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Abstract

Partial client participation has been widely adopted in Federated Learning (FL)1

to reduce the communication burden efficiently. However, an inadequate client2

sampling scheme can lead to the selection of unrepresentative subsets, resulting in3

significant variance in model updates and slowed convergence. Existing sampling4

methods are either biased or can be further optimized for faster convergence. In this5

paper, we present DELTA, an unbiased sampling scheme designed to alleviate these6

issues. DELTA characterizes the effects of client diversity and local variance, and7

samples representative clients with valuable information for global model updates.8

In addition, DELTA is a proven optimal unbiased sampling scheme that minimizes9

variance caused by partial client participation and outperforms other unbiased10

sampling schemes in terms of convergence. Furthermore, to address full-client11

gradient dependence, we provide a practical version of DELTA depending on the12

available clients’ information, and also analyze its convergence. Our results are13

validated through experiments on both synthetic and real-world datasets.14

1 Introduction15

Federated Learning (FL) is a distributed learning paradigm that allows a group of clients to collaborate16

with a central server to train a model. Edge clients can perform local updates without sharing their17

data, which helps to protect their privacy. However, communication can be a bottleneck in FL, as edge18

devices often have limited bandwidth and connection availability [58]. To reduce the communication19

burden, only a subset of clients are typically selected for training. However, an improper client20

sampling strategy, such as uniform client sampling used in FedAvg [38], can worsen the effects of21

data heterogeneity in FL. This is because the randomly selected unrepresentative subsets can increase22

the variance introduced by client sampling and slow down convergence.23

Existing sampling strategies can be broadly classified into two categories: biased and unbiased.24

Unbiased sampling is important because it can preserve the optimization objective. However, only25

a few unbiased sampling strategies have been proposed in FL, such as multinomial distribution (MD)26

sampling and cluster sampling. Specifically, cluster sampling can include clustering based on sample27

size and clustering based on similarity. Unfortunately, these sampling methods often suffer from28

slow convergence, large variance, and computation overhead issues [2, 13].29

To accelerate the convergence of FL with partial client participation, Importance Sampling (IS),30

an unbiased sampling strategy, has been proposed in recent literature [5, 49]. IS selects clients31

with a large gradient norm, as shown in Figure 1. Another sampling method shown in Figure 1 is32

cluster-based IS, which first clusters clients according to the gradient norm and then uses IS to select33

clients with a large gradient norm within each cluster.34
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Figure 1: Client selection illustration of dif-
ferent methods. IS (left) selects high-gradient
clients but faces redundant sampling issues.
Cluster-based IS (mid) addresses redundancy, but
using small gradients for updating continuously
can slow down convergence. In contrast, DELTA
(right) selects diverse clients with significant
gradients without clustering operations.

Figure 2: Comparison of the convergence performance for different
sampling methods. In this example, we use a logistic regression model
on non-iid MNIST data and sample 10 out of 200 clients. We run 500
communication rounds and report the average of the best 10 accuracies
at 100, 300, and 500 rounds. This shows the accuracy performance from
the initial training state to convergence.

Though IS and cluster-based IS have their advantages, 1) IS could be inefficient because it can35

result in the transfer of excessive similar updates from the clients to the server. This problem has36

been pointed out in recent works [52, 63], and efforts are being made to address it. One approach is to37

use cluster-based IS, which groups similar clients together. This can help, but 2) cluster-based IS has38

its drawbacks in terms of convergence speed and clustering effect. Figure 2 illustrates that both39

of these sampling methods can perform poorly at times. Specifically, compared with cluster-based40

IS, IS cannot fully utilize the diversity of gradients, leading to redundant sampling and a lack of41

substantial improvement in accuracy [52, 2]. While the inclusion of clients from small gradient42

groups in cluster-based IS leads to slow convergence as it approaches convergence, as shown by43

experimental results in Figure 6 and 7 in Appendix B.2. Furthermore, the clustering algorithm’s44

performance tends to vary when applied to different client sets with varying parameter configurations,45

such as different numbers of clusters, as observed in prior works [52, 51, 56].46

To address the limitations of IS and cluster-based IS, namely excessive similar updates and poor47

convergence performance, we propose a novel sampling method for Federated Learning termed48

DivErse cLienT sAmpling (DELTA). Compared to IS and cluster-based IS methods, DELTA tends49

to select clients with diverse gradients, as shown in Figure 1. This allows DELTA to utilize the50

advantages of a large gradient norm for convergence acceleration while also overcoming the issue51

of gradient similarity.52

Additionally, we propose practical algorithms for DELTA and IS that rely on accessible information53

from partial clients, addressing the limitations of existing analysis based on full client gradients [35, 5].54

We also provide convergence rates for these algorithms. We replace uniform client sampling with55

DELTA in FedAvg, referred to as FedDELTA, and replace uniform client sampling with IS in FedAvg,56

referred to as FedIS. Their practical versions are denoted as FedPracDELTA and FedPracIS.57

Toy Example and Motivation. We present a toy example to illustrate our motivation, where each58

client has a regression model. The detailed settings of each model and the calculation of each59

sampling algorithm’s gradient are provided in Appendix B.1. Figure 3 shows that IS deviates from60

the ideal global model when aggregating gradients from clients with large norms. This motivates us61

to consider the correlation between local and global gradients in addition to gradient norms when62

sampling clients. Compared to IS, DELTA selects clients with large gradient diversities, which63

exploits the clients’ information of both gradient norms and directions, resulting in a closer alignment64

to the ideal global model.65

Our contributions. In this paper, we propose an efficient unbiased sampling scheme in the sense66

that (i) It effectively addresses the issue of excessive similar gradients without the need for additional67

clustering, while taking advantage of the accelerated convergence of gradient-norm-based IS and (ii)68

it is provable better than uniform sampling or gradient norm-based sampling. The sampling scheme69

is versatile and can be easily integrated with other optimization techniques, such as momentum, to70

improve convergence further.71

As our key contributions,72
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Figure 3: Model update comparison: The closer to the ideal global
update (black arrow), the better the sampling algorithm is. The
small window shows the projection of 3 clients’ functions F1, F2, F3 in
the X-Y plane, where ∇F1 = (2, 2),∇F2 = (4, 1),∇F3 = (6,−3) at
(1, 1). The enlarged image shows the aggregated gradients of FedAvg,
IS, DELTA and ideal global gradient. Each algorithm samples two out
of three clients: FedIS tends to select Client 2 and 3 with largeset gradient
norms, DELTA tends to select Client 1 and 3 with the largest gradient
diversity and FedAvg is more likely to select Client 1 and 2 compared
to IS and DELTA. The complete gradient illustration with clients’ gradient
is shown in Figure 5 in Appendix.

