticing that the constants c3, c4 in (27) only depend on
the absolute constants c5, c+ and c− through our proof.

J.4 Technical Lemmas

Lemma J.8. (Bound for GLM with nuclear regualarization, [28, 35]) Consider the negative log-
likelihood cost function LT1

(·) defined in 6 and observations X1, . . . , XT1
satisfy a specific RSC

condtion in Definition 1, such that

ET1
(∆) ≥ κ

2
‖∆‖2F − τ

2
T1
‖∆‖2nuc , for all ‖∆‖ ≤ 1.

Then under the “good" event: G(λT1
) := {‖∇LT1

(Θ∗)‖op ≤ λT1
/2}, and the following two

conditions hold:

τ2
T1
r ≤ κ

128
, 4.5

λ2
T1

κ2
r ≤ 1.

Then any optimal solution to Eqn. 23 satisfies the bound∥∥∥Θ̂−Θ∗
∥∥∥2

F
≤ 4.5

λ2
T1

κ2
r. (36)
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J.5 Proof of Theorem J.4

According to Theorem J.6, there exists two absolute constants c3, c4 such that with probability at
least 1− δ, we have the RSC condition holds:

ET1
(∆) ≥ c3σ2cµ ‖∆‖2F − (c4σ

2 + 2σ)

(√
d1

T1
+

√
d2

T1

)
cµ ‖∆‖2nuc for all ‖∆‖F ≤ 1.

To implement Lemma 1, we would like to to figure out the value for regularization parameter λT1

such that the event G(λT1) can hold with high probability and simultaneously the bound in (36) can
be well controlled. The proof is by using the covering argument and Bernstein’s inequality to bound
the operator norm.
Let ξi = 〈Xi,Θ

∗〉, we have ‖∇LT1
(Θ∗)‖op =

∥∥∥ 1
n

∑T1

i=1(b′(ξi)− yi)Xi

∥∥∥
op

, and for all i ∈ [T1]

E[(b′(ξi)− yi)Xi] = E [Xi E[b′(ξi)− yi |Xi]] = 0.

Let Sd1 (Sd2) be the d1 (d2) dimensional Euclidean-norm unit sphere, and N d1 (N d2) be the 1/4
covering on Sd1 (Sd2) and Ξ(A) = sup

u∈Nd1 ,
v∈Nd2

u>Av for all A ∈ Rd1×d2 . By the proof of Lemma 1

in [10], we know that

‖A‖op ≤
16

7
Ξ(A). (37)

Besides, based on the properties of Orlicz-1 norm and Orlicz-2 norm, we have:∥∥(b′(ξi)− yi)u>Xiv
∥∥
ψ1
≤ ‖(b′(ξi)− yi)‖ψ2

∥∥u>Xiv
∥∥
ψ2
≤ c6

√
kµλ2, for all u ∈ Sd1 , v ∈ Sd2 .

For some absolute constant c6 (e.g. c6 = 6). Then for any fixed u ∈ Sd1 , v ∈ Sd2 , by Berstein’s
inequality we have

P

(∣∣∣∣∣ 1

T1

T1∑
i=1

(b′(ξi)− yi)u>Xiv

∣∣∣∣∣ > t

)
≤ 2 exp

[
−c7 min

(
T1t

2

c26kµλ
2
2

,
T1t

c6
√
kµλ2

)]
.

Then by the combination over all the union bounds and relation (37) we can claim that

P

∥∥∥∥∥ 1

T1

T1∑
i=1

(b′(ξi)− yi)Xi

∥∥∥∥∥
op

>
16

7
t

 ≤ 2 7d1+d2 exp

[
−c7 min

(
T1t

2

c26kµλ
2
2

,
T1t

c6
√
kµλ2

)]
.

Then the event {‖∇LT1
(Θ∗)‖2 ≥

16
7 t} holds with probability 1− δ if

t =
√
kµλ2 max

√c6(d1 + d2) log(7) + c6 log(2/δ)

T1
,
c6(d1 + d2) log(7) + c6 log(2/δ)

T1


= Ω

√d1 + d2 − log(δ)

T1
σ

 .

Since we assume (d1 + d2) . T1. By taking λT1
= 32

7 t �
√

d1+d2−log(δ)
T1

σ. We complete the proof
of Theorem J.4 and obtain the scale of the bound in (26) after plugging the chosen values of κ and
λT1

into (36).
Notice that the loss function here shown in Eqn. (23) is also convex and hence could be solved
by a wide class of optimization methods (e.g. subgradient descent algorithm), and we have the
convergence rate of matrix estimation as∥∥∥Θ̂−Θ∗

∥∥∥
F

= Õ

√d3r

T1


37



which is greater than the rate we deduced in Theorem 4.1 of our main paper as a factor of Õ(
√
d).

This also explicitly manifests the high efficiency of our methods with Stein’s method in stage 1.
Furthermore, if we use the methodology in Appendix J for stage 1 instead, and keep all the algorithms
setting in state 2 fixed and modify T1 accordingly, we can show that our G-ESTT and G-ESTS can
achieve the same regret bound Õ((d1 + d2)3/2

√
rT ) as in [26].

We also offer an explanation why we get an improved convergent bound by using Stein’s type Lemma
in Theorem 4.1 than using the RSC in Theorem J.4: Intuitively, we obtain the improved convergence
rate of order d2r/T in stage 1 at the expense of introducing a non-zero constant µ∗ in the loss∥∥∥Θ̂− µ∗Θ∗

∥∥∥
F

. However, our algorithm only uses the singular subspaces spanned by Θ̂ instead of its
exact singular values and hence this sacrifice (µ∗) does not affect the regret. This implies our matrix
recovery method based on Stein’s Lemma is more efficient for subspace learning.
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