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Abstract

Partial client participation has been widely adopted in Federated Learning (FL)
to reduce the communication burden efficiently. However, an inadequate client
sampling scheme can lead to the selection of unrepresentative subsets, resulting in
significant variance in model updates and slowed convergence. Existing sampling
methods are either biased or can be further optimized for faster convergence. In this
paper, we present DELTA, an unbiased sampling scheme designed to alleviate these
issues. DELTA characterizes the effects of client diversity and local variance, and
samples representative clients with valuable information for global model updates.
In addition, DELTA is a proven optimal unbiased sampling scheme that minimizes
variance caused by partial client participation and outperforms other unbiased
sampling schemes in terms of convergence. Furthermore, to address full-client
gradient dependence, we provide a practical version of DELTA depending on the
available clients’ information, and also analyze its convergence. Our results are
validated through experiments on both synthetic and real-world datasets.

1 Introduction

Federated Learning (FL) is a distributed learning paradigm that allows a group of clients to collaborate
with a central server to train a model. Edge clients can perform local updates without sharing their
data, which helps to protect their privacy. However, communication can be a bottleneck in FL, as edge
devices often have limited bandwidth and connection availability [58]. To reduce the communication
burden, only a subset of clients are typically selected for training. However, an improper client
sampling strategy, such as uniform client sampling used in FedAvg [38], can worsen the effects of
data heterogeneity in FL. This is because the randomly selected unrepresentative subsets can increase
the variance introduced by client sampling and slow down convergence.

Existing sampling strategies can be broadly classified into two categories: biased and unbiased.
Unbiased sampling is important because it can preserve the optimization objective. However, only
a few unbiased sampling strategies have been proposed in FL, such as multinomial distribution (MD)
sampling and cluster sampling. Specifically, cluster sampling can include clustering based on sample
size and clustering based on similarity. Unfortunately, these sampling methods often suffer from
slow convergence, large variance, and computation overhead issues [2, 13].

To accelerate the convergence of FL with partial client participation, Importance Sampling (IS),
an unbiased sampling strategy, has been proposed in recent literature [5, 49]. IS selects clients
with a large gradient norm, as shown in Figure 1. Another sampling method shown in Figure 1 is
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Figure 1: Client selection illustration of dif-
ferent methods. IS (left) selects high-gradient
clients but faces redundant sampling issues.
Cluster-based IS (mid) addresses redundancy, but
using small gradients for updating continuously
can slow down convergence. In contrast, DELTA
(right) selects diverse clients with significant
gradients without clustering operations.

Figure 2: Comparison of the convergence performance for different
sampling methods. In this example, we use a logistic regression model
on non-iid MNIST data and sample 10 out of 200 clients. We run 500
communication rounds and report the average of the best 10 accuracies
at 100, 300, and 500 rounds. This shows the accuracy performance from
the initial training state to convergence.

cluster-based IS, which first clusters clients according to the gradient norm and then uses IS to select
clients with a large gradient norm within each cluster.

Though IS and cluster-based IS have their advantages, 1) IS could be inefficient because it can
result in the transfer of excessive similar updates from the clients to the server. This problem has
been pointed out in recent works [52, 63], and efforts are being made to address it. One approach is to
use cluster-based IS, which groups similar clients together. This can help, but 2) cluster-based IS has
its drawbacks in terms of convergence speed and clustering effect. Figure 2 illustrates that both
of these sampling methods can perform poorly at times. Specifically, compared with cluster-based
IS, IS cannot fully utilize the diversity of gradients, leading to redundant sampling and a lack of
substantial improvement in accuracy [52, 2]. While the inclusion of clients from small gradient
groups in cluster-based IS leads to slow convergence as it approaches convergence, as shown by
experimental results in Figure 6 and 7 in Appendix B.2. Furthermore, the clustering algorithm’s
performance tends to vary when applied to different client sets with varying parameter configurations,
such as different numbers of clusters, as observed in prior works [52, 51, 56].

To address the limitations of IS and cluster-based IS, namely excessive similar updates and poor
convergence performance, we propose a novel sampling method for Federated Learning termed
DivErse cLienT sAmpling (DELTA). Compared to IS and cluster-based IS methods, DELTA tends
to select clients with diverse gradients, as shown in Figure 1. This allows DELTA to utilize the
advantages of a large gradient norm for convergence acceleration while also overcoming the issue
of gradient similarity.

Additionally, we propose practical algorithms for DELTA and IS that rely on accessible information
from partial clients, addressing the limitations of existing analysis based on full client gradients [35, 5].
We also provide convergence rates for these algorithms. We replace uniform client sampling with
DELTA in FedAvg, referred to as FedDELTA, and replace uniform client sampling with IS in FedAvg,
referred to as FedIS. Their practical versions are denoted as FedPracDELTA and FedPracIS.

Toy Example and Motivation. We present a toy example to illustrate our motivation, where each
client has a regression model. The detailed settings of each model and the calculation of each
sampling algorithm’s gradient are provided in Appendix B.1. Figure 3 shows that IS deviates from
the ideal global model when aggregating gradients from clients with large norms. This motivates us
to consider the correlation between local and global gradients in addition to gradient norms when
sampling clients. Compared to IS, DELTA selects clients with large gradient diversities, which
exploits the clients’ information of both gradient norms and directions, resulting in a closer alignment
to the ideal global model.
Our contributions. In this paper, we propose an efficient unbiased sampling scheme in the sense
that (i) It effectively addresses the issue of excessive similar gradients without the need for additional
clustering, while taking advantage of the accelerated convergence of gradient-norm-based IS and (ii)
it is provable better than uniform sampling or gradient norm-based sampling. The sampling scheme
is versatile and can be easily integrated with other optimization techniques, such as momentum, to
improve convergence further.

As our key contributions,
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Figure 3: Model update comparison: The closer to the ideal global
update (black arrow), the better the sampling algorithm is. The
small window shows the projection of 3 clients’ functions F1, F2, F3 in
the X-Y plane, where ∇F1 = (2, 2),∇F2 = (4, 1),∇F3 = (6,−3) at
(1, 1). The enlarged image shows the aggregated gradients of FedAvg,
IS, DELTA and ideal global gradient. Each algorithm samples two out
of three clients: FedIS tends to select Client 2 and 3 with largeset gradient
norms, DELTA tends to select Client 1 and 3 with the largest gradient
diversity and FedAvg is more likely to select Client 1 and 2 compared
to IS and DELTA. The complete gradient illustration with clients’ gradient
is shown in Figure 5 in Appendix.

• We present DELTA, an unbiased FL sampling scheme based on gradient diversity and local
variance. Our refined analysis shows that FedDELTA surpasses the state-of-the-art FedAvg in
convergence rate by eliminating the O(1/T 2/3) term and a σ2

G-related term of O(1/T 1/2).
• We present a novel theoretical analysis of nonconvex FedIS, which yields a superior convergence

rate compared to existing works while relying on a more lenient assumption. Moreover, our
analysis eliminates the O(1/T 2/3) term of the convergence rate, in contrast to FedAvg.

• We present a practical algorithm for DELTA in partial participation settings, utilizing available
information to mitigate the reliance on full gradients. We prove that the convergence rates of these
practical algorithms can attain the same order as the theoretical optimal sampling probabilities
for DELTA and IS.

2 Related Work

Client sampling in federated learning (FL) can be categorized into unbiased and biased methods [14].
Unbiased methods, including multinomial sampling and importance sampling [30, 5, 49], ensure that
the expected client aggregation is equivalent to the deterministic global aggregation when all clients
participate. Unlike unbiased sampling, which has received comparatively little attention, biased
sampling has been extensively examined in the context of federated learning, such as selecting clients
with higher loss [7] or larger updates [48]. Recently, cluster-based client selection, which involves
grouping clients into clusters and sampling from these clusters, has been proposed to sample diverse
clients and reduce variance [41, 12, 52]. Nevertheless,the clustering will require extra communication
and computational resources. The proposed DELTA algorithm can be seen as a muted version of a
diverse client clustering algorithm without clustering operation.

While recent works [57, 28] have achieved comparable convergence rates to ours using variance
reduction techniques, it is worth noting that these techniques are orthogonal to ours and can be easily
integrated with our approach. Although [60] achieved the same convergence rate as ours, but their
method requires dependent sampling and mixing participation conditions, which can lead to security
problems and exceed the communication capacity of the server. In contrast, our method avoids these
issues by not relying on such conditions.

A more comprehensive discussion of the related work can be found in Appendix A.

3 Theoretical Analysis and An Improved FL Sampling Strategy

This section presents FL preliminaries and analyzes sampling algorithms, including the convergence
rate of nonconvex FedIS in Section 3.2, improved convergence analysis for FL sampling in
Section 3.3, and proposal and convergence rate of the DELTA sampling algorithm in Section 3.4.

In FL, the objective of the global model is a sum-structured optimization problem:
f∗ = minx∈Rd

[
f(x) :=

∑m
i=1 wiFi(x)

]
, (1)

where Fi(x) = Eξi∼Di [Fi(x, ξi)] represents the local objective function of client i over data
distribution Di, and ξi means the sampled data of client i. m is the total number of clients and wi
represents the weight of client i. With partial client participation, FedAvg randomly selects |St| = n
clients (n ≤ m) to communicate and update model. Then the loss function of actual participating
users in each round can be expressed as:

fSt(xt) =
1
n

∑
i∈St

Fi(xt) . (2)
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Table 1: Comparison of convergence rate for different sampling algorithms: Number of communication
rounds required to reach ϵ or ϵ+ φ (ϵ for unbiased sampling and ϵ+ φ for biased sampling, where φ is a non-
convergent constant term) accuracy for FL. σL is local variance bound, and G bound is E∥∇Fi(x)−∇f(x)∥2 ≤
G2. Γ is the distance of global optimum and the average of local optimum (Heterogeneity bound), µ corresponds
to µ strongly convex. and ζG is the gradient diversity.

Algorithm Convexity Partial Worker Unbiasedness Convergence rate Assumption

SGD S/N ✓ ✓ σ2
L

µmKϵ
+ ( 1

µ
) / σ2

L
mKϵ2

+ 1
ϵ

σL bound

FedDELTA N ✓ ✓ σ2
L

nKϵ2
+ M̀2

Kϵ
Assumption 3

FedPracDELTA N ✓ ✓ Ũ2σ2
L

nKϵ2
+ Ũ2M̀2

Kϵ
Assumption 3 and Assumption 4

FedIS (ours) N ✓ ✓ σ2
L+Kσ2

G
nKϵ2

+ M2

Kϵ
Assumption 3

FedIS (others) [5] N ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3 and ρ Assumption

FedIS (others) [36] S ✓ ✓ σ2
L+4nKG2+6nΓ

µ2nKϵ
+ K2G2

ϵ
+ ∥w0−w∗∥2

µKϵ
G bound

FedPracIS (ours) N ✓ ✓ σ2
L+KU2σ2

G
nKϵ2

+ M2

Kϵ
Assumption 3 and Assumption 4

FedAvg [65] N ✓ ✓ σ2
L

nKϵ2
+

4Kσ2
G

nKϵ2
+ M̃2

Kϵ
+ K1/3M̃2

n1/3ϵ2/3
G bound

FedAvg [21] N ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3

DivFL [2] S ✓ × 1
ϵ
+ 1

φ
Heterogeneity Gap

Power-of-Choice [7] S ✓ × σ2
L+G2

ϵ+φ
+ Γ

µ
Heterogeneity Gap

FedAvg [65] N × ✓ σ2
L

mKϵ2
+

σ2
L/(4K)+σ2

G
ϵ

σG bound

Arbitrary Sampling[60] N Mix ✓ ζ2G+(1+σ2
L)nρ

nKϵ2
+ Ḿ2

Kϵ
Assumption 3

M2 = σ2
L + 4Kσ2

G, M̂2 = σ2
L +K(1− n/m)σ2

G, M̃2 = σ2
L + 6Kσ2

G , M̀2 = σ2
L + 4Kζ2G, Ḿ2 = Kζ2G +Kσ2

L.
Convexity: S and N are abbreviations for strong convex and nonconvex, respectively. ρ assumption: Bound of the similarity among local gradients.
Mix participation: the number of participating clients is random, from none to full participation.