• We present DELTA, an unbiased FL sampling scheme based on gradient diversity and local73

variance. Our refined analysis shows that FedDELTA surpasses the state-of-the-art FedAvg in74

convergence rate by eliminating the O(1/T 2/3) term and a σ2
G-related term of O(1/T 1/2).75

• We present a novel theoretical analysis of nonconvex FedIS, which yields a superior convergence76

rate compared to existing works while relying on a more lenient assumption. Moreover, our77

analysis eliminates the O(1/T 2/3) term of the convergence rate, in contrast to FedAvg.78

• We present a practical algorithm for DELTA in partial participation settings, utilizing available79

information to mitigate the reliance on full gradients. We prove that the convergence rates of these80

practical algorithms can attain the same order as the theoretical optimal sampling probabilities81

for DELTA and IS.82

2 Related Work83

Client sampling in federated learning (FL) can be categorized into unbiased and biased methods [14].84

Unbiased methods, including multinomial sampling and importance sampling [30, 5, 49], ensure that85

the expected client aggregation is equivalent to the deterministic global aggregation when all clients86

participate. Unlike unbiased sampling, which has received comparatively little attention, biased87

sampling has been extensively examined in the context of federated learning, such as selecting clients88

with higher loss [7] or larger updates [48]. Recently, cluster-based client selection, which involves89

grouping clients into clusters and sampling from these clusters, has been proposed to sample diverse90

clients and reduce variance [41, 12, 52]. Nevertheless,the clustering will require extra communication91

and computational resources. The proposed DELTA algorithm can be seen as a muted version of a92

diverse client clustering algorithm without clustering operation.93

While recent works [57, 28] have achieved comparable convergence rates to ours using variance94

reduction techniques, it is worth noting that these techniques are orthogonal to ours and can be easily95

integrated with our approach. Although [60] achieved the same convergence rate as ours, but their96

method requires dependent sampling and mixing participation conditions, which can lead to security97

problems and exceed the communication capacity of the server. In contrast, our method avoids these98

issues by not relying on such conditions.99

A more comprehensive discussion of the related work can be found in Appendix A.100

3 Theoretical Analysis and An Improved FL Sampling Strategy101

This section presents FL preliminaries and analyzes sampling algorithms, including the convergence102

rate of nonconvex FedIS in Section 3.2, improved convergence analysis for FL sampling in103

Section 3.3, and proposal and convergence rate of the DELTA sampling algorithm in Section 3.4.104

In FL, the objective of the global model is a sum-structured optimization problem:105

f∗ = minx∈Rd

[
f(x) :=

∑m
i=1 wiFi(x)

]
, (1)

where Fi(x) = Eξi∼Di [Fi(x, ξi)] represents the local objective function of client i over data106

distribution Di, and ξi means the sampled data of client i. m is the total number of clients and wi107

represents the weight of client i. With partial client participation, FedAvg randomly selects |St| = n108

clients (n ≤ m) to communicate and update model. Then the loss function of actual participating109

users in each round can be expressed as:110

fSt(xt) =
1
n

∑
i∈St

Fi(xt) . (2)
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Table 1: Comparison of convergence rate for different sampling algorithms: Number of communication
rounds required to reach ϵ or ϵ+ φ (ϵ for unbiased sampling and ϵ+ φ for biased sampling, where φ is a non-
convergent constant term) accuracy for FL. σL is local variance bound, and G bound is E∥∇Fi(x)−∇f(x)∥2 ≤
G2. Γ is the distance of global optimum and the average of local optimum (Heterogeneity bound), µ corresponds
to µ strongly convex. and ζG is the gradient diversity.

Algorithm Convexity Partial Worker Unbiasedness Convergence rate Assumption

SGD S/N ✓ ✓ σ2
L

µmKϵ
+ ( 1

µ
) / σ2

L
mKϵ2

+ 1
ϵ

σL bound

FedDELTA N ✓ ✓ σ2
L

nKϵ2
+ M̀2

Kϵ
Assumption 3

FedPracDELTA N ✓ ✓ Ũ2σ2
L

nKϵ2
+ Ũ2M̀2

Kϵ
Assumption 3 and Assumption 4

FedIS (ours) N ✓ ✓ σ2
L+Kσ2

G
nKϵ2

+ M2

Kϵ
Assumption 3

FedIS (others) [5] N ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3 and ρ Assumption

FedIS (others) [36] S ✓ ✓ σ2
L+4nKG2+6nΓ

µ2nKϵ
+ K2G2

ϵ
+ ∥w0−w∗∥2

µKϵ
G bound

FedPracIS (ours) N ✓ ✓ σ2
L+KU2σ2

G
nKϵ2

+ M2

Kϵ
Assumption 3 and Assumption 4

FedAvg [65] N ✓ ✓ σ2
L

nKϵ2
+

4Kσ2
G

nKϵ2
+ M̃2

Kϵ
+ K1/3M̃2

n1/3ϵ2/3
G bound

FedAvg [21] N ✓ ✓ M̂2

nKϵ2
+ A2+1

ϵ
+ σG

ϵ3/2
Assumption 3

DivFL [2] S ✓ × 1
ϵ
+ 1

φ
Heterogeneity Gap

Power-of-Choice [7] S ✓ × σ2
L+G2

ϵ+φ
+ Γ

µ
Heterogeneity Gap

FedAvg [65] N × ✓ σ2
L

mKϵ2
+

σ2
L/(4K)+σ2

G
ϵ

σG bound

Arbitrary Sampling[60] N Mix ✓ ζ2G+(1+σ2
L)nρ

nKϵ2
+ Ḿ2

Kϵ
Assumption 3

M2 = σ2
L + 4Kσ2

G, M̂2 = σ2
L +K(1− n/m)σ2

G, M̃2 = σ2
L + 6Kσ2

G , M̀2 = σ2
L + 4Kζ2G, Ḿ2 = Kζ2G +Kσ2

L.
Convexity: S and N are abbreviations for strong convex and nonconvex, respectively. ρ assumption: Bound of the similarity among local gradients.
Mix participation: the number of participating clients is random, from none to full participation.

