Published as a conference paper at ICLR 2025

A 3D OBJECTS AND COLORS

In DynSuperCLEVR, we have 21 object classes and 8 colors. As described in the main paper, we
improve upon previous datasets by generating new 3D textures with different colors. Below, we
present all the 3D objects, with one object selected in each color.

---- = --

Figure 7: Examples of 3D objects in DynSuperCLEVR with a selected color for each object.

B DYNAMIC PROPERTIES SETTING

When constructing DynSuperCLEVR, we need to set the extra physical properties for objects for
physics simulation. In the main paper, we introduced the design of the 4D dynamic properties, such
as position, velocity, and acceleration. Here, we describe how the exact values are set in the physics
engine in Table[3] Additionally, we need to set a series of physical properties in the physics engine,
such as mass, friction, and restitution.

(1) Mass and Gravity: The mass of each object is calculated based on its specific shape model,
which is linearly related to its volume with a density of 2.7. All objects in the dataset are subject to
gravity, which influences their vertical movements and impacts when in flight or during falls. The
gravitational constant is set to 10.

(2) Friction: Frictional forces affect the movement of all objects, especially when they interact with
the ground or each other, slowing them down and eventually bringing them to a stop. The friction of
objects is set to 0.2, while the friction of the floor (the dome-shaped background) is set to 0.4.

(3) Restitution: When objects collide or drop to the ground, elastic forces come into play, defined
by elasticity coefficients. These forces affect how objects bounce off each other or rebound from
barriers, significantly altering their trajectories and speeds. The restitution of both the objects and the
floor is set to 0.5.

Table 3: Dynamic settings of DynSuperCLEVR

Attribute Description | Aeroplanes | Others
Mass Calculated from volume | pV
Position (x,y) | Beta distribution
z | Uniform distribution | 0

Velocity Initial state: static, slow, fast | {0,3,6} m/s

Engine force (Forwards) | {1,0}m/s?
Floating force(Upwards) | {10, 0} Mass x m/s? | 0 Mass x m/s>

Internal Force

|
|
|
|
Orientation | Faces to the center with noises | -
|
|

14

Published as a conference paper at ICLR 2025

C PROGRAM EXECUTION

In our DynSuperCLEVR, we introduce new programs for the 4D dynamic properties and the col-
lision events. In Table] we list all the programs and their input/output types involved in the
DynSuperCLEVR.

Table 4: All operations and their input / output types involved in the DynSuperCLEVR

Type | Operation | Input Type | Output Type
\ filter_collision | CollisionEventSet, Object | CollisionEventSet
Event Operations | get_all col_partners | CollisionEventSet, Object | ObjectSet
| get_frame | CollisionEvent | FramelD
| come_in_frame | Object | FramelD
| filter_attributes | ObjectSet | ObjectSet
| filter_static | ObjectSet, FrameID | ObjectSet
Object filter Operations | ¢ 1 ¢ o moving velocity | ObjectSet, FrameID | ObjectSet
| filter_accelerating | ObjectSet, FrameID | ObjectSet
| filter_floating | ObjectSet, FrameID | ObjectSet
| query_attributes | Object | Shape or color
| is_static | Object, FramelD | Bool
Object Query Operations \ query_moving_velocity \ Object, FramelD \ Velocity
| query_moving_direction | Object, FramelD | Direction
| is_accelerating | Object, FrameID | Bool
‘ is_floating ‘ Object, FramelD ‘ Bool
Object comparison | faster_velocity | Object, Object, FramelD | Bool
| slower_velocity | Object, Object, FramelD | Bool
| Objects | None | ObjectSet
Input Operations | Events | None | CollisionEventSet
| futureEvents | None | CollisionEventSet
| Counterfactual_static | Object | CollisionEventSet
Counterfactual Operation | Counterfactual_moving_slow | Object | CollisionEventSet
| Counterfactual_moving_fast | Object | CollisionEventSet
| Counterfactual_accelerating | Object | CollisionEventSet
\ Counterfactual_floating \ Object | CollisionEventSet
Others | unique | ObjectSet | Object
| exist | ObjectSet | Bool