For ease of theoretical analysis, we make the following commonly used assumptions:

3.1 Assumptions

Assumption 1 (L-Smooth). There exists a constant L > 0, such that ∥∇Fi(x)−∇Fi(y)∥ ≤
L ∥x− y∥ ,∀x, y ∈ Rd, and i = 1, 2, . . . ,m.
Assumption 2 (Unbiased Local Gradient Estimator and Local Variance). Let ξit be a random local
data sample in the round t at client i: E

[
∇Fi(xt, ξ

i
t)
]
= ∇Fi(xt),∀i ∈ [m]. The function Fi(xt, ξ

i
t)

has a bounded local variance of σL,i > 0, satisfying E
[∥∥∇Fi(xt, ξ

i
t)−∇Fi(xt)

∥∥2] = σ2
L,i ≤ σ2

L.

Assumption 3 (Bound Dissimilarity). There exists constants σG ≥ 0 and A ≥ 0 such that
E∥∇Fi(x)∥2 ≤ (A2 + 1)∥∇f(x)∥2 + σ2

G. When all local loss functions are identical, A2 = 0
and σ2

G = 0.

The above assumptions are commonly used in both non-convex optimization and FL literature, see
e.g. [21, 27, 60].
We notice that Assumption 3 can be further relaxed by Assumption 2 of [24]. We also provide
Proposition C.4 in Appendix C to show all our convergence analysis, including Theorem 3.1,3.5
and Corollary 4.1,4.2 can be easily extended to the relaxed assumption while keeping the order of
convergence rate unchanged.

3.2 Convergence Analysis of FedIS

As discussed in the introduction, IS faces an excessive gradient similarity problem, necessitating
the development of a novel diversity sampling method. Prior to delving into the specifics of our
new sampling strategy, we first present the convergence rate of FL under standard IS analysis in this
section; this analysis itself is not well explored, particularly in the nonconvex setting. The complete
FedIS algorithm is provided in Algorithm 2 of Appendix D, which differs from DELTA only in
sampling probability (line 2) by using pi ∝ ∥

∑K−1
k=0 git,k∥.

Theorem 3.1 (Convergence rate of FedIS). Let constant local and global learning rates ηL and
η be chosen as such that ηL < min (1/(8LK), C), where C is obtained from the condition
that 1

2 − 10L2K2(A2 + 1)η2L − L2ηK(A2+1)
2n ηL > 0 ,and η ≤ 1/(ηLL). In particular, suppose

ηL = O
(

1√
TKL

)
and η = O

(√
Kn
)

, under Assumptions 1-3, the expected gradient norm of
FedIS algorithm 2 will be bounded as follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L +Kσ2

G√
nKT

)
+O

(
M2

T

)
︸ ︷︷ ︸

order of Φ

. (3)
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where T is the total communication round, K is the total local epoch times, f0 = f(x0), f∗ = f(x∗),
M = σ2

L + 4Kσ2
G and the expectation is over the local dataset samples among clients.

Algorithm 1 FedDELTA and FedPracDELTA :
Federated learning with unbiased diverse sampling

Require: initial weights x0, global learning rate η, local
learning rate ηl, number of local epoch K, number
of training rounds T

Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Sampling clients using DELTA (13)

3: Sampling clients using Practical DELTA (16)

4: for each worker i ∈ St,in parallel do
5: xi

t,0 = xt

6: for k = 0, · · ·,K − 1 do
7: compute git,k = ∇Fi(x

i
t,k, ξ

i
t,k)

8: Local update:xi
t,k+1 = xi

t,k − ηLg
i
t,k

9: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k

10: At Server:
11: Receive ∆i

t, i ∈ St

12: let ∆t =
1

|St|
∑

i∈St

ni

npti
∆i

t

13: Server update: xt+1 = xt + η∆t

14: Broadcast xt+1 to clients

The FedIS sampling probability pti is determined
by minimizing the variance of convergence with
respect to pti. The variance term Φ is:

Φ =
5η2

LKL2

2
M2+

ηηLL

2m
σ2
L+

LηηL
2nK

Var(
1

mpti
ĝti),

(4)
where Var(1/(mpt

i)ĝ
t
i) is called update variance.

By optimizing the update variance, we get the
sampling probability FedIS:

pti =
∥ĝti∥∑m
j=1 ∥ĝtj∥

, (5)

where ĝti =
∑K−1

k=0 ∇Fi(x
i
k,t, ξ

i
k,t) is the sum

of the gradient updates of multiple local updates.
The proof details of Theorem 3.1 and derivation
of sampling probability FedIS are detailed in
Appendix D and Appendix F.1.
Remark 3.2 (Explanation for the convergence
rate). It is worth mentioning that although a few
works provide the convergence upper bound of
FL with gradient-based sampling, several limi-
tations exist in these analyses and results:
1) [49, 35] analyzed FL with IS using a strongly
convex condition, whereas we extended the analysis to the non-convex problem.
2) Our analysis results, compared to the very recent non-convex analysis of FedIS [5] and FedAvg,
remove the term O(T− 2

3 ), although all these works choose a learning rate of O(T− 1
2 ). Thus, our

result achieves a tighter convergence rate when we use O(1/T + 1/T 2/3) (provided by [43]) as our
lower bound of convergence (see Table 1).
The comparison results in Table 1 reveal that even when σG is large and becomes a dependency term
for convergence rate, FedIS (ours) is still better than FedAvg and FedIS (others) since our result
reduces the coefficient of σG in the dominant term O(T− 1

2 ).
Remark 3.3 (Novelty of our FedIS analysis). Despite the existence of existing convergence analysis
of partial participant FL [65, 47], including FedIS that builds on this analysis [35, 4], none of them
take full advantage of the nature of unbiased sampling, and thus yield an imprecise upper bound on
convergence. To tighten the FedIS upper bound, we first derive a tighter convergence upper bound for
unbiased sampling FL. By adopting uniform sampling for unbiased probability, we achieve a tighter
FedAvg convergence rate. Leveraging this derived bound, we optimize convergence variance using IS.

Compared with existing unbiased sampling FL works, including FedAvg and FedIS (others), our
analysis on FedIS entails: (1) A tighter Local Update Bound Lemma: We establish Lemma C.3
using Assumption 3, diverging from the stronger assumption ∥∇Fi(xt))−∇f(xt)∥2 ≤ σ2

G (used
in [65, 47]), and the derived Lemma C.3 achieves a tighter upper bound than other works (Lemma
4 in [47], Lemma 2 in [65]). (2) A tighter upper bound on aggregated model updates E∥∆t∥2:
By fully utilizing the nature of unbiased sampling, we convert the bound analysis of A2 = E∥∆t∥2

equally to a bound analysis of participant variance V
(

1
mpt

i
ĝti

)
and aggregated model update with full

user participation. In contrast, instead of exploring the property the unbiased sampling, [47] repeats
to use Lemma 4 and [65] uses Lemma 2 for bound A2. This inequality transform imposes a loose
upper bound for A2, resulting in a convergence variance term determined by η3L, which reacts to the
rate order being O(T− 2

3 ). (3) Relying on a more lenient assumption: Beyond the aforementioned
analytical improvement, our IS analysis obviates the necessity for unusual assumptions in other FedIS
analysis such as Mix Participation [35] and ρ-Assumption [4].
Remark 3.4 (Extending FedIS to practical algorithm). The existing analysis of IS algorithms [35, 5]
relies on information from full clients, which is not available in partial participation FL. We propose
a practical algorithm for FedIS that only uses information from available clients and provide its
convergence rate in Corollary 4.1 in Section 4.
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Despite its success in reducing the variance term in the convergence rate, FedIS is far from optimal
due to issues with high gradient similarity and the potential for further minimizing the variance term
(i.e., the global variance σG and local variance σL in Φ). In the next section, we will discuss how to
address this challenging variance term.

3.3 An Improved Convergence Analysis for FedDELTA

FedIS and FedDELTA have different approaches to analyzing objectives, with FedIS analyzing the
global objective and FedDELTA analyzing a surrogate objective f̃(x) (cf. (7)). This leads to different
convergence variance and sampling probabilities between the two methods. A flowchart (Figure 8
in Appendix E) has been included to illustrate the differences between FedIS and FedDELTA.

The limitations of FedIS. As shown in Figure 1, IS may have excessive similar gradient selection.
The variance Φ in (4) reveals that the standard IS strategy can only control the update variance
Var(1/(mpt

i)ĝ
t
i , leaving other terms in Φ, namely σL and σG, untouched. Therefore, the standard IS

is ineffective at addressing the excessive similar gradient selection problem, motivating the need
for a new sampling strategy to address the issue of σL and σG.

The decomposition of the global objective. As inspired by the proof of Theorem 3.1 as well as
the corresponding Lemma C.1 (stated in Appendix) proposed for unbiased sampling, the gradient of
global objective can be decomposed into the gradient of surrogate objective f̃(xt) and update gap,

E∥∇f(xt)∥2 = E
∥∥∥∇f̃St

(xt)
∥∥∥2 + χ2

t , (6)

where χt = E
∥∥∥∇f̃St(xt)−∇f(xt)

∥∥∥ is the update gap.

Intuitively, the surrogate objective represents the practical objective of the participating clients in
each round, while the update gap χt represents the distance between partial client participation and
full client participation. The convergence behavior of the update gap χ2

t is analogous to the update

variance in Φ, and the convergence of the surrogate objective E
∥∥∥∇f̃St

(xt)
∥∥∥2 depends on the other

variance terms in Φ, namely the local variance and global variance.
Minimizing the surrogate objective allows us to further reduce the variance of convergence, and
we will focus on analyzing surrogate objective below. We first formulate the surrogate objective
with an arbitrary unbiased sampling probability.

Surrogate objective formulation. The expression of the surrogate objective relies on the prop-
erty of IS. In particular, IS aims to substitute the original sampling distribution p(z) with another
arbitrary sampling distribution q(z) while keeping the expectation unchanged: Eq(z) [Fi(z)] =
Ep(z) [qi(z)/pi(z)Fi(z)]. According to the Monte Carlo method, when q(z) follows the uni-
form distribution, we can estimate Eq(z) [Fi(z)] by 1/m

∑m
i=1 Fi(z) and Ep(z) [qi(z)/pi(z)Fi(z)] by

1/n
∑

i∈St
1/mpiFi(z), where m and |St| = n are the sample sizes.

Based on IS property, we formulate the surrogate objective:

f̃St(xt) =
1
n

∑
i∈St

1
mpti

Fi(xt) , (7)

where m is the total number of clients, |St| = n is the number of participating clients in each round,
and pit is the probability that client i is selected at round t.
As noted in Lemma C.2 in the appendix, we have:2:

min
t∈[T ]

E∥∇f(xt)∥2 = min
t∈[T ]

E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ min

t∈[T ]
2E∥∇f̃(xt)∥2 . (8)

Then the convergence rate of the global objective can be formulated as follows:
Theorem 3.5 (Convergence upper bound of FedDELTA). Under Assumption 1–3 and let local and
global learning rates η and ηL satisfy ηL < 1/(2

√
10KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal

gradient norm will be bounded as below:

mint∈[T ] E ∥∇f (xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
, (9)

2With slight abuse of notation, we use the f̃(xt) for f̃St(xt) in this paper.
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where f0 = f(x0), f∗ = f(x∗), c is a constant, and the expectation is over the local dataset samples
among all workers. The combination of variance Φ̃ represents combinations of local variance and
client gradient diversity.

We derive the convergence rates for both sampling with replacement and sampling without replace-
ment. For sampling without replacement:

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i,t) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i . (10)

For sampling with replacement,

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i,t) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (11)

where ζG,i,t = ∥∇Fi(xt) − ∇f(xt)∥ and let ζG be a upper bound for all i, i.e., ζG,i,t ≤ ζG. The
proof details of Theorem 3.5 can be found in Appendix E.