For ease of theoretical analysis, we make the following commonly used assumptions:111

3.1 Assumptions112

Assumption 1 (L-Smooth). There exists a constant L > 0, such that ∥∇Fi(x)−∇Fi(y)∥ ≤113

L ∥x− y∥ ,∀x, y ∈ Rd, and i = 1, 2, . . . ,m.114

Assumption 2 (Unbiased Local Gradient Estimator and Local Variance). Let ξit be a random local115

data sample in the round t at client i: E
[
∇Fi(xt, ξ

i
t)
]
= ∇Fi(xt),∀i ∈ [m]. The function Fi(xt, ξ

i
t)116

has a bounded local variance of σL,i > 0, satisfying E
[∥∥∇Fi(xt, ξ

i
t)−∇Fi(xt)

∥∥2] = σ2
L,i ≤ σ2

L.117

Assumption 3 (Bound Dissimilarity). There exists constants σG ≥ 0 and A ≥ 0 such that118

E∥∇Fi(x)∥2 ≤ (A2 + 1)∥∇f(x)∥2 + σ2
G. When all local loss functions are identical, A2 = 0119

and σ2
G = 0.120

The above assumptions are commonly used in both non-convex optimization and FL literature, see121

e.g. [21, 27, 60].122

We notice that Assumption 3 can be further relaxed by Assumption 2 of [24]. We also provide123

Proposition C.4 in Appendix C to show all our convergence analysis, including Theorem 3.1,3.4124

and Corollary 4.1,4.2 can be easily extended to the relaxed assumption while keeping the order of125

convergence rate unchanged.126

3.2 Convergence Analysis of FedIS127

As discussed in the introduction, IS faces an excessive gradient similarity problem, necessitating128

the development of a novel diversity sampling method. Prior to delving into the specifics of our129

new sampling strategy, we first present the convergence rate of FL under standard IS analysis in this130

section; this analysis itself is not well explored, particularly in the nonconvex setting. The complete131

FedIS algorithm is provided in Algorithm 2 of Appendix D, which differs from DELTA only in132

sampling probability (line 2) by using pi ∝ ∥
∑K−1

k=0 git,k∥.133

Theorem 3.1 (Convergence rate of FedIS). Let constant local and global learning rates ηL and134

η be chosen as such that ηL < min (1/(8LK), C), where C is obtained from the condition135

that 1
2 − 10L2K2(A2 + 1)η2L − L2ηK(A2+1)

2n ηL > 0 ,and η ≤ 1/(ηLL). In particular, suppose136

ηL = O
(

1√
TKL

)
and η = O

(√
Kn
)

, under Assumptions 1-3, the expected gradient norm of137

FedIS algorithm 2 will be bounded as follows:138

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L +Kσ2

G√
nKT

)
+O

(
M2

T

)
︸ ︷︷ ︸

order of Φ

. (3)
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where f0 = f(x0), f∗ = f(x∗), M = σ2
L + 4Kσ2

G and the expectation is over the local dataset139

samples among clients.140
Algorithm 1 FedDELTA and FedPracDELTA :
Federated learning with unbiased diverse sampling

Require: initial weights x0, global learning rate η, local
learning rate ηl, number of training rounds T

Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Sampling clients using DELTA (13)

3: Sampling clients using Practical DELTA (16)

4: for each worker i ∈ St,in parallel do
5: xi

t,0 = xt

6: for k = 0, · · ·,K − 1 do
7: compute git,k = ∇Fi(x

i
t,k, ξ

i
t,k)

8: Local update:xi
t,k+1 = xi

t,k − ηLg
i
t,k

9: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k

10: At Server:
11: Receive ∆i

t, i ∈ St

12: let ∆t =
1

|St|
∑

i∈St

ni

npti
∆i

t

13: Server update: xt+1 = xt + η∆t

14: Broadcast xt+1 to clients

The FedIS sampling probability pti is determined141

by minimizing the variance of convergence with142

respect to pti. The variance term Φ is:143

Φ =
5η2

LKL2

2
M2+

ηηLL

2m
σ2
L+

LηηL
2nK

Var(
1

mpti
ĝti),

(4)
where Var(1/(mpt

i)ĝ
t
i) is called update variance.144

By optimizing the update variance, we get the145

sampling probability FedIS:146

pti =
∥ĝti∥∑m
j=1 ∥ĝtj∥

, (5)

where ĝti =
∑K−1

k=0 ∇Fi(x
i
k,t, ξ

i
k,t) is the sum147

of the gradient updates of multiple local updates.148

The proof details of Theorem 3.1 and derivation149

of sampling probability FedIS are detailed in150

Appendix D and Appendix F.1.151

Remark 3.2 (Explanation for the convergence152

rate). It is worth mentioning that although a few153

works provide the convergence upper bound of154

FL with gradient-based sampling, several limi-155

tations exist in these analyses and results:156

1) [49, 35] analyzed FL with IS using a strongly convex condition, whereas we extended the analysis157

to the non-convex problem.158

2) Our analysis results, compared to the very recent non-convex analysis of FedIS [5] and FedAvg,159

remove the term O(T− 2
3 ), although all these works choose a learning rate of O(T− 1

2 ). Thus, our160

result achieves a tighter convergence rate when we use O(1/T + 1/T 2/3) (provided by [43]) as our161

lower bound of convergence (see Table 1).162

The comparison results in Table 1 reveal that even when σG is large and becomes a dependency term163

for convergence rate, FedIS (ours) is still better than FedAvg and FedIS (others) since our result164

reduces the coefficient of σG in the dominant term O(T− 1
2 ).165

Remark 3.3 (Extending FedIS to practical algorithm). The existing analysis of IS algorithms [35, 5]166

relies on information from full clients, which is not available in partial participation FL. We propose167

a practical algorithm for FedIS that only uses information from available clients and provide its168

convergence rate in Corollary 4.1 in Section 4.169

Despite its success in reducing the variance term in the convergence rate, FedIS is far from optimal170

due to issues with high gradient similarity and the potential for further minimizing the variance term171

(i.e., the global variance σG and local variance σL in Φ). In the next section, we will discuss how to172

address this challenging variance term.173

3.3 An Improved Convergence Analysis for FedDELTA174

FedIS and FedDELTA have different approaches to analyzing objectives, with FedIS analyzing the175

global objective and FedDELTA analyzing a surrogate objective f̃(x) (cf. (7)). This leads to different176

convergence variance and sampling probabilities between the two methods. A flowchart (Figure 8177

in Appendix E) has been included to illustrate the differences between FedIS and FedDELTA.178

The limitations of FedIS. As shown in Figure 1, IS may have excessive similar gradient selection.179

The variance Φ in (4) reveals that the standard IS strategy can only control the update variance180

Var(1/(mpt
i)ĝ

t
i , leaving other terms in Φ, namely σL and σG, untouched. Therefore, the standard IS181

is ineffective at addressing the excessive similar gradient selection problem, motivating the need182

for a new sampling strategy to address the issue of σL and σG.183

The decomposition of the global objective. As inspired by the proof of Theorem 3.1 as well as184

the corresponding Lemma C.1 (stated in Appendix) proposed for unbiased sampling, the gradient of185
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global objective can be decomposed into the gradient of surrogate objective f̃(xt) and update gap,186

E∥∇f(xt)∥2 = E
∥∥∥∇f̃St

(xt)
∥∥∥2 + χ2

t , (6)

where χt = E
∥∥∥∇f̃St

(xt)−∇f(xt)
∥∥∥ is the update gap.187

Intuitively, the surrogate objective represents the practical objective of the participating clients in188

each round, while the update gap χt represents the distance between partial client participation and189

full client participation. The convergence behavior of the update gap χ2
t is analogous to the update190

variance in Φ, and the convergence of the surrogate objective E
∥∥∥∇f̃St

(xt)
∥∥∥2 depends on the other191

variance terms in Φ, namely the local variance and global variance.192

Minimizing the surrogate objective allows us to further reduce the variance of convergence, and193

we will focus on analyzing surrogate objective below. We first formulate the surrogate objective194

with an arbitrary unbiased sampling probability.195

Surrogate objective formulation. The expression of the surrogate objective relies on the prop-196

erty of IS. In particular, IS aims to substitute the original sampling distribution p(z) with another197

arbitrary sampling distribution q(z) while keeping the expectation unchanged: Eq(z) [Fi(z)] =198