Based on the programs above, we generate the corresponding program execution for each factual,
predictive, and counterfactual question. Here, we provide more examples of the program execution in

Fig.[§]

D DETAILS OF 3D NNMS SCENE PARSER WITH PHYSICS PRIOR

The ultimate goal of the scene parser is to estimate all dynamic states S; from the corresponding
observation Z; and the previous states S—; using a probabilistic model. Previous work in 6D pose
estimation has proposed using render-and-compare to maximize scene likelihood for static images.
For the video data, we further consider the temporal consistency and physical plausibility of the
dynamics estimation.

Sy = arg I%aXP(f(It)\St) 'p(St|S<t)7 @

= argmax p(f(Zo)|S0)- ®)

&
|

15

Published as a conference paper at ICLR 2025

Input Video

Frame 0 Frame 5 Frame 10 Frame 15 Frame N

— —~———

W

Question & Answer Program Execution

Select Frame @

Factual How fast is the SUV moving compared |
Question | to the yellow bus?

/ Filter[suv] Get Velocity + Compare Velocity
Object: +
Answer Slow o
Filter[yellow] - Filter[suv] — Get Velocity —
Objects CollisionEvenets
Factual What is the color of the bus which collides | |
Question | with the SUV? Filter[suv] —Filter_collision —» Get Al Col Partners
Answer Green
Filter[bus] — Query Color
Objects —— Filter[suv]
Predictive| Will the SUV collide with a bus in the l \

Question | future?
FutureEvenets —Filter_collision —» Get_All_Col_Partners

Answer Yes '

Filter[bus] ! Exist

Counter- | If the brown objects is static at the begin, — T

factual will it collide with a school bus? ! |
Question . L

Filter[brown] ~— Filter_collision — —» Get_All_Col_Partners
Answer No li‘

Filter[bus] — Exist

Figure 8: Examples of the reasoning program. From the input questions, we provide new operation
programs to answer these questions step by step using a 4D dynamic scene representation defined in
the main paper.

D.1 3D NEURAL MESH MODEL

Inspired by the 3D-neural-meshed-based generative model for pose estimation methods on static
images Wang et al.| (2021)); [Ma et al.| (2022), we develop a de-rendering-based generative model to
reconstruct the 4D dynamic scene representation frame by frame. To ensure the predictions are not
only plausible in 3D positions but also adhere to physical rules, we incorporate a physical likelihood
model and a 3D generative model with rendering likelihood, as shown in Fig. [3]in the main paper.
Here, we describe more details of the 3D neural mesh models as a preliminary.

Preliminaries. In previous work for static images (2022), Neural Mesh models were
introduced for 6D pose estimation through inverse rendering. For that task, the goal is to jointly
estimate the 6D pose (2D location (z, y), distance d to the camera, and 3D pose («, [3,7)) of objects
in an image by comparing the Neural Mesh features after rendering with the input image features
and maximizing the rendering likelihood. More formally, the mesh for a given object in category ¢
is represented as M, = {v; € R3|i = 1... N'}, where v; represents the vertex. The corresponding
neural texture of the mesh M, is T, € RV *!, where [is the dimension of the feature. Thus, the neural
mesh model for category c is their aggregation O, = { M., T..}. The render-and-compare process is

16

Published as a conference paper at ICLR 2025

formulated as an optimization of the likelihood model:

P(F | Oc,a5,B) = [p(fi | Ocsac) T] p(£] | B))

I€EFG 1€BG

where FG and BG are the sets of foreground and background locations on the 2D feature map, and
fi is the feature vector of F at location i, produced by the CNN feature extractor ®. Here, the
foreground and background likelihoods are modeled as Gaussian distributions.

In this work, we transform the position into a world coordinate instead. Given the object 3D rotation
R = («, 8,7) and translation T' = (x, y, z), we can render the neural mesh model O.. into a feature
map F. with soft rasterization Liu et al.|(2019).