Remark 3.6 (The novelty of DELTA analysis). IS focuses on minimizing V
(

1
mpt

i
ĝti

)
in convergence

variance Φ (Eq. (4)), while leaving other terms like σL and σG unreduced. Unlike IS roles to reduce
the update gap, we propose analyzing the surrogate objective for additional variance reduction.
Compared with FedIS, our analysis of DELTA entails: Focusing on surrogate objective, introducing
a novel Lemma and bound: (1) we decompose global objective convergence into surrogate objective
and update gap (6). For surrogate objective analysis, we introduce Lemma E.8 to bound local
updates. (2) leveraging the unique surrogate objective expression and Lemma E.8, we link sampling
probability with local variance and gradient diversity, deriving novel upper bounds for A1 and A2.
(3) by connecting update gap’s convergence behavior to surrogate objective through Definition E.1
and Lemma C.2, along with (6), we establish Φ̃ as the new global objective convergence variance.
Optimizing convergence variance through novel Φ̃: FedIS aims to reduce the update variance term
V ( 1

(mpt
i)
ĝti) in Φ, while FedDELTA aims to minimize the entire convergence variance Φ̃, which is

composed of both gradient diversity and local variance. By minimizing Φ̃, we get the sampling
method DELTA, which further reduces the variance terms of Φ that cannot be minimized through IS.

3.4 Proposed Sampling Strategy: DELTA

The expression of the convergence upper bound suggests that utilizing sampling to optimize the
convergence variance can accelerate the convergence. Hence, we can formulate an optimization
problem that minimizes the variance Φ̃ with respect to the proposed sampling probability pti:

min
pti

Φ̃ s.t.
∑m

i=1 p
t
i = 1 , (12)

where Φ̃ is a linear combination of local variance σL,i and gradient diversity ζG,i,t (cf. Theorem 3.5).
Corollary 3.7 (Optimal sampling probability of DELTA). By solving the above optimization problem,
the optimal sampling probability is determined as follows:

pti =

√
α1ζ

2
G,i,t

+α2σ
2
L,i∑m

j=1

√
α1ζ

2
G,j,t

+α2σ
2
L,j

, (13)

where α1 and α2 are constants defined as α1 = 20K2LηL and α2 = 5KLηL + η
n .

Remark 3.8. We note that a tension exists between the optimal sampling probability (13) and the
setting of partial participation for FL. Thus, we also provide a practical implementation version for
DELTA and analyze its convergence in Section 4. In particular, we will show that the convergence
rate of the practical implementation version keeps the same order with a coefficient difference.

Corollary 3.9 (Convergence rate of FedDELTA). Let ηL = O
(

1√
TKL

)
, η = O

(√
Kn
)

and

substitute the optimal sampling probability (13) back to Φ̃. Then for sufficiently large T, the expected
norm of DELTA algorithm 1 satisfies:

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
︸ ︷︷ ︸

order of Φ̃

. (14)
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Difference between FedDELTA and FedIS. The primary distinction between FedDELTA and
FedIS lies in the difference between Φ̃ and Φ. FedIS aims to decrease the update variance term
Var(1/(mpt

i)ĝ
t
i) in Φ, while FedDELTA aims to reduce the entire quantity Φ̃, which is composed

of both gradient diversity and local variance. By minimizing Φ̃, we can further reduce the terms
of Φ that cannot be minimized through FedIS. This leads to different expressions for the optimal
sampling probability. The difference between the two resulting update gradients is discussed in
Figure 3. Additionally, as seen in Table 1, FedDELTA achieves a superior convergence rate of
O(G

2
/ϵ2) compared to other unbiased sampling algorithms.

Compare DELTA with uniform sampling. According to the Cauchy-Schwarz inequality, DELTA is

at least better than uniform sampling by reducing variance: Φ̃uniform

Φ̃DELTA
=

m
∑m

i=1(
√

α1σ2
L+α2ζ2

G,i,t)
2

(
∑m

i=1

√
α1σ2

L+α2ζ2
G,i,t)

2 ≥ 1 .

This implies that DELTA does reduce the variance, especially when (
∑m

i=1

√
α1σ2

L+α2ζ2
G,i,t)

2∑m
i=1(

√
α1σ2

L+α2ζ2
G,i,t)

2 ≪ m.

The significance of DELTA. (1) DELTA is the first unbiased sampling algorithm, to the best of
our knowledge, that considers both gradient diversity and local variance in sampling, accelerating
convergence. (2) Developing DELTA inspires an improved convergence analysis by focusing on
the surrogate objective, leading to a superior convergence rate for FL. (3) Moreover, DELTA can
be seen as an unbiased version with the complete theoretical justification for the existing heuristic
or biased diversity sampling algorithm of FL, such as [2].

4 FedPracDELTA and FedPracIS: The Practical Algorithms
The gradient-norm-based sampling method necessitates the calculation of the full gradient in every
iteration [10, 70]. However, acquiring each client’s gradient in advance is generally impractical in
FL. To overcome this obstacle, we leverage the gradient from the previous participated round to
estimate the gradient of the current round, thus reducing computational resources [49].
For FedPracIS, at round 0, all probabilities are set to 1/m. Then, during the ith iteration, once
participating clients i ∈ St have sent the server their updated gradients, the sampling probabilities
are updated as follows:

p∗i,t+1 =
∥ĝi,t∥∑

i∈St
∥ĝi,t∥

(1−
∑
i∈Sc

t

p∗i,t) , (15)

where the multiplicative factor ensures that all probabilities sum to 1. The FedPracIS algorithm is
shown in Algorithm 2 of Appendix D.
For FedPracDELTA, we use the average of the latest participated clients’ gradients to approximate
the true gradient of the global model. For local variance, it is obtained by the local gradient’s variance
over local batches. Specifically, ζG,i,t = ∥ĝi,t − ∇f̂(xt)∥, where ∇f̂(xt) = 1

n

∑
i∈St

ĝi,t =
1
n

∑
i∈St

∑K−1
k=0 ∇Fi(x

i
k,t, ξ

i
k,t) and σ2

L,i =
1

|B|
∑

b∈B(ĝ
b
i,t − 1

|B|
∑

b∈B ĝbi,t)
2, where b ∈ B is the

local data batch. Then the sampling probabilities are updated as follows:

p∗i,t+1 =

√
α1ζ2G,i,t + α2σ2

L,i∑
i∈St

√
α1ζ2G,i,t + α2σ2

L,i

(1−
∑
j∈Sc

t

p∗i,t) . (16)

The FedPracDELTA algorithm is shown in Algorithm 1. Specifically, for α, the default value is 0.5,
whereas ζG and σL can be implemented by computing the locally obtained gradients.
Assumption 4 (Local gradient norm bound). The gradients ∇Fi(x) are uniformly upper bounded
(by a constant G > 0) ∥∇Fi(x)∥2 ≤ G2,∀i.
Assumption 4 is a general assumption in IS community to bound the gradient norm [70, 10, 23],
and it is also used in the FL community to analyze convergence [2, 68]. This assumption tells us
a useful fact that will be used later: ∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U . While, for DELTA, the
assumption used is a more relaxed version of Assumption 4, namely, E∥∇Fi(x)−∇f(x)∥2 ≤ G2

(further details are provided in Appendix G).
Corollary 4.1 (Convergence rate of FedPracIS). Under Assumption 1-4, the expected norm of
FedPracIS will be bounded as follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
KU2σ2

G,s√
nKT

)
, (17)
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(a) ν = 20 (b) ν = 30 (c) ν = 40

Figure 4: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥y − log((Aix−bi)
2
/2)
∥∥2, Ai = 10, bi = 1. The logarithm of global loss is reported for various degrees of

gradient noise, ν, and all methods are well-tuned to yield the best results for each algorithm under each setting.

where M = σ2
L + 4Kσ2

G,s, σG,s is the gradient dissimilarity bound of round s, and
∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U for all i and k.
Corollary 4.2 (Convergence rate of FedPracDELTA). Under Assumption 1-4, the expected norm of
FedPracDELTA satisfies:

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
Ũ2σ2

L,s√
nKT

)
+O

(
Ũ2σ2

L,s+4KŨ2ζ2G,s

KT

)
, (18)

where Ũ is a constant that ∥∇Fi(xt) − ∇f(xt)∥/∥∇Fi(xs) − ∇f(xs)∥ ≤ Ũ1 ≤ Ũ and
∥σL,t/σL,s∥ ≤ Ũ2 ≤ Ũ , and ζG,s is the gradient diversity bound of round s for all clients.
Remark 4.3. The analysis of the FedPracIS and FedPracDELTA is independent of the unavailable
information in the partial participation setting. The convergence rates are of the same order as
that of our theoretical algorithm but with an added coefficient constant term that limits the gradient
changing rate, as shown in Table 1.

The complete derivation and discussion of the practical algorithm can be found in Appendix G.

5 Experiments

In this section, we evaluate the efficiency of the theoretical algorithm FedDELTA and
the practical algorithm FedPracDELTA on various datasets. Our code is available at
https://github.com/L3030/DELTA_FL.

Datasets. (1) We evaluate FedDELTA on synthetic data and split-FashionMNIST. The synthetic
data follows y = log

(
(Aix−bi)

2
/2
)

and "split" means letting 10% of clients own 90% of the data.
(2) We evaluate FedPracDELTA on non-iid FashionMNIST, CIFAR-10 and LEAF [3]. Details of
data generation and partitioning are provided in Appendix H.2.

Baselines and Models. We compare our algorithm, Fed(Prac)DELTA (Algorithm 1), with
Fed(Prac)IS (Algorithm 2 in Appendix D), FedAVG [38], which uses random sampling, and Power-of-
choice [7], which uses loss-based sampling and Cluster-based IS [52]. We utilize the regression model
on synthetic date, the CNN model on Fashion-MNIST and Leaf, and the ResNet-18 on CIFAR-10. All
algorithms are compared under the same experimental settings, such as lr and batch size. Full details
of the sampling process of baselines and the setup of experiments are provided in Appendix H.2.
The maximum values reported in Table 2 are observed during the last 4% of rounds, where these
algorithms have already reached convergence. The term ’maximum five accuracies’ refers to the
mean of the five highest accuracy values obtained within the plateau region of the accuracy curve.

Figure 4 illustrates the theoretical FedDELTA outperforms other biased and unbiased methods
in convergence speed on synthetic datasets. The superiority of the theoretical DELTA is also
confirmed on split-FashionMNIST, as shown in Appendix H in Figure 14(a). Additional experimental
results, which include a range of different choices of regression parameters Ai, bi, noise ν, and client
numbers, are presented in Figure 11, Figure 12, and Figure 13 in Appendix H.3.

Table 2 shows the FedPracDELTA has better performance in accuracy, communication rounds,
and training wall-clock times. Notably, FedPracDELTA significantly accelerates convergence
by requiring fewer training rounds and less time to achieve the threshold accuracy in FashionMNIST,
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Table 2: Performance of algorithms over various datasets. We run 500 communication rounds on FashionM-
NIST, CIFAR-10, FEMNIST, and CelebA for each algorithm. We report the mean of maximum 5 accuracies for
test datasets and the average number of communication rounds and time to reach the threshold accuracy.