Ep(z) [qi(z)/pi(z)Fi(z)]. According to the Monte Carlo method, when q(z) follows the uni-199

form distribution, we can estimate Eq(z) [Fi(z)] by 1/m
∑m

i=1 Fi(z) and Ep(z) [qi(z)/pi(z)Fi(z)] by200

1/n
∑

i∈St
1/mpiFi(z), where m and |St| = n are the sample sizes.201

Based on IS property, we formulate the surrogate objective:202

f̃St(xt) =
1
n

∑
i∈St

1
mpti

Fi(xt) , (7)

where m is the total number of clients, |St| = n is the number of participating clients in each round,203

and pit is the probability that client i is selected at round t.204

As noted in Lemma C.2 in the appendix, we have:1:205

min
t∈[T ]

E∥∇f(xt)∥2 = min
t∈[T ]

E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ min

t∈[T ]
2E∥∇f̃(xt)∥2 . (8)

Then the convergence rate of the global objective can be formulated as follows:206

Theorem 3.4 (Convergence upper bound of FedDELTA). Under Assumption 1–3 and let local and207

global learning rates η and ηL satisfy ηL < 1/(2
√
10KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal208

gradient norm will be bounded as below:209

mint∈[T ] E ∥∇f (xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
, (9)

where f0 = f(x0), f∗ = f(x∗), c is a constant, and the expectation is over the local dataset samples210

among all workers. The combination of variance Φ̃ represents combinations of local variance and211

client gradient diversity.212

We derive the convergence rates for both sampling with replacement and sampling without replace-213

ment. For sampling without replacement:214

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i,t) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i . (10)

For sampling with replacement,215

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i,t) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (11)

where ζG,i,t = ∥∇Fi(xt) − ∇f(xt)∥ and let ζG be a upper bound for all i, i.e., ζG,i,t ≤ ζG. The216

proof details of Theorem 3.4 can be found in Appendix E.217

3.4 Proposed Sampling Strategy: DELTA218

The expression of the convergence upper bound suggests that utilizing sampling to optimize the219

convergence variance can accelerate the convergence. Hence, we can formulate an optimization220

problem that minimizes the variance Φ̃ with respect to the proposed sampling probability pti:221

1With slight abuse of notation, we use the f̃(xt) for f̃St(xt) in this paper.
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min
pti

Φ̃ s.t.
∑m

i=1 p
t
i = 1 , (12)

where Φ̃ is a linear combination of local variance σL,i and gradient diversity ζG,i,t (cf. Theorem 3.4).222

Corollary 3.5 (Optimal sampling probability of DELTA). By solving the above optimization problem,223

the optimal sampling probability is determined as follows:224

pti =

√
α1ζ

2
G,i,t

+α2σ
2
L,i∑m

j=1

√
α1ζ

2
G,j,t

+α2σ
2
L,j

, (13)

where α1 and α2 are constants defined as α1 = 20K2LηL and α2 = 5KLηL + η
n .225

Remark 3.6. We note that a tension exists between the optimal sampling probability (13) and the226

setting of partial participation for FL. Thus, we also provide a practical implementation version for227

DELTA and analyze its convergence in Section 4. In particular, we will show that the convergence228

rate of the practical implementation version keeps the same order with a coefficient difference.229

Corollary 3.7 (Convergence rate of FedDELTA). Let ηL = O
(

1√
TKL

)
, η = O

(√
Kn
)

and230

substitute the optimal sampling probability (13) back to Φ̃. Then for sufficiently large T, the expected231

norm of DELTA algorithm 1 satisfies:232

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
︸ ︷︷ ︸

order of Φ̃

. (14)

Difference between FedDELTA and FedIS. The primary distinction between FedDELTA and233

FedIS lies in the difference between Φ̃ and Φ. FedIS aims to decrease the update variance term234

Var(1/(mpt
i)ĝ

t
i) in Φ, while FedDELTA aims to reduce the entire quantity Φ̃, which is composed235

of both gradient diversity and local variance. By minimizing Φ̃, we can further reduce the terms236

of Φ that cannot be minimized through FedIS. This leads to different expressions for the optimal237

sampling probability. The difference between the two resulting update gradients is discussed in238

Figure 3. Additionally, as seen in Table 1, FedDELTA achieves a superior convergence rate of239

O(G
2
/ϵ2) compared to other unbiased sampling algorithms.240

Compare DELTA with uniform sampling. According to the Cauchy-Schwarz inequality, DELTA is241

at least better than uniform sampling by reducing variance: Φ̃uniform

Φ̃DELTA
=

m
∑m

i=1(
√

α1σ2
L+α2ζ2

G,i,t)
2

(
∑m

i=1

√
α1σ2

L+α2ζ2
G,i,t)

2 ≥ 1 .242

This implies that DELTA does reduce the variance, especially when (
∑m

i=1

√
α1σ2

L+α2ζ2
G,i,t)

2∑m
i=1(

√
α1σ2

L+α2ζ2
G,i,t)

2 ≪ m.243

The significance of DELTA. (1) DELTA is the first unbiased sampling algorithm, to the best of244

our knowledge, that considers both gradient diversity and local variance in sampling, accelerating245

convergence. (2) Developing DELTA inspires an improved convergence analysis by focusing on246

the surrogate objective, leading to a superior convergence rate for FL. (3) Moreover, DELTA can247

be seen as an unbiased version with the complete theoretical justification for the existing heuristic248

or biased diversity sampling algorithm of FL, such as [2].249

4 FedPracDELTA and FedPracIS: The Practical Algorithms250

The gradient-norm-based sampling method necessitates the calculation of the full gradient in every251

iteration [10, 70]. However, acquiring each client’s gradient in advance is generally impractical in252

FL. To overcome this obstacle, we leverage the gradient from the previous participated round to253

estimate the gradient of the current round, thus reducing computational resources [49].254