Training: During training, we follow (Ma et al.,[2022)) and first jointly train a CNN feature extractor
@, the neural texture {7}, }, and the background model B. We utilize the EM-type learning strategy
originally introduced for keypoint detection in CoKe (Bai et al., |2023). Specifically, the feature
extractor that produces f; is trained using stochastic gradient descent, while the parameters of the
generative model {7}, } and B are trained using momentum updates after every gradient step in the
feature extractor, which has been found to stabilize training convergence. The final loss function is
defined as a constructive loss between the features of the vertices:

Lcontrastive = — Z Z HfW - fj||2 - Z Z Hf1 - fj||2 Q)

1EFG jeFG\{i} 1€FG jEBG

Inference as Scene Parsing For static images, previous work Wang et al.[(2021) has shown that the
rendering likelihood can be used to estimate the 6D pose of objects. In our dynamic scene, similar
strategies can be applied to each frame at time step ¢. As the neural mesh models are probabilistic
generative models of neural feature activation, we can first define the rendering likelihood of the
feature map F; given any 6D pose Ry, T; as:

p(It|St) = p(Ft \ OmRtaTth) ®)
=] »(#” | Oc, R, T (£ | B). ©)
i€FG JEBG

where FG and BG are the sets of foreground and background locations on the 2D feature map, and

ft(i) is the feature vector of F’ at location ¢ at timestep ¢. B is a background parameter learned from
training. Here, the foreground and background likelihoods are modeled as Gaussian distributions.

D.2 PHYSICAL PRIOR

Rendering likelihood alone is insufficient to reconstruct a physically plausible 4D dynamic scene
representation. We also integrate a physics prior into our likelihood model. The physical process can
be modeled as a Markov model |Salzmann & Urtasun|(2011)), where the physical prior distribution of
rotation RR; and translation T} at time step ¢ can be expressed as:

p(5t|5<t) = (I(RtaTt ‘ Rtflvjjtfl) (10)

However, it is nontrivial to directly model the physical functions. Most current studies on physical
engines within neural networks focus only on simple shapes like cubes, as the complexity in shapes
of objects and the interaction process is hard to model. On the other hand, computational physical
engines such as Bullet excel at modeling physical functions for any known shapes but are not
differentiable and are challenging to integrate into the de-rendering process during inference.

In our method, we modify the discriminative physics engine into a probabilistic model by introducing
an uncertainty term ¢ ~ A(0, 02). Denoting a physics engine as PE(-), we can assume:

(Ry,T;) = PE(Ri—1,Ti—1) +e, (11)

(R, T3) | (Ri—1,Ty—1) ~ N(PE(Ry_1,Ty_1),0%1), (12)
A N 1

CI(RmTt | Rtflathl) = Cexp <—w [(RtyTt) - M]T [(Rt»Tt) - N]) , (13)

17

Published as a conference paper at ICLR 2025

where y = PE(R;_1,Ty_1) and C = 1/+/(27)F|021].

Finally, the rotation R; and translation 7} can be estimated by maximizing the joint likelihood of the
rendering likelihood and the physical prior likelihood:

Ry, Ty = arg max p(Fy | Oc, Ry, Ty, B) - (Ry, Ty | Ry, i) (14)

Relationship to Bayes-Kalman Filtering The conceptual ideas are directly inspired by the classic
ideas of Bayes-Kalman filtering, where the goal is to estimate a hidden state based on a sequence of
observations. Bayes-Kalman filtering consists of updating a probability distribution of the hidden state
by a prediction step followed by a correction step that incorporates evidence from a new observation.
It uses a dynamic model for how the hidden state changes with time, which is directly analogous
to our physical prior. It has an observation model, corresponding to our scene parser, for how new
observations provide evidence for the hidden state. Bayes-Kalman filtering, however, is difficult
to implement in complex applications like ours because it requires us to represent and update a
complex probability distribution. The standard approach for doing this is particle filtering, where the
probability distribution is represented by a set of point particles that are updated during the prediction
and correction steps. This is also challenging; thus, instead, we use a simple approximation that
essentially uses a single particle. In future work, we will experiment to see if our model gives even
better results if we use particle filtering instead of this approximation.