Algorithm FashionMNIST CIFAR-10

Acc (%) Rounds for 70% Time (s) for 70% Acc (%) Rounds for 54% Time (s) for 54%

FedAvg 70.35±0.51 426 (1.0×) 1795.12 (1.0×) 54.28±0.29 338 (1.0×) 3283.14 (1.0×)
Cluster-based IS 71.21 ±0.24 362 (1.17×) 1547.41 (1.16×) 54.83±0.02 323 (1.05×) 3188.54 (1.03×)
FedPracIS 71.69±0.43 404 (1.05×) 1719.26 (1.04×) 55.05±0.27 313 (1.08×) 3085.05 (1.06×)
FedPracDELTA 72.10±0.49 322 (1.32×) 1372.33 (1.31×) 55.20 ±0.26 303 (1.12×) 2989.98 (1.1×)

Algorithm FEMNIST CelebA

Acc (%) Rounds for 70% Time (s) for 70% Acc (%) Rounds for 85% Time (s) for 85%

FedAvg 71.82±0.93 164 (1.0×) 330.02 (1.0×) 85.92±0.89 420 (1.0×) 3439.81 (1.0×)
Cluster-based IS 70.42±0.66 215 (0.76×) 453.56 (0.73×) 86.77±0.11 395 (1.06×) 3474.50 (1.01×)
FedPracIS 80.11±0.29 110 (1.51×) 223.27 (1.48×) 88.12±0.71 327 (1.28×) 2746.82 (1.25×)
FedPracDELTA 81.44±0.28 98 (1.67×) 198.95 (1.66×) 89.67 ±0.56 306 (1.37×) 2607.12 (1.32×)

Table 3: Performance of sampling algorithms integration with other optimization methods on FEMNIST.
PracIS and PracDELTA are the sampling methods of Algorithm FedPracIS and FedPracDELTA, respectively,
using the sampling probabilities defined in equations (15) and (16). For proximal and momentum methods, we
use the default hyperparameter setting µ = 0.01 and γ = 0.9.

Backbone with Sampling Uniform Sampling Cluster-based IS PracIS PracDELTA

Acc (%) Rounds for 80% Acc (%) Rounds for 80% Acc (%) Rounds for 80% Acc (%) Rounds for 80%

FedAvg 71.82±0.93 164 (for 70%) 70.42±0.66 215 (for 70%) 80.11±0.29 110 (for 70%) 81.44±0.28 98 (for 70%)
FedAvg + momentum 80.86±0.49 268 80.86±0.49 281 81.80 ±0.05 246 82.58 ±0.44 200
FedAvg + proximal 81.41 ±0.34 313 80.88 ±0.38 326 81.28±0.25 289 82.54 ±0.57 245

CIFAR-10, FEMNIST, and CelebA. Additionally, on the natural federated dataset LEAF (FEMNIST
and CelebA), our results demonstrate that both FedPracDELTA and FedPracIS exhibit substantial
improvements over FedAvg. Figure 14(b) in Appendix H.3 illustrates the superior convergence of
FedPracDELTA, showcasing the accuracy curves of sampling algorithms on FEMNIST.

Table 3 demonstrates that when compatible with momentum or proximal regularization, our
method keeps its superiority in convergence. We combine various optimization methods such
as proximal regularization [29], momentum [34], and VARP [18] with sampling algorithms to assess
their performance on FEMNIST and FashionMNIST. Additional results for proximal and momentum
on CIFAR-10, and for VARP on FashionMNIST, are available in Table 4 and Table 5 in Appendix H.3.

Ablation studies. We also provide ablation studies of heterogeneity α in Table 9 and the impact
of the number of sampled clients on accuracy in Figure 15 in Appendix H.3.

6 Conclusions, Limitations, and Future Works

This work studies the unbiased client sampling strategy to accelerate the convergence speed of FL
by leveraging diverse clients. To address the prevalent issue of full-client gradient dependence in
gradient-based FL [36, 4], we extend the theoretical algorithm DELTA to a practical version that
utilizes information from the available clients.

Nevertheless, addressing the backdoor attack defense issue remains crucial in sampling algorithms.
Furthermore, there is still significant room for developing an efficient and effective practical algorithm
for gradient-based sampling methods. We will prioritize this as a future research direction.
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A An Expanded Version of The Related Work

FedAvg is proposed by [38] as a de facto algorithm of FL, in which multiple local SGD steps are
executed on the available clients to alleviate the communication bottleneck. While communication
efficient, heterogeneity, such as system heterogeneity [29, 31, 59, 39, 9], and statistical/objective
heterogeneity [33, 21, 29, 59, 15], results in inconsistent optimization objectives and drifted clients
models, impeding federated optimization considerably.

Objective inconsistency in FL. Several works also encounter difficulties from the objective
inconsistency caused by partial client participation [31, 7, 2]. [31, 7] use the local-global gap
f∗ − 1

m

∑m
i=1 F

∗
i to measure the distance between the global optimum and the average of all local

personal optima, where the local-global gap results from objective inconsistency at the final optimal
point. In fact, objective inconsistency occurs in each training round, not only at the final optimal
point. [2] also encounter objective inconsistency caused by partial client participation. However,
they use | 1n

∑n
i=1 ∇Fi(xt)−∇f(xt)| ≤ ϵ as an assumption to describe such update inconsistency

caused by objective inconsistency without any analysis on it. To date, the objective inconsistency
caused by partial client participation has not been fully analyzed, even though it is prevalent in FL,
even in homogeneous local updates. Our work provides a fundamental convergence analysis on the
influence of the objective inconsistency of partial client participation.

Client selection in FL. In general, sampling methods in federated learning (FL) can be classified
as biased or unbiased. Unbiased sampling guarantees that the expected value of client aggregation
is equal to that of global deterministic aggregation when all clients participate. Conversely, biased
sampling may result in suboptimal convergence. A prominent example of unbiased sampling in FL
is multinomial sampling (MD), which samples clients based on their data ratio [59, 12]. Additionally,
importance sampling (IS), an unbiased sampling method, has been utilized in FL to reduce
convergence variance. For instance, [4] use update norm as an indicator of importance to sample
clients, [49] sample clients based on data variability, and [40] use test accuracy as an estimation of
importance. Meanwhile, various biased sampling strategies have been proposed to speed up training,
such as selecting clients with higher loss [7], as many clients as possible under a threshold [45], clients
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with larger updates [48], and greedily sampling based on gradient diversity [2]. However, these biased
sampling methods can exacerbate the negative effects of objective inconsistency and only converge to
a neighboring optimal solution. Another line of research focuses on reinforcement learning for client
sampling, treating each client as an agent and aiming to find the optimal action [69, 62, 6, 53, 67].
There are also works that consider online FL, in which the client selection must consider the client’s
connection ability [44, 17, 26, 71, 46, 8]. Recently, cluster-based client selection has gained some
attention in FL [12, 64, 42, 52, 37, 50, 25, 41, 61]. Though clustering adds additional computation
and memory overhead, [12, 52] show that it is helpful for sampling diverse clients and reducing
variance. Although some studies employ adaptive cluster-based IS to address the issue of slow
convergence due to small gradient groups [52, 11], these approaches differ from our method as they
still require an additional clustering operation. The proposed DELTA 3 in Algorithm 1 can be viewed
as a muted version of the diverse client clustering algorithm, while promising to be unbiased.

Importance sampling. Importance sampling is a statistical method that allows for the estimation of
certain quantities by sampling from a distribution that is different from the distribution of interest. It
has been applied in a wide range of areas, including Monte Carlo integration [10, 70, 1], Bayesian
inference [22, 23], and machine learning [54, 19].

In a recent parallel work, [49] demonstrated mean square convergence of strongly convex federated
learning under the assumption of a bounded distance between the global optimal model and the local
optimal models.[4] analyzed the convergence of strongly convex and nonconvex federated learning
by studying the improvement factor, which is the ratio of the participation variance using importance
sampling and the participation variance using uniform sampling. This algorithm dynamically selects
clients without any constraints on the number of clients, potentially violating the principle of partial
user participation. It is worth noting that both of these sampling methods are based on the gradient
norm, ignoring the effect of the direction of the gradient. Other works have focused on the use of
importance sampling in the context of online federated learning, where the client selection must
consider the client’s connection ability. For example, [69] proposed an adaptive client selection
method based on reinforcement learning, which takes into account the communication cost and the
accuracy of the local model when selecting clients to participate in training. [62] also employed
reinforcement learning for adaptive client selection, treating each client as an agent and aiming to
find the optimal action that maximizes the accuracy of the global model.[6] introduced a bandit-based
federated learning algorithm that uses importance sampling to select the most informative clients
in a single communication round. [53] considered the problem of federated learning with imperfect
feedback, where the global model is updated based on noisy and biased local gradients, and proposed
an importance sampling method to adjust for the bias and reduce the variance of convergence.

B Toy Example and Experiments for Illustrating Our Observation

B.1 Toy example

Figure 5 is a separate illustrated version of each sampling algorithm provided in Figure 3.

We consider a regression problem involving three clients, each with a unique square function:
F1(x, y) = x2 + y2; F2(x, y) = 4(x− 1

2 )
2 + 1

2y
2;F3(x, y) = 3x2 + 3

2 (y− 2)2. Suppose (xt, yt) =
(1, 1) at current round t, the gradients of three clients are ∇F1 = (2, 2), ∇F2 = (4, 1), and
∇F3 = (6,−3). Suppose only two clients are selected to participate in training. The closer the
selected user’s update is to the global model, the better.

For ideal global model, ∇Fglobal =
1
3

∑3
i=1 ∇Fi = (4, 0), which is the average over all clients.

For FedIS, ∇FFedIS = 1
2 (∇F2 +∇F3) = (5,−1): It tends to select Client 2 and 3 who have large

gradient norms, as ∥∇F3∥ > ∥∇F2∥ > ∥∇F1∥.

For DELTA, ∇FDELTA = 1
2 (∇F1 +∇F3) = (4,− 1

2 ): It tends to select Client 1 and 3 who have the
largest gradient diversity than that of other clients pair, where the gradient diversity can be formulated
by divi = ∥∇Fi(xt, yt)−∇Fglobal(xt, yt)∥ [55, 32].

3With a slight abuse of the name, we use DELTA for the rest of the paper to denote either the sampling
probability or the federated learning algorithm with sampling probability DELTA, as does FedIS.
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For FedAvg, ∇FFedAvg = 1
2 (∇F1 + ∇F2) = (3, 3

2 ): It assigns each client with equal sampling
probability. Compared to FedIS and DELTA, FedAvg is more likely to select Client 1 and 2. To
facilitate the comparison, FedAvg is assumed to select Client 1 and 2 here.

From Figure 3, we can observe that the gradient produced by DELTA is closest to that of
the ideal global model. Specifically, using L2 norm as the distance function D, we have
D(∇FDELTA,∇Fglobal) < D(∇FFedIS ,∇Fglobal) < D(∇FFedAvg,∇Fglobal). This illustrates
the selection of more diverse clients better approaches the ideal global model, thereby making it more
efficient.

(a) Overview of different methods. (b) FedAvg.

(c) FedIS. (d) DELTA.
Figure 5: Overview of objective inconsistency. The intuition of objective inconsistency in FL is caused by
client sampling. When Client 1 & 2, are selected to participate the training, then the model xt+1 becomes
xt+1
FedAvg instead of xt+1

global, resulting in objective inconsistency. Different sampling strategies can cause different
surrogate objectives, thus causing different biases. From Fig 5(a) we can see DELTA achieves minimal bias
among the three unbiased sampling methods.

B.2 Experiments for illustrating our observation.

Experiment setting. For the experiments to illustrate our observation in the introduction, we apply a
logistic regression model on the non-iid MNIST dataset. 10 clients are selected from 200 clients to
participate in training in each round. We set 2 cluster centers for cluster-based IS. And we set the
mini batch-size to 32, the learning rate to 0.01, and the local update time to 5 for all methods. We
run 500 communication rounds for each algorithm. We report the average of each round’s selected
clients’ gradient norm and the minimum of each round’s selected clients’ gradient norm.

Performance of gradient norm. We report the gradient norm performance of cluster-based IS
and IS to show that cluster-based IS selects clients with small gradients. As we mentioned in the
introduction, the cluster-based IS always selects some clients from the cluster with small gradients,
which will slow the convergence in some cases. We provide the average gradient norm comparison
between IS and cluster-based IS in Figure 6(a). In addition, we also provide the minimal gradient
norm comparison between IS and cluster-based IS in Figure 6(b).