For FedPracIS, at round 0, all probabilities are set to 1/m. Then, during the ith iteration, once255

participating clients i ∈ St have sent the server their updated gradients, the sampling probabilities256

are updated as follows:257

p∗i,t+1 =
∥ĝi,t∥∑

i∈St
∥ĝi,t∥

(1−
∑
i∈Sc

t

p∗i,t) , (15)

where the multiplicative factor ensures that all probabilities sum to 1. The FedPracIS algorithm is258

shown in Algorithm 2 of Appendix D.259
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For FedPracDELTA, we use the average of the latest participated clients’ gradients to approximate260

the true gradient of the global model. For local variance, it is obtained by the local gradient’s variance261

over local batches. Specifically, ζG,i,t = ∥ĝi,t − ∇f̂(xt)∥, where ∇f̂(xt) = 1
n

∑
i∈St

ĝi,t =262

1
n

∑
i∈St

∑K−1
k=0 ∇Fi(x

i
k,t, ξ

i
k,t) and σ2

L,i =
1

|B|
∑

b∈B(ĝ
b
i,t − 1

|B|
∑

b∈B ĝbi,t)
2, where b ∈ B is the263

local data batch. Then the sampling probabilities are updated as follows:264

p∗i,t+1 =

√
α1ζ2G,i,t + α2σ2

L,i∑
i∈St

√
α1ζ2G,i,t + α2σ2

L,i

(1−
∑
j∈Sc

t

p∗i,t) . (16)

The FedPracDELTA algorithm is shown in Algorithm 1.265

Assumption 4 (Local gradient norm bound). The gradients ∇Fi(x) are uniformly upper bounded266

(by a constant G > 0) ∥∇Fi(x)∥2 ≤ G2,∀i.267

Assumption 4 is a general assumption in IS community to bound the gradient norm [70, 10, 23],268

and it is also used in the FL community to analyze convergence [2, 68]. This assumption tells us a269

useful fact that will be used later: ∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U (detailes in Appendix G).270

Corollary 4.1 (Convergence rate of FedPracIS). Under Assumption 1-4, the expected norm of271

FedPracIS will be bounded as follows:272

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
KU2σ2

G,s√
nKT

)
, (17)

where M = σ2
L + 4Kσ2

G,s, σG,s is the gradient dissimilarity bound of round s, and273

∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U for all i and k.274

Corollary 4.2 (Convergence rate of FedPracDELTA). Under Assumption 1-4, the expected norm of275

FedPracDELTA satisfies:276

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
Ũ2σ2

L,s√
nKT

)
+O

(
Ũ2σ2

L,s+4KŨ2ζ2G,s

KT

)
, (18)

where Ũ is a constant that ∥∇Fi(xt) − ∇f(xt)∥/∥∇Fi(xs) − ∇f(xs)∥ ≤ Ũ1 ≤ Ũ and277

∥σL,t/σL,s∥ ≤ Ũ2 ≤ Ũ , and ζG,s is the gradient diversity bound of round s for all clients.278

Remark 4.3. The analysis of the FedPracIS and FedPracDELTA is independent of the unavailable279

information in the partial participation setting. The convergence rates are of the same order as280

that of our theoretical algorithm but with an added coefficient constant term that limits the gradient281

changing rate, as shown in Table 1.282

The complete derivation and discussion of the practical algorithm can be found in Appendix G.283

5 Experiments284

In this section, we evaluate the efficiency of the theoretical algorithm FedDELTA and the practical285

algorithm FedPracDELTA on various datasets.286

Datasets. (1) We evaluate FedDELTA on synthetic data and split-FashionMNIST. The synthetic287

data follows y = log
(
(Aix−bi)

2
/2
)

and "split" means letting 10% of clients own 90% of the data.288

(2) We evaluate FedPracDELTA on non-iid FashionMNIST, CIFAR-10 and LEAF [3]. Details of289

data generation and partitioning are provided in Appendix H.2.290

Baselines and Models. We compare our algorithm, Fed(Prac)DELTA (Algorithm 1), with291

Fed(Prac)IS (Algorithm 2 in Appendix D), FedAVG [38], which uses random sampling, and Power-of-292

choice [7], which uses loss-based sampling and Cluster-based IS [52]. We utilize the regression model293

on synthetic date, the CNN model on Fashion-MNIST and Leaf, and the ResNet-18 on CIFAR-10. All294

algorithms are compared under the same experimental settings, such as lr and batch size. Full details295

of the sampling process of baselines and the setup of experiments are provided in Appendix H.2.296

Figure 4 illustrates the theoretical FedDELTA outperforms other biased and unbiased methods297

in convergence speed on synthetic datasets. The superiority of the theoretical DELTA is also298

confirmed on split-FashionMNIST, as shown in Appendix H in Figure 12(a). Additional experimental299

results, which include a range of different choices of regression parameters Ai, bi, noise ν, and client300

numbers, are presented in Figure 9, Figure 10, and Figure 11 in Appendix H.3.301
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(a) ν = 20 (b) ν = 30 (c) ν = 40
Figure 4: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥y − log((Aix−bi)

2
/2)
∥∥2, Ai = 10, bi = 1. The logarithm of global loss is reported for various degrees of

gradient noise, ν, and all methods are well-tuned to yield the best results for each algorithm under each setting.

Table 2: Performance of algorithms over various datasets. We run 500 communication rounds on FashionM-
NIST, CIFAR-10, FEMNIST, and CelebA for each algorithm. We report the mean of maximum 5 accuracies for
test datasets and the average number of communication rounds and time to reach the threshold accuracy.

Algorithm FashionMNIST CIFAR-10

Acc (%) Rounds for 70% Time (s) for 70% Acc (%) Rounds for 54% Time (s) for 54%

FedAvg 70.35±0.51 426 (1.0×) 1795.12 (1.0×) 54.28±0.29 338 (1.0×) 3283.14 (1.0×)
Cluster-based IS 71.21 ±0.24 362 (1.17×) 1547.41 (1.16×) 54.83±0.02 323 (1.05×) 3188.54 (1.03×)
FedPracIS 71.69±0.43 404 (1.05×) 1719.26 (1.04×) 55.05±0.27 313 (1.08×) 3085.05 (1.06×)
FedPracDELTA 72.10±0.49 322 (1.32×) 1372.33 (1.31×) 55.20 ±0.26 303 (1.12×) 2989.98 (1.1×)

Algorithm FEMNIST CelebA

Acc (%) Rounds for 70% Time (s) for 70% Acc (%) Rounds for 85% Time (s) for 85%

FedAvg 71.82±0.93 164 (1.0×) 330.02 (1.0×) 85.92±0.89 420 (1.0×) 3439.81 (1.0×)
Cluster-based IS 70.42±0.66 215 (0.76×) 453.56 (0.73×) 86.77±0.11 395 (1.06×) 3474.50 (1.01×)
FedPracIS 80.11±0.29 110 (1.51×) 223.27 (1.48×) 88.12±0.71 327 (1.28×) 2746.82 (1.25×)
FedPracDELTA 81.44±0.28 98 (1.67×) 198.95 (1.66×) 89.67 ±0.56 306 (1.37×) 2607.12 (1.32×)

Table 3: Performance of sampling algorithms integration with other optimization methods on FEMNIST.
PracIS and PracDELTA are the sampling methods of Algorithm FedPracIS and FedPracDELTA, respectively,
using the sampling probabilities defined in equations (15) and (16). For proximal and momentum methods, we
use the default hyperparameter setting µ = 0.01 and γ = 0.9.