E DOMAIN EXTENSION FOR THE NS-4DPHYSICS TO THE REAL VIDEO

We design a case study to demonstrate the real-world generalization ability of the proposed NS-
4DPhysics pipeline. Following the architecture of the proposed model, we train the 3D scene parser
on the Pascal3D+ dataset, which contains 3D pose annotations but lacks object appearance labels.
The qualitative reconstruction results, as shown in Fig. Eka), demonstrate accurate estimations on the
real video, where 4D dynamic properties, including velocities and accelerations, can be effectively
inferred. Although the model is not trained on object appearances, its capabilities can be extended by
incorporating object classifiers with proper annotations or by enabling open-vocabulary recognition
through pretrained large vision-language feature embeddings (e.g., CLIP). This as an important
direction in our future work.

Additionally, as shown in Fig.[0(b) and (c), similar types of questions can be posed for the given
video, which can then be answered by executing the program step-by-step.

F DETAILS OF THE BASELINE MODELS

We select 7 representative models from the following 3 categories as baseline models on DynSuper-
CLEVR.

(1) Simple Classification-Based Methods encode videos with a CNN backbone and predict answers
with a classifier head. Specifically, we consider CNN+LSTM, which aggregates frame-level CNN
features and encodes the question using an LSTM, and FiLM [Perez et al|(2018), which incorporates
a feature-level linear modulation module for question answering.

(2) Neural Symbolic Models first parse the scene into object instances and then execute a program
for question answering. NS-DR |Y1 et al.| (2019) adopts Mask R-CNN for object detection. We
modify it with the new program in DynSuperCLEVR and evaluate it on factual questions. Since
their 2D simulator is unable to reason about objects in 3D, we do not compare it on predictive and
counterfactual questions. PO3D-VQA Wang et al.|(2024)) uses a 3D detector and reconstructs an
explicit 3D scene representation for each frame. We extend the model for VideoQA by computing
dynamic properties from object locations and predicting collisions by filtering the distance between
objects.

(3) Large Multimodal Models leverage large-scale image-text or video-text data for pretraining and
achieve strong generalization abilities across various video-text tasks. We consider Video-LLaVA Lin
et al.|(2023)) and PLLaVA Xu et al.|(2024) for zero-shot evaluation, where a GPT model is used to
evaluate the correctness of free-form answers. Additionally, we fine-tune a pretrained InternVideo

18

Published as a conference paper at ICLR 2025

Frame 0 Frame 5 Frame 10 Frame 15 Frame 20

(a) Estimation result for the 3D scene parser on a real video clips.

Factual questions:

Question: How fast was the SUV on the left driving
when the collision happens? (Choose “fast” and “slow”) CollisionEvents—> Filter_collision— Get_frame
Answer: Fast

Predictive questions

[Given first 10 frames]

Question: Will there be a collision in the future?
Answer: Yes

Counterfactual questions

Question: Will the two SUVs collide if the one on the Fiter[SWW] — Filter[right]—Counterfactual_ static
right stops moving at the beginning?
Answer: No

Filter[SUV]— Filter[left}—> Query_Vflocity — Fast

FutureEvenets — Exist — Yes

}
NoO «— Exist «—— Filter_collision

(b) Sample video question answering about 4D dynamics (c) Sample Program Execution

Figure 9: Qualitative reconstruction results from real video data. (a) Estimation results from
the 3D scene parser, where 4D dynamic properties, including velocities and accelerations, are
effectively inferred. (b) Example questions about the video, which can be answered by executing the
corresponding program step-by-step as shown in (c).