Performance of removing small gradient clusters. We report on a comparison of the accuracy and
loss performance between vanilla cluster-based IS and the removal of cluster-based IS with small
gradient clusters. Specifically, we consider a setting with two cluster centers. After 250 rounds,
we replace the clients in the cluster containing the smaller gradient with the clients in the cluster
containing the larger gradient while maintaining the same total number of participating clients. The
experimental results are shown in Figure 7. We can observe that vanilla cluster-based IS performs
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(b) Minimal gradient norm comparison

Figure 6: The gradient norm comparison. Both results indicate that cluster-based IS selects clients with small
gradients after about half of the training rounds compared to IS.

worse than cluster-based IS without small gradients, indicating that small gradients are a contributing
factor to poor performance.
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Figure 7: An illustration that cluster-based IS sampling from the cluster with small gradients will
slow convergence. When the small gradient-norm cluster’s clients are replaced by the clients from the large
gradient-norm cluster, we see the performance improvement of cluster-based IS.

C Techniques

Here, we present some technical lemmas that are useful in the theoretical proof. We substitute 1
m for

ni

N to simplify the writing in all subsequent proofs. ni

N is the data ratio of client i. All of our proofs
can be easily extended from f(xt) =

1
m

∑m
i=1 Fi(xt) to f(xt) =

∑m
i=1

ni

N Fi(xt).

Lemma C.1. (Unbiased Sampling). Importance sampling is unbiased sampling.
E( 1n

∑
i∈St

1
mpi

∇Fi(xt)) = 1
m

∑m
i=1 ∇Fi(xt) , no matter whether the sampling is with

replacement or without replacement.

Lemma C.1 proves that the importance sampling is an unbiased sampling strategy, either in sampling
with replacement or sampling without replacement.
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Proof. For with replacement:

E

(
1

n

∑
i∈St

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(
E
(

1

mpti
∇Fi(xt) | S

))

=
1

n

∑
i∈St

E

(
m∑
l=1

ptl
1

mptl
∇Fl(xt)

)
=

1

n

∑
i∈St

∇f(xt) = ∇f(xt) ,

(19)

For without replacement:

E

(
1

n

∑
i∈St

1

mpi
∇Fi(xt)

)
=

1

n

m∑
l=1

E
(
Im

1

mptl
∇Fl(xt)

)
=

1

n

m∑
l=1

E(Im)× E(
1

mptl
∇Fl(xt))

=
1

n
E(

m∑
l=1

Im)× E(
1

mptl
∇Fl(xt)) =

1

n
n×

m∑
l=1

ptl
1

mptl
∇Fl(xt)

=
1

n

m∑
l=1

nptl ×
1

mptl
∇Fl(xt) =

1

m

m∑
l=1

∇Fl(xt) = ∇f(xt) , (20)

where Im ≜

{
1 if xl ∈ St ,

0 otherwise .

In the expectation, there are three sources of stochasticity. They are client sampling, local SGD, and
the filtration of xt. Therefore, the expectation is taken over all of these sources of randomness. Here,
S represents the sources of stochasticity other than client sampling. More precisely, S represents the
filtration of the stochastic process xj , j = 1, 2, 3. . . at time t and the stochasticity of local SGD.

Lemma C.2 (update gap bound).

χ2 = E∥ 1
n

∑
i∈St

1

mpti
∇Fi(xt)−∇f(xt)∥2 = E∥∇f̃(xt)∥2 − ∥∇f(xt)∥2 ≤ E∥∇f̃(xt)∥2 . (21)

where the first equation follows from E[x− E(x)]2 = E[x2]− [E(x)]2 and Lemma C.1.

For ease of understanding, we give a detailed derivation of the Lemma C.2.

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
=E

(
∥∇f̃(xt)∥2 | S

)
− 2E

(
∥∇f̃(xt)∥∥∇f(xt)∥ | S

)
+ E

(
∥∇f(xt)∥2 | S

)
, (22)

where E(x | S) means the expectation on x over the sampling space. We have E
(
∥∇f̃(xt) | S

)
=

∇f(xt) and E
(
∥∇f(xt)∥2 | S

)
= ∥∇f(xt)∥2 (∥∇f(x)∥ is a constant for stochasticity S and the

expectation over a constant is the constant itself.)
Therefore, we conclude

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
= E

(
∥∇f̃(xt)∥2 | S

)
− ∥∇f(xt)∥2 ≤ E

(
∥∇f̃(xt)∥2 | S

)
.

(23)

We can further take the expectation on both sides of the inequality according to our needs, without
changing the relationship.

The following lemma follows from Lemma 4 of [47], but with a looser condition Assumption 3,
instead of σ2

G bound. With some effort, we can derive the following lemma:

Lemma C.3 (Local updates bound.). For any step-size satisfying ηL ≤ 1
8LK , we can have the

following results:

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (24)
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Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lσ
2
G + 4Kη2L(A

2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (25)

Unrolling the recursion, we obtain:

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (26)

In the following Proposition, we will demonstrate that the convergence rate in this paper with the
relaxed version of Assumption 3 remains unchanged.

Proposition C.4 (convergence under relaxed Assumption 3 [24]). The relaxed version of Assump-
tion 3 in this paper is:

E∥∇Fi(x)∥2 ≤ 2B(f(x)− f inf ) + (A2 + 1)∥∇f(x)∥2 + σ2
G . (27)

Since we have f(x)−f inf ≤ f0−f inf ≤ F , where F is a positive constant. This implies that we can
substitute σg with 2BF +σG in all analyses without altering the outcomes (one can directly conclude
this from using the above bound in Lemma C.3). In the final convergence rate, it is straightforward to
see that the convergence rate remains unchanged, yet the constant term σg becomes 2BF + σG.

Thus, we can assert that we have furnished the analysis under the relaxed assumption condition.

D Convergence of FedIS, Proof of Theorem 3.1

The complete version of FedIS algorithm is shown below:

We first restate the convergence theorem (Theorem 3.1) more formally, then prove the result for the
nonconvex case.
Theorem D.1. Under Assumptions 1–3 and the sampling strategy FedIS, the expected gradient
norm will converge to a stationary point of the global objective. More specifically, if the number
of communication rounds T is predetermined and the learning rate η and ηL are constant, then the
expected gradient norm will be bounded as follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+Φ , (28)

where F = f(x0) − f(x∗), M2 = σ2
L + 4Kσ2

G, and the expectation is over the local datasets
samples among workers.
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Algorithm 2 FedIS and FedPracIS : Federated learning with importance sampling

Require: initial weights x0, global learning rate η, local learning rate ηl, number of training rounds T
Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Select clients by using IS (5) or Practical IS (15) .

3: for each worker i ∈ St,in parallel do
4: xi

t,0 = xt

5: for k = 0, · · ·,K − 1 do
6: compute git,k = ∇Fi(x

i
t,k, ξ

i
t,k)

7: Local update:xi
t,k+1 = xi

t,k − ηLg
i
t,k

8: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k

9: Send gradient to server
10: At Server:
11: Receive ∆i

t, i ∈ St

12: let ∆t =
1

|St|
∑

i∈St

ni

npti
∆i

t

13: Server update: xt+1 = xt + η∆t

14: Broadcast xt+1 to clients

Let ηL < min (1/(8LK), C), where C is obtained from the condition that 1
2 − 10L2K2(A2 +

1)η2L − L2ηK(A2+1)
2n ηL > 0 ,and η ≤ 1/(ηLL), it then holds that:

Φ =
1

c
[
5η2LL

2K

2m

m∑
i=1

(σ2
L + 4Kσ2

G) +
ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (29)

where c is a constant that satisfies 1
2 − 10L2K2(A2 + 1)η2L − L2ηK(A2+1)

2n ηL > c > 0, and
V ( 1

mpt
i
ĝti) = E∥ 1

mpt
i
ĝti − 1

m

∑m
i=1 ĝ

t
i∥2.

Corollary D.2. Suppose ηL and η are such that the conditions mentioned above are satisfied,
ηL = O

(
1√

TKL

)
and η = O

(√
Kn
)

, and let the sampling probability be FedIS (75). Then for
sufficiently large T, the iterates of Theorem 3.1 satisfy:

min
t∈[T ]

E∥∇f(xt)∥2 = O
(

σ2
L√

nKT
+

Kσ2
G√

nKT
+

σ2
L + 4Kσ2

G

KT

)
. (30)

Proof.

Et[f(xt+1)]
(a1)

≤ f(xt) + ⟨∇f(xt),Et[xt+1 − xt]⟩+
L

2
Et[∥xt+1 − xt∥2]

= f(xt) + ⟨∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]⟩+
L

2
η2Et[∥∆t∥2]

= f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

,

(31)

where (a1) follows from the Lipschitz continuous condition. The expectation is conditioned on
everything prior to the current step k of round t. Specifically, it is taken over the sampling of clients,
the sampling of local data, and the current round’s model xt.
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Firstly we consider A1:

A1 = ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩

=

〈
∇f(xt),Et[−

1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηLK∇f(xt)]

〉

(a2)
=

〈
∇f(xt),Et[−

1

m

m∑
i=1

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f(xt)]

〉

=

〈√
ηLK∇f(xt),−

√
ηL√
K

Et[
1

m

m∑
i=1
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∥∥∥∥∥
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t,k)∥2 , (32)

where (a2) follows from Assumption 2 and LemmaC.1. (a3) is due to ⟨x, y⟩ =
1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and (a4) comes from Assumption 1.

Then we consider A2. Let ĝti =
∑K−1

k=0 gti,k =
∑K−1

k=0 ∇Fi(x
i
t,k, ξ

i
t,k)
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∥∥∥∥∥ηL 1

n

∑
i∈St

1

mpti

K−1∑
k=0

git,k

∥∥∥∥∥
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∥∥∥∥∥ 1
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∥∥∥∥∥ 1
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∥∥∥∥∥
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ĝti)

+ η2LE∥
1

m

m∑
i=1

K−1∑
k=0

[gi(x
i
t,k)−∇Fi(x
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K
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1

m
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i
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The third equality follows from independent sampling.

Specifically, for sampling with replacement, due to every index being independent, we utilize
E∥x2

1 + ...+ xn∥2 = E[∥x1∥2 + ...+ ∥xn∥2].
For sampling without replacement:

E∥ 1
n

∑
i∈St

(
1

mpti
ĝti −
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m

m∑
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ĝti)∥
2

=
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1
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m
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ĝti)∥
2

=
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n2
E

(
∥
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1

m
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ĝti)∥
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)
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+
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E

(
∥

m∑
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Ii(
1
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ĝti −

1

m

m∑
i=1

ĝti)∥
2 | Ii = 0

)
× P(Ii = 0)

=
1

n

m∑
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pti∥
1
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ĝti −

1

m

m∑
i=1

ĝti∥
2

=
1

n
E∥ 1
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ĝti −

1

m

m∑
i=1

ĝti∥
2 . (34)

From the above, we observe that it is possible to achieve a speedup by sampling from the distribution
that minimizes V ( 1

mpt
i
ĝti). Furthermore, as we discussed earlier, the optimal sampling probability

is p∗i =
∥ĝt

i∥∑m
i=1 ∥ĝt

i∥
. For MD sampling [31], which samples according to the data ratio, the optimal

sampling probability is p∗i,t =
qi∥ĝt

i∥∑m
i=1 qi∥ĝt

i∥
, where qi =

ni

N .

Now we substitute the expressions of A1 and A2:

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
∥∇f(xt)∥2 +

5ηη3LL
2K2
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L + 4Kσ2
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ηηL
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)
Et

∥∥∥∥∥ 1
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∇Fi(x
i
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∥∥∥∥∥
2

≤ f(xt)− cηηLK∥∇f(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

η2η2LKL

2m
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L +

Lη2η2L
2n

V (
1

mpti
ĝti) ,

(35)

where the last inequality follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a9) holds because

there exists a constant c > 0 (for some ηL) satisfying 1
2 − 10L2 1

m

∑m
i−1 K

2η2L(A
2 + 1) > c > 0.