Backbone with Sampling Uniform Sampling Cluster-based IS PracIS PracDELTA

Acc (%) Rounds for 80% Acc (%) Rounds for 80% Acc (%) Rounds for 80% Acc (%) Rounds for 80%

FedAvg 71.82±0.93 164 (for 70%) 70.42±0.66 215 (for 70%) 80.11±0.29 110 (for 70%) 81.44±0.28 98 (for 70%)
FedAvg + momentum 80.86±0.49 268 80.86±0.49 281 81.80 ±0.05 246 82.58 ±0.44 200
FedAvg + proximal 81.41 ±0.34 313 80.88 ±0.38 326 81.28±0.25 289 82.54 ±0.57 245

Table 2 shows the FedPracDELTA has better performance in accuracy, communication rounds,302

and training wall-clock times. Notably, FedPracDELTA significantly accelerates convergence303

by requiring fewer training rounds and less time to achieve the threshold accuracy in FashionMNIST,304

CIFAR-10, FEMNIST, and CelebA. Additionally, on the natural federated dataset LEAF (FEMNIST305

and CelebA), our results demonstrate that both FedPracDELTA and FedPracIS exhibit substantial306

improvements over FedAvg. Figure 12(b) in Appendix H.3 illustrates the superior convergence of307

FedPracDELTA, showcasing the accuracy curves of sampling algorithms on FEMNIST.308

Table 3 demonstrates that when compatible with momentum or proximal regularization, our309

method keeps its superiority in convergence. We combine various optimization methods such310

as proximal regularization [29], momentum [34], and VARP [18] with sampling algorithms to assess311

their performance on FEMNIST and FashionMNIST. Additional results for proximal and momentum312

on CIFAR-10, and for VARP on FashionMNIST, are available in Table 4 and Table 5 in Appendix H.3.313

Ablation studies. We also provide ablation studies of heterogeneity α in Table 6 and the impact314

of the number of sampled clients on accuracy in Figure 13 in Appendix H.3.315

6 Conclusions, Limitations, and Future Works316

This work studies the unbiased client sampling strategy to accelerate the convergence speed of FL317

by leveraging diverse clients. To address the prevalent issue of full-client gradient dependence in318

gradient-based FL [36, 4], we extend the theoretical algorithm DELTA to a practical version that319

utilizes information from the available clients.320

Nevertheless, addressing the backdoor attack defense issue remains crucial in sampling algorithms.321

Furthermore, there is still significant room for developing an efficient and effective practical algorithm322

for gradient-based sampling methods. We will prioritize this as a future research direction.323
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efficient client selection strategies for federated learning. In 2020 54th Asilomar Conference on340

Signals, Systems, and Computers, pages 1066–1069. IEEE, 2020.341

[7] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Towards understanding biased client selection in342

federated learning. In International Conference on Artificial Intelligence and Statistics, pages343

10351–10375. PMLR, 2022.344

[8] Yongheng Deng, Feng Lyu, Ju Ren, Huaqing Wu, Yuezhi Zhou, Yaoxue Zhang, and Xuemin345

Shen. Auction: Automated and quality-aware client selection framework for efficient federated346

learning. IEEE Transactions on Parallel and Distributed Systems, 33(8):1996–2009, 2022.347

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient348

federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020.349

[10] Víctor Elvira and Luca Martino. Advances in importance sampling. arXiv preprint350

arXiv:2102.05407, 2021.351

[11] Maximilian Fiedler and Peter Gritzmann. Coresets for weight-constrained anisotropic assign-352

ment and clustering. arXiv preprint arXiv:2203.10864, 2022.353

[12] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-354

variance and improved representativity for clients selection in federated learning, 2021.355

[13] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory for client356

sampling in federated learning. In IJCAI 2022-31st International joint conférence on artificial357

intellignce, 2022.358

[14] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory for359

client sampling in federated learning. In Trustworthy Federated Learning: First International360

Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022,361

Revised Selected Papers, pages 46–58. Springer, 2023.362

[15] Yongxin Guo, Tao Lin, and Xiaoying Tang. Towards federated learning on time-evolving363

heterogeneous data. arXiv preprint arXiv:2112.13246, 2021.364

[16] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical365

data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.366

[17] Tiansheng Huang, Weiwei Lin, Li Shen, Keqin Li, and Albert Y. Zomaya. Stochastic client selec-367

tion for federated learning with volatile clients. IEEE Internet of Things Journal, 9(20):20055–368

20070, 2022.369

10



[18] Divyansh Jhunjhunwala, PRANAY SHARMA, Aushim Nagarkatti, and Gauri Joshi. Fedvarp:370

Tackling the variance due to partial client participation in federated learning. In The 38th371

Conference on Uncertainty in Artificial Intelligence, 2022.372

[19] Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate373

importance sampling. Advances in Neural Information Processing Systems, 31:7265–7275,374

2018.375

[20] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,376

Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic377

algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.378

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and379

Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In380

International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.381

[22] Angelos Katharopoulos and François Fleuret. Biased importance sampling for deep neural382

network training. arXiv preprint arXiv:1706.00043, 2017.383

[23] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning384

with importance sampling. In International conference on machine learning, pages 2525–2534.385

PMLR, 2018.386

[24] Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv387

preprint arXiv:2002.03329, 2020.388

[25] Yeongwoo Kim, Ezeddin Al Hakim, Johan Haraldson, Henrik Eriksson, José Mairton B da Silva,389

and Carlo Fischione. Dynamic clustering in federated learning. In ICC 2021-IEEE International390

Conference on Communications, pages 1–6. IEEE, 2021.391

[26] Haneul Ko, Jaewook Lee, Sangwon Seo, Sangheon Pack, and Victor C. M. Leung. Joint client392

selection and bandwidth allocation algorithm for federated learning. IEEE Transactions on393

Mobile Computing, pages 1–1, 2021.394

[27] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A395

unified theory of decentralized sgd with changing topology and local updates. In International396

Conference on Machine Learning, pages 5381–5393. PMLR, 2020.397

[28] Bo Li, Mikkel N Schmidt, Tommy S Alstrøm, and Sebastian U Stich. Partial variance398

reduction improves non-convex federated learning on heterogeneous data. arXiv preprint399

arXiv:2212.02191, 2022.400

[29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia401

Smith. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127,402

2018.403

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia404

Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning405

and systems, 2:429–450, 2020.406

[31] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence407

of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.408

[32] Shiyun Lin, Yuze Han, Xiang Li, and Zhihua Zhang. Personalized federated learning towards409

communication efficiency, robustness and fairness. Advances in Neural Information Processing410

Systems, 2022.411

[33] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust412

model fusion in federated learning. arXiv preprint arXiv:2006.07242, 2020.413

[34] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momen-414

tum gradient descent. IEEE Transactions on Parallel and Distributed Systems, 31(8):1754–1766,415