Wang et al.| (2022) model that predicts answers using a classifier head. Finally, we evaluate the
proprietary model GPT-40 by accessing it through the OpenAl API with customized system prompts.
Specifically, we consider two settings: (i) asking the GPT-40 model to treat the problem as a multiple-
choice question and predict the answer directly (see Figure[I0); and (ii) asking the GPT-40 model to
think step by step, provide necessary reasoning about the dynamic and physical events, and then give
the answer to the question (see Figure[TT).

19

Published as a conference paper at ICLR 2025

Zero-shot evaluation of GPT-40 with multiple choice questions

System:
You are an intelligent chatbot designed for answering questions based on eight frames
obtained from a video.

Your task is to analyze the frames of the video, identify the nature of the object movements
(such as speed, acceleration, and direction), and then determine the answer to the question.

INSTRUCTIONS:

Directly answer the question with one of the choices: airliner, articulated bus, back, blue,
brown, chopper motorcycle, cruiser, cyan, dirtbike, double bus, down, false, fighter aircraft,
front, gray, green, jet, left, minivan, mountain bike, purple, red, right, school bus, scooter,
sedan, suv, tandem bike, truck, true, up, utility bike, wagon, yellow.

User:

Watch the eight frames in the video and answer the question: Is the red mountain moving fast
at the beginning?

false

Figure 10: Zero-shot evaluation of GPT-4v with multiple choice questions. We evaluate the
proprietary model GPT-40 by accessing the model through OpenAl API with customized system
prompts.

20

Published as a conference paper at ICLR 2025

Zero-shot evaluation of GPT-40 with step-by-step reasoning

System:
You are an intelligent chatbot designed for answering questions based on eight frames
obtained from a video.

Your task is to analyze the frames of the video, identify the nature of the object movements
(such as speed, acceleration, and direction), and then determine the answer to the question.

INSTRUCTIONS:

- Think step by step, reason about the dynamic and physical events, and then give the answer.
- End your response with the exact answer to the question, from one of the choices: airliner,
articulated bus, back, blue, brown, chopper motorcycle, cruiser, cyan, dirtbike, double bus,
down, false, fighter aircraft, front, gray, green, jet, left, minivan, mountain bike, purple, red,
right, school bus, scooter, sedan, suv, tandem bike, truck, true, up, utility bike, wagon, yellow.

User:
Watch the eight frames in the video. Think step by step and then answer the question: Is the
red mountain moving fast at the beginning?

To determine if the red mountain bike is moving fast at the beginning of the sequence, we
need to closely analyze its position in the first few frames:

1. In the first frame, observe the position of the red mountain bike.

2. In the second frame, note any change in position of the red mountain bike.

3. Compare the distance covered by the red mountain bike between these frames.

If the red mountain bike has moved a significant distance between the first two frames, it is
moving fast at the beginning. If it has moved only a small distance, it is not moving fast.

From the frames:
- The red mountain bike does not show significant movement between the first two frames.
- The red mountain bike appears to be in almost the same position.

Thus, the red mountain bike does not move fast at the beginning.

The answer is: false.

Figure 11: Zero-shot evaluation of GPT-4v with step-by-step reasoning. We evaluate the propri-
etary model GPT-4V by accessing the model through OpenAl API with customized system prompts.
Specifically, we encourage the GPT-40 model to think step by step and reason about the dynamic and
physical events before predicting the answer.

21

	Introduction
	Related Work
	Dataset
	3D Scene construction
	4D Dynamics Scene Annotations
	Physical Simulation and Video Generation
	Questions Generation for 4D Dynamics Properties
	Dataset Statistics

	Model
	4D Symbolic Scene Representation
	Dynamic Scene Parser with Physics Prior
	Future and Counterfactual Simulation
	Questions Parsing and Program Execution

	Experiments
	Experiment Setup
	Video Question Answering Results
	Analysis
	Qualitative Results

	Conclusion and Discussion
	3D Objects and Colors
	Dynamic Properties Setting
	Program execution
	Details of 3D NNMs Scene Parser with Physics Prior
	3D Neural Mesh Model
	Physical Prior

	Domain extension for the NS-4DPhysics to the real video
	Details of the Baseline Models