Rearranging and summing from t = 0, . . . , T − 1,we have:

T−1∑
t=1

cηηLKE∥∇f(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (36)

Which implies:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+Φ , (37)
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where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (38)

D.1 Proof for convergence rate of FedIS (Theorem 3.1) under Assumption 1–3.

In this section, we compare the convergence rate of FedIS with and without Assumption 4. For
comparison, we first provide the convergence result under Assumption 4.

First we show Assumption 4 can be used to bound the update variance V
(

1
mpt

i
ĝti

)
, and under the

sampling probability FedIS (73):

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
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K∑
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∇Fi(xt,k, ξk,t)∥2 ≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2 ≤ K2G2

(39)

While for using Assumption 3 instead of additional Assumption 4, we can also bound the update
variance:

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 ≤ 1

m
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K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2

≤ K2σ2
G +K2(A2 + 1)∥∇f(xt)∥2 (40)

We replace the variance back to equation (35):

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
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5ηη3LL
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L + 4Kσ2
G)

+
η2η2LKL
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Lη2η2L
2n
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ηηL
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)
Et

∥∥∥∥∥ 1

m
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K−1∑
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∥∥∥∥∥
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−
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∥∥∥∥∥ 1
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∥∥∥∥∥
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.

(41)

This shows that the requirement for ηL is different. It needs that there exists a constant c > 0 (for
some ηL) satisfying 1

2 − 10L2K2η2L(A
2 + 1) − LηηLK(A2+1)

2n > c > 0. One can still guarantee
that there exists a constant for ηL to satisfy this inequality according to the properties of quadratic
functions. Specifically, for the quadratic equation −10L2K2(A2 + 1)η2L − LηK(A2+1)

2n ηL + 1
2 , we

know that −10L2K2(A2 + 1) < 0, −LηK(A2+1)
2n and 1

2 > 0. Based on the solution of quadratic
equations, we can ensure that there exists a ηL > 0 solution.

Then we can substitute equation (35) with equation (41) and let ηL = O
(

1√
TKL

)
and η =

O
(√

Kn
)

, yielding the convergence rate of FedIS under Assumptions 1– 3:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(
f0 − f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
Kσ2

G√
nKT

)
︸ ︷︷ ︸

order of Φ

. (42)
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E Convergence of DELTA. Proof of Theorem 3.5

E.1 Convergence rate with improved analysis method for getting DELTA

As we see FedIS can only reduce the update variance term in Φ. Since we want to reduce the
convergence variance as much as possible, the other term σL and σG still needs to be optimized.
However, it is not straightforward to derive the optimization problem from Φ. In order to further
reduce the variance in Φ (cf. 4), i.e., local variance (σL) and global variance (σG), we divide the
convergence of the global objective into a surrogate objective and an update gap and analyze them
separately. The analysis framework is shown in Figure 8.

Figure 8: Theoretical analysis flow. The figure shows the theoretical analysis flow of FedIS (left) and DELTA
(right), highlighting the differences in sampling probability due to variance.

As for the update gap, inspired by the expression form of the update variance, we formally define
it as follows:
Definition E.1 (Update gap). In order to measure the update inconsistency, we define the update gap:

χt = E
[∥∥∥∇f̃(xt)−∇f(xt)

∥∥∥] . (43)

Here, the expectation is taken over the distribution of all clients. When all clients participate, we
have χ2

t = 0. The update inconsistency exists as long as only a partial set of clients participate.

The update gap is a direct manifestation of the objective inconsistency in the update process. The
presence of an update gap makes the analysis of the global objective different from the analysis of
the surrogate objective. However, by ensuring the convergence of the update gap, we can re-derive
the convergence result for the global objective. Formally, the update gap allows us to connect global
objective convergence and surrogate objective convergence as follows:

E∥∇f(xt)∥2 = E∥∇f̃(xt)∥2 + χ2
t . (44)

The equation follows from the property of unbiasedness, as shown in Lemma C.1.

To deduce the convergence rate of the global objective, we begin by examining the convergence
analysis of the surrogate objective.
Theorem E.2 (Convergence rate of surrogate objective). Under Assumption 1–3 and let local and
global learning rates η and ηL satisfy ηL < 1/(

√
40KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal

gradient norm of surrogate objective will be bounded as below:

mint∈[T ] E
∥∥∥∇f̃ (xt)

∥∥∥2 ≤ f0−f∗

c̃ηηLKT
+ Φ̃

c̃
, (45)

where f0 = f(x0), f∗ = f(x∗), the expectation is over the local dataset samples among workers.

Φ̃ is the new combination of variance, representing combinations of local variance and client
gradient diversity.

For sampling without replacement:

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (46)
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For sampling with replacement:

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i (47)

where ζG,i represents client gradient diversity: ζG,i = ∥∇Fi(xt)−∇f(xt)∥ 4, and c̃ is a constant.
The proof of Theorem E.2 is provided in Appendix E.2.1 and Appendix E.2.2. Specifically, the proof
for sampling with replacement is shown in Appendix E.2.1, while the proof for sampling without
replacement is shown in Appendix E.2.2.

Remark E.3. We observe that there is no update variance in Φ̃, but the local variance and global
variance are still present. Additionally, the new combination of variance Φ̃ can be minimized by
optimizing the sampling probability, as will be shown later.

Derive the convergence from surrogate objective to global objective. As shown in Lemma C.1,
unbiased sampling guarantees that the expected partial client updates are equal to the participation
of all clients. With sufficient training rounds, unbiased sampling can ensure that the update gap χ2

will converge to zero. However, we still need to know the convergence speed of χ2
t to recover the

convergence rate of the global objective. Fortunately, we can bound the convergence behavior of χ2
t

by the convergence rate of the surrogate objective according to Definition E.1 and Lemma C.2. This
means that the update gap can achieve at least the same convergence rate as the surrogate objective.
Corollary E.4 (New convergence rate of global objective). Under Assumption 1–3 and based on the
above analysis that update variance is bounded, the global objective will converge to a stationary
point. Its gradient is bounded as:

mint∈[T ] E∥∇f(xt)∥2 = mint∈[T ] E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ mint∈[T ] 2E∥∇f̃(xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
.

(48)

Theorem E.5 (Restate of Theorem 3.5). Under Assumptions 1-3 and the same conditions as in
Theorem 3.1, the minimal gradient norm of the surrogate objective will be bounded as follows
by setting ηL = 1√

TKL
and η

√
Kn. Let the local and global learning rates η and ηL satisfy

ηL < 1
√
40KL

√
1
n

∑m
l=1

1
mpt

l

and ηηL ≤ 1
KL . Under Assumptions 1-3 and with partial worker

participation, the sequence of outputs xk generated by Algorithm 1 satisfies:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+

1

c
Φ̃ , (49)

where F = f(x0)− f(x∗), and the expectation is over the local dataset samplings among workers.
c is a constant. ζG,i is defined as client gradient diversity: ζG,i = ∥∇Fi(xt)−∇f(xt)∥.

For sample with replacement: Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,i.

For sampling without replacement: Φ̃ =
5L2Kη2

L

2mn

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,l.

Remark E.6 (Condition of ηL). Here, though the condition expression for ηL relies on a dynamic
sampling probability ptl , we can still guarantee that there a constant ηL satisfies this condition.

Specifically, one can substitute the optimal sampling probability 1
pt
i

=
∑m

j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

back to the above inequality condition. As long as the gradient ∇Fi(xt) is bounded,

we can ensure 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

≤ maxj

√
α1ζ2

G,j+α2σ2
L,j

mini

√
α1ζ2

G,i+α1σ2
L,i

≤ G̃, therefore
1

2
√

10(A2+1)KL

√√√√ 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j
+α2σ2

L,j√
α1ζ2

G,i
+α2σ2

L,i

≥ 1

2
√

10(A2+1)KL
√

G̃
≥ C, where G̃ and C are

positive constants. Thus, we can always find a constant ηL to satisfy this inequality under dynamic
sampling probability pti.

4In the Appendix, we abbreviate ζG,i,t to ζG,i for the sake of simplicity in notation, without any loss of
generality.
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Corollary E.7 (Convergence rate of DELTA). Suppose ηL and η are such that the conditions
mentioned above are satisfied, ηL = O

(
1√

TKL

)
and η = O

(√
Kn
)

. Then for sufficiently large T,
the iterates of Theorem 3.5 satisfy:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

F√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
. (50)

Lemma E.8. For any step-size satisfying ηL ≤ 1
8LK , we can have the following results:

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (51)

where ζG,i = ∥∇F (xt) − ∇f(xt)∥, and the expectation is over local SGD and filtration of xt,
without the stochasticity of client sampling.

Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
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+ 4Kη2Lζ
2
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2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (52)

Unrolling the recursion, we get:

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ 5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (53)

E.2 Proof for Theorem E.2.

In Section E.2.1 and Section E.2.2, we provide the proof for Theorem E.2. Specifically, the proof
for sampling with replacement is shown in Appendix E.2.1, while the proof for sampling without
replacement is shown in Appendix E.2.2.

E.2.1 Sample with replacement

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (54)

where Φ̃ =
5L2Kη2
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∑m
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l
(σ2

L + 4Kζ2G,i) +
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L.
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Proof.

Et[f̃(xt+1)]
(a1)

≤ f̃(xt) +
〈
∇f̃(xt),Et[xt+1 − xt]

〉
+

L

2
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.

(55)

Where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the local
data SGD and the filtration of xt. However, in the next analysis, the expectation is over all randomness,
including client sampling .This is achieved by taking expectation on both sides of the above equation
over client sampling.

To begin, let us consider A1:
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where (a2) follows from Assumption 2, and (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
for

x =
√
KηL∇f̃(xt) and y =

√
ηL

K [− 1
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∑
i∈St

1
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∑K−1
k=0 ∇Fi(x

i
t,k) +K∇f̃(xt)].
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To bound A1, we need to bound the following part:

Et∥
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t,k)−K∇f̃(xt)∥2

= Et∥
1

n

∑
i∈St

1

mpti

K−1∑
k=0
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(∇Fi(x

i
t,k)−∇Fi(xt))∥2

=
K

n

∑
i∈St

K−1∑
k=0

Et{Et(∥
1

mpti
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2
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where (a4) follows from the fact that E|x1 + · · · + xn|2 ≤ nE
(
|x1|2 + · · ·+ |xn|2

)
, (a5) is a

consequence of Assumption 1, and (a6) is a result of Lemma E.8.

Combining the above expressions, we obtain:
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Next, we consider bounding A2:

A2 = Et∥∆t∥2
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∥∥∥∥∥
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, (59)

where S represents the whole sample space and (a7) is due to Assumption 2.

Now we substitute the expressions for A1 and A2 and take the expectation over the client sampling
distribution on both sides. It should be noted that the derivation of A1 and A2 above is based on
considering the expectation over the sampling distribution:

f(xt+1) ≤ f(xt)− ηηLKEt

∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
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+
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(60)

where (a8) comes from Lemma C.2, (a9) follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a10)

holds because there exists a constant c > 0 satisfying ( 12 − 20K2η2
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1
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l
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Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT )

+ T (ηηLK)

(
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L

)
. (61)

Which implies:

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
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c
Φ̃ , (62)

where Φ̃ =
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∑m
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1
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E.2.2 Sample without replacement

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
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c
Φ̃ , (63)

where Φ̃ =
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L
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1
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1
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Proof.

E[f̃(xt+1)] ≤ f̃(xt) +
〈
∇f̃(xt),E[xt+1 − xt]

〉
+
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. (64)

Where the first inequality follows from Lipschitz continuous condition. The expectation here is taken
over both the local SGD and the filtration of xt. However, in the subsequent analysis, the expectation
is taken over all sources of randomness, including client sampling.