2020.416

11



[35] Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling417

system and statistical heterogeneity for federated learning with adaptive client sampling. In418

IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pages 1739–1748.419

IEEE, 2022.420

[36] Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling421

system and statistical heterogeneity for federated learning with adaptive client sampling. In422

IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, pages 1739–1748,423

2022.424

[37] Jiahua Ma, Xinghua Sun, Wenchao Xia, Xijun Wang, Xiang Chen, and Hongbo Zhu. Client425

selection based on label quantity information for federated learning. In 2021 IEEE 32nd Annual426

International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),427

pages 1–6, 2021.428

[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.429

Communication-efficient learning of deep networks from decentralized data. In Artificial430

intelligence and statistics, pages 1273–1282. PMLR, 2017.431

[39] Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Achieving linear con-432

vergence in federated learning under objective and systems heterogeneity. arXiv preprint433

arXiv:2102.07053, 2021.434

[40] Ihab Mohammed, Shadha Tabatabai, Ala Al-Fuqaha, Faissal El Bouanani, Junaid Qadir, Basheer435

Qolomany, and Mohsen Guizani. Budgeted online selection of candidate iot clients to participate436

in federated learning. IEEE Internet of Things Journal, 8(7):5938–5952, 2021.437

[41] Mahdi Morafah, Saeed Vahidian, Weijia Wang, and Bill Lin. Flis: Clustered federated learning438

via inference similarity for non-iid data distribution. IEEE Open Journal of the Computer439

Society, 4:109–120, 2023.440

[42] Khalil Muhammad, Qinqin Wang, Diarmuid O’Reilly-Morgan, Elias Tragos, Barry Smyth, Neil441

Hurley, James Geraci, and Aonghus Lawlor. Fedfast: Going beyond average for faster training442

of federated recommender systems. In Proceedings of the 26th ACM SIGKDD International443

Conference on Knowledge Discovery & Data Mining, pages 1234–1242, 2020.444

[43] Kumar Kshitij Patel, Lingxiao Wang, Blake E Woodworth, Brian Bullins, and Nati Srebro.445

Towards optimal communication complexity in distributed non-convex optimization. Advances446

in Neural Information Processing Systems, 35:13316–13328, 2022.447

[44] Jake Perazzone, Shiqiang Wang, Mingyue Ji, and Kevin S. Chan. Communication-efficient448

device scheduling for federated learning using stochastic optimization. In IEEE INFOCOM449

2022 - IEEE Conference on Computer Communications, pages 1449–1458, 2022.450

[45] Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online client451

selection for hierarchical federated learning, 2021.452

[46] Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online client453

selection for hierarchical federated learning. IEEE Transactions on Parallel and Distributed454

Systems, 33(12):4353–4367, 2022.455

[47] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,456
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A An Expanded Version of The Related Work543

FedAvg is proposed by [38] as a de facto algorithm of FL, in which multiple local SGD steps are544

executed on the available clients to alleviate the communication bottleneck. While communication545

efficient, heterogeneity, such as system heterogeneity [29, 31, 59, 39, 9], and statistical/objective546

heterogeneity [33, 21, 29, 59, 15], results in inconsistent optimization objectives and drifted clients547

models, impeding federated optimization considerably.548

Objective inconsistency in FL. Several works also encounter difficulties from the objective549

inconsistency caused by partial client participation [31, 7, 2]. [31, 7] use the local-global gap550

f∗ − 1
m

∑m
i=1 F

∗
i to measure the distance between the global optimum and the average of all local551

personal optima, where the local-global gap results from objective inconsistency at the final optimal552

point. In fact, objective inconsistency occurs in each training round, not only at the final optimal553

point. [2] also encounter objective inconsistency caused by partial client participation. However,554

they use | 1n
∑n

i=1 ∇Fi(xt)−∇f(xt)| ≤ ϵ as an assumption to describe such update inconsistency555

caused by objective inconsistency without any analysis on it. To date, the objective inconsistency556

caused by partial client participation has not been fully analyzed, even though it is prevalent in FL,557

even in homogeneous local updates. Our work provides a fundamental convergence analysis on the558

influence of the objective inconsistency of partial client participation.559

Client selection in FL. In general, sampling methods in federated learning (FL) can be classified560

as biased or unbiased. Unbiased sampling guarantees that the expected value of client aggregation561

is equal to that of global deterministic aggregation when all clients participate. Conversely, biased562

sampling may result in suboptimal convergence. A prominent example of unbiased sampling in FL563

is multinomial sampling (MD), which samples clients based on their data ratio [59, 12]. Additionally,564

importance sampling (IS), an unbiased sampling method, has been utilized in FL to reduce565

convergence variance. For instance, [4] use update norm as an indicator of importance to sample566

clients, [49] sample clients based on data variability, and [40] use test accuracy as an estimation of567

importance. Meanwhile, various biased sampling strategies have been proposed to speed up training,568

such as selecting clients with higher loss [7], as many clients as possible under a threshold [45], clients569
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with larger updates [48], and greedily sampling based on gradient diversity [2]. However, these biased570

sampling methods can exacerbate the negative effects of objective inconsistency and only converge to571

a neighboring optimal solution. Another line of research focuses on reinforcement learning for client572

sampling, treating each client as an agent and aiming to find the optimal action [69, 62, 6, 53, 67].573

There are also works that consider online FL, in which the client selection must consider the client’s574

connection ability [44, 17, 26, 71, 46, 8]. Recently, cluster-based client selection has gained some575

attention in FL [12, 64, 42, 52, 37, 50, 25, 41, 61]. Though clustering adds additional computation576

and memory overhead, [12, 52] show that it is helpful for sampling diverse clients and reducing577

variance. Although some studies employ adaptive cluster-based IS to address the issue of slow578

convergence due to small gradient groups [52, 11], these approaches differ from our method as they579

still require an additional clustering operation. The proposed DELTA 2 in Algorithm 1 can be viewed580

as a muted version of the diverse client clustering algorithm, while promising to be unbiased.581

Importance sampling. Importance sampling is a statistical method that allows for the estimation of582

certain quantities by sampling from a distribution that is different from the distribution of interest. It583

has been applied in a wide range of areas, including Monte Carlo integration [10, 70, 1], Bayesian584

inference [22, 23], and machine learning [54, 19].585

In a recent parallel work, [49] demonstrated mean square convergence of strongly convex federated586

learning under the assumption of a bounded distance between the global optimal model and the local587

optimal models.[4] analyzed the convergence of strongly convex and nonconvex federated learning588

by studying the improvement factor, which is the ratio of the participation variance using importance589

sampling and the participation variance using uniform sampling. This algorithm dynamically selects590

clients without any constraints on the number of clients, potentially violating the principle of partial591

user participation. It is worth noting that both of these sampling methods are based on the gradient592

norm, ignoring the effect of the direction of the gradient. Other works have focused on the use of593

importance sampling in the context of online federated learning, where the client selection must594

consider the client’s connection ability. For example, [69] proposed an adaptive client selection595

method based on reinforcement learning, which takes into account the communication cost and the596

accuracy of the local model when selecting clients to participate in training. [62] also employed597

reinforcement learning for adaptive client selection, treating each client as an agent and aiming to598

find the optimal action that maximizes the accuracy of the global model.[6] introduced a bandit-based599

federated learning algorithm that uses importance sampling to select the most informative clients600

in a single communication round. [53] considered the problem of federated learning with imperfect601

feedback, where the global model is updated based on noisy and biased local gradients, and proposed602

an importance sampling method to adjust for the bias and reduce the variance of convergence.603