Similarly, we consider A1 first:

A1 =
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Since xi are sampled from St without replacement, this causes pairs xi1 and xi2 to no longer be
independent. We introduce the activation function as follows:

Im ≜

{
1 if x ∈ St ,

0 otherwise .
(66)

Then we obtain the following bound:
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where (b1) follows from ∥
∑m

i=1 ti∥2 =
∑
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The expression for A2 is as follows:
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Now we substitute the expressions for A1 and A2 and take the expectation over the client sampling
distribution on both sides. It should be noted that the derivation of A1 and A2 above is based on
considering the expectation over the sampling distribution:

f(xt+1) ≤ f(xt)− ηηLKEt
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(70)

Also, for (b4), step sizes need to satisfy
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Rearranging and summing from t = 0, . . . , T − 1,we have:

T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ̃ . (71)

Which implies:

min
t∈[T ]
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where Φ̃ =
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l=1

1
m2pt

l
σ2
L.
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Remark E.9. ζG used in DELTA can be easily transformed into a σG related term, thus it is
fair to compare DELTA with FedIS. In particular, by taking the expectation on ζG, it equates to
E∥∇Fi(xt) − ∇f(xt)∥2. As demonstrated in [1], one can derive E∥∇Fi(xt) − ∇f(xt)∥2 =
E∥∇Fi(xt)∥2 − ∥∇f(xt)∥2 ≤ A∥∇f(xt)∥2 + σ2

G. Shifting A∥∇f(xt)∥2 to the left side of the
convergence result, ζG can be directly transformed into σG.

F Proof of the Optimal Sampling Probability

F.1 Sampling probability FedIS

Corollary F.1 (Optimal sampling probability for FedIS).

min
pt
l

Φ s.t.

m∑
l=1

ptl = 1 .

Solving the above optimization problem, we obtain the expression for the optimal sampling probabil-
ity:

pti =
∥ĝti∥∑m

j=1 ∥ĝtj∥
, (73)

where ĝti =
∑K−1

k=0 gik is the sum of the gradient updates across multiple updates.

Recall Theorem 3.1; only the last variance term in the convergence term Φ is affected by sampling.
In other words, we need to minimize the variance term with respect to probability. We formalize this
as follows:

min
pt
i∈[0,1],

∑m
i=1 pt

i=1
V (

1

mpti
ĝti) ⇔ min

pt
i∈[0,1],

∑m
i=1 pt

i=1

1

m2

m∑
i=1

1

pti
∥ĝti∥

2 . (74)

This optimization problem can be solved in closed form using the KKT conditions. It is straightfor-
ward to verify that the solution to the optimization problem is:

p∗i,t =
∥
∑K−1

k=0 git,k∥∑m
i=1 ∥

∑K−1
k=0 git,k∥

,∀i ∈ 1, 2, ...,m . (75)

Under the optimal sampling probability, the variance will be:

V

(
1

mpti
ĝti

)
≤ E

∥∥∥∥∑m
i=1 ĝ

t
i

m

∥∥∥∥2 =
1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 (76)

Therefore, the variance term is bounded by:

V

(
1

mpti
ĝti

)
≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2 ≤ K2G2 (77)

Remark: If the uniform distribution is adopted with pti =
1
m , it is easy to observe that the variance

of the stochastic gradient is bounded by
∑m

i=1 |gi|2
m .

According to Cauchy-Schwarz inequality,∑m
i=1 ∥ĝti∥2

m

/(∑m
i=1 ∥ĝi∥
m

)2

=
m
∑m

i=1 ∥ĝi∥2

(
∑m

i=1 ∥ĝi∥)
2 ≥ 1 , (78)

this implies that importance sampling does improve convergence rate, especially when
(
∑m

i=1 ∥gi∥)
2∑m

i=1 ∥gi∥2 << m.
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F.2 Sampling probability of DELTA

Our result is of the following form:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+ Φ̃ , (79)

It is easy to see that the sampling strategy only affects Φ̃. To enhance the convergence rate, we need
to minimize Φ̃ with respect to ptl . As shown, the expression for Φ̃ with and without replacement is
similar, and only differs in the values of n and m. Here, we will consider the case with replacement.
Specifically, we need to solve the following optimization problem:

min
pt
l

Φ̃ =
1

c
(
5L2Kη2L
2m2

m∑
l=1

1

ptl
(σ2

L,l + 4Kζ2G,i) +
LηLη

2n

m∑
l=1

1

m2ptl
σ2
L,i) s.t.

m∑
l=1

ptl = 1 .

Solving this optimization problem, we find that the optimal sampling probability is:

p∗i,t =

√
5KLηL(σ2

L,i + 4Kζ2G,i) +
η
nσ

2
L,l∑m

l=1

√
5KLηL(σ2

L,l + 4Kζ2G,l) +
η
nσ

2
L,l

. (80)

For simplicity, we rewrite the optimal sampling probability as:

p∗i,t =

√
α1ζ2G,i + α2σ2

L,i∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

, (81)

where α1 = 20K2LηL, α2 = 5KLηL + η
n .

Remark: Now, we will compare this result with the uniform sampling strategy:

ΦDELTA =
LηL
2c

∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

m

2

. (82)

For uniform pl =
1
m :

Φuniform =
LηL
2c

∑m
l=1

(√
α1ζ2G,l + α2σ2

L,l

)2
m

. (83)

According to Cauchy-Schwarz inequality:∑m
l=1

(√
α1ζ2G,l + α2σ2

L,l

)2
m

/

∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

m
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=
m
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(√
α1ζ2G,l + α2σ2

L,l

)2
(∑m

l=1

√
α1ζ2G,l + α2σ2

L,l

)2 ≥ 1 ,

(84)

this implies that our sampling method does improve the convergence rate (our sampling
approach might be n times faster in convergence than uniform sampling), especially when
(
∑m

l=1

√
α1ζ2

G,l+α2σ2
L,l)

2∑m
l=1(

√
α1ζ2

G,l+α2σ2
L,l)

2 << m.

G Convergence Analysis of The Practical Algorithm

In order to provide the convergence rate of the practical algorithm, we need an additional Assumption 4
(∥∇Fi(x)∥2 ≤ G2,∀i). This assumption tells us a useful fact that will be used later:

It can be shown that ∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U for all i and k, where the subscript s
refers to the last round in which client i participated, and U is a constant upper bound. This tells us
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(a) FedIS’s gradient norm on MNIST (b) FedIS’ gradient norm on FashionM-
NIST

Figure 9: Performance of gradient norm of FedIS. We evaluate the performance of FedIS on MNIST and
FashionMNIST datasets. In each round, we report the maximal and minimal gradient norm among all clients.

(a) Gradient diversity norm of DELTA on
MNIST

(b) Gradient diversity norm of DELTA on
FashionMNIST

Figure 10: Performance of gradient diversity norm of DELTA. We evaluate the performance of DELTA on
MNIST and FashionMNIST datasets. In each round, we report the maximal and minimal gradient diversity norm
among all clients.

that the change in the norm of the client’s gradient is bounded. U comes from the following inequality
constraint procedure:
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ĝti

)
= E|| 1

mpsi
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E||∇Fj(xk,s, ξk,s)||2. (85)

We establish the upper bound U based on two factors: (1) Assumption 4, and (2) the definition
of importance sampling Eq(z)(Fi(z)) = Ep(z) (qi(z)/pi(z)Fi(z)), where there exists a positive

constant γ such that pi(z) ≥ γ > 0. Thus, for psi =
ĝs
i∑
j ĝs

j
≥ γ, we can easily ensure ∥gt

i∥
∥gs

i ∥
≤ U

since ĝsi > 0 is consistently bounded.

In general, the gradient norm tends to become smaller as training progresses, which leads to
∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ going to zero. Even if there are some oscillations in the gradient
norm, the gradient will vary within a limited range and will not diverge to infinity. Figures 9 and
Figure 10 depict the norms of gradients and gradient diversity across all clients in each round.
Notably, these figures demonstrate that in the case of practical IS and practical DELTA, the change
ratio of both gradient and gradient diversity remains limited, with the maximum norm being under
8 and the minimum norm exceeding 0.5.

Based on Assumption 4 and Assumption 3, we can re-derive the convergence analysis for both
convergence variance Φ (4) and Φ̃ (46). In particular, for Assumption 3 (E∥∇Fi(x)∥2 ≤ (A2 +
1)∥∇f(x)∥2 + σ2

G), we use σG,s and σG,t instead of a unified σG for the sake of comparison.

Specifically, Φ = 1
c [

5η2
LL2K
2m

∑m
i=1(σ

2
L + 4Kσ2

G) +
ηηLL
2m σ2

L + LηηL

2nK V ( 1
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i
ĝti)], where ĝti =∑K

k=1 ∇Fi(xk,s, ξk,s). With the practical sampling probability psi of FedIS:
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According to Assumption 4, we know ∥ ĝt
i

ĝs
i
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i
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Similar to the previous proof, based on Assumption 3. we can get the new convergence rate:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√

nKT

)
+O

(
σ2
L√

nKT

)
+O
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KU2σ2
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︸ ︷︷ ︸

order of Φ

. (88)

where M = σ2
L + 4Kσ2

G,s.

Remark G.1 (Discussion on U and convergence rate.). It is worth noting that
∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ is typically relatively small because the gradient tends to
go to zero as the training process progresses. This means that U can be relatively small, more

specifically, U < 1 in the upper bound term O
(

KU2σ2
G,s√

nKT

)
. However, this does not necessarily mean

that the practical algorithm is better than the theoretical algorithm because the values of σG are
different, as we stated at the beginning. Typically, the value of σG,s for the practical algorithm is
larger than the value of σG,t, which also comes from the fact that the gradient tends to go to zero as
the training process progresses. Additionally, due to the presence of the summation over both i and
k, the gap between σG,s and σG,t is multiplied, and σG,s/σG,t ∼ m2K2 1

U2 . Thus, the practical
algorithm leads to a slower convergence than the theoretical algorithm.

Similarly, as long as the gradient is consistently bounded, we can assume that ∥∇Fi(xt) −
∇f(xt)∥/∥∇Fi(xs) − ∇f(xs)∥ ≤ Ũ1 ≤ Ũ and ∥σL,t/σL,s∥ ≤ Ũ2 ≤ Ũ for all i, where
σ2
L,s = E

[∥∥∇Fi(xs, ξ
i
s)−∇Fi(xs)

∥∥]. Then, we can obtain a similar conclusion by following
the same analysis on Φ̃.
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in (13). For the sake of comparison of different participation rounds s and t, we rewrite the symbols
as ζiG,s and σi

L,s. Then, using the practical sampling probability psi of DELTA, and letting Rs
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Therefore, compared to the theoretical algorithm of DELTA, the practical algorithm of DELTA has
the following convergence rate:

mint∈[T ] E∥∇f(xt)∥2 ≤ O
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f0−f∗
√
nKT

)
+O

(
Ũ2σ2
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)
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order of Φ̃

. (90)

This discussion of the effect of Ũ on the convergence rate is similar to the discussion of U in
Remark G.1.
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H Additional Experiment Results and Experiment Details.

H.1 Experimental Environment

For all experiments, we use NVIDIA GeForce RTX 3090 GPUs. Each simulation trail with 500
communication rounds and three random seeds.

H.2 Experiment setup

Setup for the synthetic dataset. To demonstrate the validity of our theoretical results, we first
conduct experiments using logistic regression on synthetic datasets. Specifically, we randomly
generate (x, y) pairs using the equation y = log

(
(Ax−b)2

2

)
with given values for Ai and bi as

training data for clients. Each client’s local dataset contains 1000 samples. In each round, we select
10 out of 20 clients to participate in training (we also provide the results of 10 out of 200 clients in
Figure 13).

To simulate gradient noise, we calculate the gradient for each client i using the equation gi =
∇fi(Ai, bi, Di) + νi, where Ai and bi are the model parameters, Di is the local dataset for client i,
and νi is a zero-mean random variable that controls the heterogeneity of client i. The larger the value
of E∥νi∥2, the greater the heterogeneity of client i.

We demonstrate the experiment on different functions with different values of A and b. Each function
is set with noise levels of 20, 30, and 40 to illustrate our theoretical results. To construct different
functions, we set A = 8, 10 and b = 2, 1, respectively, to observe the convergence behavior of
different functions.

All the algorithms run in the same environment with a fixed learning rate of 0.001. We train each
experiment for 2000 rounds to ensure that the global loss has a stable convergence performance.

Setup for FashionMNIST and CIFAR-10. To evaluate the performance of DELTA and FedIS,
we train a two-layer CNN on the non-iid FashionMNIST dataset and a ResNet-18 on the non-iid
CIFAR-10 dataset, respectively. CIFAR-10 is composed of 32× 32 images with three RGB channels,
belonging to 10 different classes with 60000 samples.

The "non-iid" follows the idea introduced in [66, 16], where we leverage Latent Dirichlet Allocation
(LDA) to control the distribution drift with the Dirichlet parameter α. Larger α indicates smaller
drifts. Unless otherwise stated, we set the Dirichlet parameter α = 0.5.

Unless specifically mentioned otherwise, our studies use the following protocol: all datasets are split
with a parameter of α = 0.5, the server chooses n = 20 clients according to our proposed probability
from the total of m = 300 clients, and each is trained for T = 500 communication rounds with
K = 5 local epochs. The default local dataset batch size is 32. The learning rates are set the same for
all algorithms, specifically lrglobal = 1 and lrlocal = 0.01.

All algorithms use FedAvg as the backbone. We compare DELTA, FedIS and Cluster-based IS with
FedAvg on different datasets with different settings.

Setup for Split-FashionMNIST. In this section, we evaluate our algorithms on the split-
FashionMNIST dataset. In particular, we let 10% clients own 90% of the data, and the detailed split
data process is shown below:

• Divide the dataset by labels. For example, divide FashionMNIST into 10 groups, and assign
each client one label

• Random select one client

• Reshuffle the data in the selected client

• Equally divided into 100 clients

Setup for LEAF. To test our algorithm’s efficiency on diverse real datasets, we use the non-IID
FEMNIST dataset and non-IID CelebA dataset in LEAF, as given in [3]. All baselines use a 4-layer
CNN for both datasets with a learning rate of lrlocal = 0.1, batch size of 32, sample ratio of 20% and
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(a) A = 8, b = 2, ν = 20 (b) A = 8, b = 2, ν = 30 (c) A = 8, b = 2, ν = 40

(d) A = 10, b = 1, ν = 20 (e) A = 10, b = 1, ν = 30 (f) A = 10, b = 1, ν = 40

Figure 11: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥∥y − log( (Aix−bi)
2

2
)
∥∥∥2, we report the logarithm of the global loss with different degrees of gradient noise ν.

All methods are well-tuned, and we report the best result of each algorithm under each setting.

communication round of T = 500. The reported results are averaged over three runs with different
random seeds.

The implementation detail of different sampling algorithms. The power-of-choice sampling
method is proposed by [7]. The sampling strategy is to first sample 20 clients randomly from all
clients, and then choose 10 of the 20 clients with the largest loss as the selected clients. FedAvg
samples clients according to their data ratio. Thus, FedAvg promises to be unbiased, which is given in
[12, 31] to be an unbiased sampling method. As for FedIS, the sampling strategy follows Equation (5).
For cluster-based IS, it first clusters clients following the gradient norm and then uses the importance
sampling strategy similar to FedIS in each cluster. And for DELTA, the sampling probability follows
Equation (13). For the practical implementation of FedIS and DELTA, the sampling probability
follows the strategy described in Section 4.

H.3 Additional Experimental Results

Performance of algorithms on the synthetic dataset. We display the log of the global loss of
different sampling methods on synthetic dataset in Figure 11, where the Power-of-Choice is a biased
sampling strategy that selects clients with higher loss [7].

We also show the convergence behavior of different sampling algorithms under small noise, as shown
in Figure 12.

To simulate a large number of clients, we increased the client number from 20 to 200, with only 10
clients participating in each round. The results in Figure 13 demonstrate the effectiveness of DELTA.

Convergence performance of theoretical DELTA on split-FashionMNIST and practical DELTA
on FEMNIST. Figure 14(a) illustrates the theoretical DELTA outperforms other methods in conver-
gence speed. Figure 14(b) indicates that cluster-based IS and practical DELTA exhibit rapid initial
accuracy improvement, while practical DELTA and practical IS achieve higher accuracy in the end.

Ablation study for DELTA with different sampled numbers. Figure 15 shows the accuracy
performance of practical DELTA algorithms on FEMNIST with different sampled numbers of clients.
In particular, the larger number of sampled clients, the faster the convergence speed is. This is
consistent with our theoretical result (Corollary 4.2).
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(a) ν = 10 (b) ν = 5 (c) ν = 1

(d) ν = 0.5 (e) ν = 0.1

Figure 12: Performance of different algorithms on the regression model with different (small) noise settings.

(a) ν = 30 (b) ν = 20 (c) ν = 10

(d) ν = 5 (e) ν = 1

Figure 13: Performance of different algorithms on synthetic data with different noise settings. Specifically, for
testing the large client number setting, in each round, 10 out of 200 clients are selected to participate in training.

Performance on FashionMNIST and CIFAR-10. For CIFAR-10, we report the mean of the
best 10 test accuracies on test data. In Table 2, we compare the performance of DELTA, FedIS,
and FedAvg on non-IID FashionMNIST and CIFAR-10 datasets. Specifically, we use α = 0.1 for
FashionMNIST and α = 0.5 for CIFAR-10 to split the datasets. As for Multinomial Distribution
(MD) sampling [29], it samples based on the clients’ data ratio and average aggregates. It is symmetric
in sampling and aggregation with FedAvg, with similar performance. It can be seen that DELTA has
better accuracy than FedIS, while both DELTA and FedIS outperform FedAvg with the same number
of communication rounds.

Assessing the Compatibility of FedIS with Other Optimization Methods. In Table 4, we
demonstrate that DELTA and FedIS are compatible with other FL optimization algorithms, such as
Fedprox [29] and FedMIME [20]. Furthermore, DELTA maintains its superiority in this setting.
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(b) Performance of algorithms on FEMNIST

Figure 14: Performance comparison of accuracy using different sampling algorithms.
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Figure 15: Ablation study of the number of sampled clients.

Table 4: Performance of sampling algorithms integrated with momentum and prox. We run 500 communi-
cation rounds on CIFAR-10 for each algorithm. We report the mean of maximum 5 accuracies for test datasets
and the number of communication rounds to reach the threshold accuracy.

Algorithm Sampling + momentum Sampling + proximal

Acc (%) Rounds for 65% Acc (%) rounds for 65%

FedAvg (w/ uniform sampling) 0.6567 390 0.6596 283
FedIS 0.6571 252 0.661 266
DELTA 0.6604 283 0.6677 252

In Table 5, we demonstrate that DELTA and FedIS are compatible with other variance reduction
algorithms, like FedVARP [18].

It is worth noting that FedVARP utilizes the historic update to approximate the unparticipated clients’
updates. However, in this setting, the improvement of the sampling strategy on the results is somewhat
reduced. This is because the sampling strategy is slightly redundant when all users are involved.
Thus, when VARP and DELTA/FedIS are combined, instead of reassigning weights in the aggregation
step, we use (75) or (13) to select the current round update clients and then average aggregate the
updates of all clients. One can see that the combination of DELTA/FedIS and VARP can still show
the advantages of sampling.

Table 5: Performance of DELTA/FedIS in combination with FedVARP. We run 500 communication rounds
on FashionMNIST with α = 0.1 for each algorithm. We report the mean of maximum 5 accuracies for test
datasets and the number of communication rounds to reach the threshold accuracy.

Algorithm FashionMNIST

Acc (%) Rounds for 73%

FedVARP 73.81 ± 0.18 470
FedIS + FedVARP 73.96 ± 0.14 452
DELTA +FedVARP 74.22± 0.14 436
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In addition to the above optimization methods like VARP, we also conduct experiments on LEAF
(FEMNIST and CelebA) with other non-vanilla SGD algorithms, namely Adagrad and Adam, to
show that the proposed client selection framework be applied to federated learning algorithms other
than vanilla SGD. The results are shown in Table 6 and Table 7.

Table 6: Performance of sampling algorithms integrated with Adagrad and Adam on FEMNIST. We run
1000 communication rounds on FEMNIST for each algorithm. In particular, we set the global learning rate
η = 0.01 to ensure convergence of Adagrad and Adam. We report the mean of the maximum of 5 accuracies for
test datasets and the average number of communication rounds that reach the threshold accuracy 80%.

Algorithm Sampling + Adagrad Sampling + Adam

Acc (%) Rounds for 80% Acc (%) rounds for 80%

FedAvg 80.93 ± 0.08 893 (1.0×) 80.04 ± 0.85 882 (1.0×)
Cluster-based IS 80.69±0.42 760 (1.17×) 79.11± 0.18 -
FedIS 80.96 ± 0.31 723 (1.24×) 80.10 ±0.25 787 (1.12×)
DELTA 81.79 ± 0.09 612 (1.46×) 80.92 ±0.27 600 (1.47×)

Table 7: Performance of sampling algorithms integrated with Adagrad and Adam on CelebA. We run 1000
communication rounds on CelebA for each algorithm. In particular, we set the global learning rate η = 0.01 to
ensure convergence of Adagrad and Adam. We report the mean of the maximum of 5 accuracies for test datasets
and the average number of communication rounds that reach the threshold accuracy 80%.

Algorithm Sampling + Adagrad Sampling + Adam

Acc (%) Rounds for 80% Acc (%) rounds for 80%

FedAvg 88.92 ± 0.08 329 (1.0×) 89.04 ± 0.22 244 (1.0×)
Cluster-based IS 89.71±0.10 329 (1.0×) 89.26± 0.19 164 (1.49×)
FedIS 90.14 ± 0.01 243 (1.35×) 89.92 ±0.05 140 (1.74×)
DELTA 90.38 ± 0.02 214 (1.54×) 90.58 ±0.07 109 (2.24×)

Table 8 provide results under some common thresholds, including 50% for CIFAR-10 and 80% for
CelebA, to replace 54% for CIFAR-10 and 85% for CelebA in Table 2.

Table 8: Performance of sampling algorithms under the common thresholds. We report the results of
algorithms on CIFAR-10 with 50% threshold and on CelebA with 80% threshold. We run 500 communication
rounds for each algorithm. We report the mean of the maximum of 5 accuracies for test datasets and the average
number of communication rounds that reach the threshold accuracy.

Algorithm CIFAR-10 CelebA

Acc (%) Rounds for 50% Acc (%) rounds for 80%

FedAvg 54.28 ± 0.29 181 (1.0×) 85.92 ± 0.89 339 (1.0×)
Cluster-based IS 54.83± 0.02 187 (0.91×) 86.77± 0.11 303 (1.11×)
FedIS 55.05 ± 0.27 168 (1.07×) 89.12 ±0.71 261 (1.29×)
DELTA 55.20 ± 0.26 151 (1.20×) 89.67 ±0.56 257 (1.32×)

Albation study for α. In Table 9, we experiment with different choices of heterogeneity α in the
CIFAR-10 dataset. The parameter of heterogeneity α changes from 0.1 to 0.5 to 1. We observe a
consistent improvement of DELTA compared to the other algorithms. This shows that DELTA is
robust to changes in the level of heterogeneity in the data distribution.

Table 9: Performance of algorithms under different α. We run 500 communication rounds on CIFAR10
for each algorithm (with momentum). We report the mean of maximum 5 accuracies for test datasets and the
number of communication rounds to reach the threshold accuracy.

Algorithm α = 0.1 α = 0.5 α = 1.0

Acc (%) Rounds for 42% Acc (%) rounds for 65% Acc (%) rounds for 71%

FedAvg (w/ uniform sampling) 0.4209 263 0.6567 283 0.7183 246
FedIS 0.427 305 0.6571 252 0.7218 239
DELTA 0.4311 209 0.6604 283 0.7248 221
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