B Toy Example and Experiments for Illustrating Our Observation604

B.1 Toy example605

Figure 5 is a separate illustrated version of each sampling algorithm provided in Figure 3.606

We consider a regression problem involving three clients, each with a unique square function:607

F1(x, y) = x2 + y2; F2(x, y) = 4(x− 1
2 )

2 + 1
2y

2;F3(x, y) = 3x2 + 3
2 (y− 2)2. Suppose (xt, yt) =608

(1, 1) at current round t, the gradients of three clients are ∇F1 = (2, 2), ∇F2 = (4, 1), and609

∇F3 = (6,−3). Suppose only two clients are selected to participate in training. The closer the610

selected user’s update is to the global model, the better.611

For ideal global model, ∇Fglobal =
1
3

∑3
i=1 ∇Fi = (4, 0), which is the average over all clients.612

For FedIS, ∇FFedIS = 1
2 (∇F2 +∇F3) = (5,−1): It tends to select Client 2 and 3 who have large613

gradient norms, as ∥∇F3∥ > ∥∇F2∥ > ∥∇F1∥.614

For DELTA, ∇FDELTA = 1
2 (∇F1 +∇F3) = (4,− 1

2 ): It tends to select Client 1 and 3 who have the615

largest gradient diversity than that of other clients pair, where the gradient diversity can be formulated616

by divi = ∥∇Fi(xt, yt)−∇Fglobal(xt, yt)∥ [55, 32].617

2With a slight abuse of the name, we use DELTA for the rest of the paper to denote either the sampling
probability or the federated learning algorithm with sampling probability DELTA, as does FedIS.
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For FedAvg, ∇FFedAvg = 1
2 (∇F1 + ∇F2) = (3, 3

2 ): It assigns each client with equal sampling618

probability. Compared to FedIS and DELTA, FedAvg is more likely to select Client 1 and 2. To619

facilitate the comparison, FedAvg is assumed to select Client 1 and 2 here.620

From Figure 3, we can observe that the gradient produced by DELTA is closest to that of621

the ideal global model. Specifically, using L2 norm as the distance function D, we have622

D(∇FDELTA,∇Fglobal) < D(∇FFedIS ,∇Fglobal) < D(∇FFedAvg,∇Fglobal). This illustrates623

the selection of more diverse clients better approaches the ideal global model, thereby making it more624

efficient.625

(a) Overview of different methods. (b) FedAvg.

(c) FedIS. (d) DELTA.
Figure 5: Overview of objective inconsistency. The intuition of objective inconsistency in FL is caused by
client sampling. When Client 1 & 2, are selected to participate the training, then the model xt+1 becomes
xt+1
FedAvg instead of xt+1

global, resulting in objective inconsistency. Different sampling strategies can cause different
surrogate objectives, thus causing different biases. From Fig 5(a) we can see DELTA achieves minimal bias
among the three unbiased sampling methods.

B.2 Experiments for illustrating our observation.626

Experiment setting. For the experiments to illustrate our observation in the introduction, we apply a627

logistic regression model on the non-iid MNIST dataset. 10 clients are selected from 200 clients to628

participate in training in each round. We set 2 cluster centers for cluster-based IS. And we set the629

mini batch-size to 32, the learning rate to 0.01, and the local update time to 5 for all methods. We630

run 500 communication rounds for each algorithm. We report the average of each round’s selected631

clients’ gradient norm and the minimum of each round’s selected clients’ gradient norm.632

Performance of gradient norm. We report the gradient norm performance of cluster-based IS633

and IS to show that cluster-based IS selects clients with small gradients. As we mentioned in the634

introduction, the cluster-based IS always selects some clients from the cluster with small gradients,635

which will slow the convergence in some cases. We provide the average gradient norm comparison636

between IS and cluster-based IS in Figure 6(a). In addition, we also provide the minimal gradient637

norm comparison between IS and cluster-based IS in Figure 6(b).638

Performance of removing small gradient clusters. We report on a comparison of the accuracy and639

loss performance between vanilla cluster-based IS and the removal of cluster-based IS with small640

gradient clusters. Specifically, we consider a setting with two cluster centers. After 250 rounds,641

we replace the clients in the cluster containing the smaller gradient with the clients in the cluster642

containing the larger gradient while maintaining the same total number of participating clients. The643

experimental results are shown in Figure 7. We can observe that vanilla cluster-based IS performs644
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(b) Minimal gradient norm comparison

Figure 6: The gradient norm comparison. Both results indicate that cluster-based IS selects clients with small
gradients after about half of the training rounds compared to IS.

worse than cluster-based IS without small gradients, indicating that small gradients are a contributing645

factor to poor performance.646
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Figure 7: An illustration that cluster-based IS sampling from the cluster with small gradients will
slow convergence. When the small gradient-norm cluster’s clients are replaced by the clients from the large
gradient-norm cluster, we see the performance improvement of cluster-based IS.

C Techniques647

Here, we present some technical lemmas that are useful in the theoretical proof. We substitute 1
m for648

ni

N to simplify the writing in all subsequent proofs. ni

N is the data ratio of client i. All of our proofs649

can be easily extended from f(xt) =
1
m

∑m
i=1 Fi(xt) to f(xt) =

∑m
i=1

ni

N Fi(xt).650

Lemma C.1. (Unbiased Sampling). Importance sampling is unbiased sampling.651

E( 1n
∑

i∈St

1
mpi

∇Fi(xt)) = 1
m

∑m
i=1 ∇Fi(xt) , no matter whether the sampling is with652

replacement or without replacement.653

Lemma C.1 proves that the importance sampling is an unbiased sampling strategy, either in sampling654

with replacement or sampling without replacement.655

18



Proof. For with replacement:656

E

(
1

n

∑
i∈St

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(

1

mpti
∇Fi(xt)

)
=

1

n

∑
i∈St

E
(
E
(

1

mpti
∇Fi(xt) | S

))

=
1

n

∑
i∈St

E

(
m∑
l=1

ptl
1

mptl
∇Fl(xt)

)
=

1

n

∑
i∈St

∇f(xt) = ∇f(xt) ,

(19)

For without replacement:657

E

(
1

n

∑
i∈St

1

mpi
∇Fi(xt)

)
=

1

n

m∑
l=1

E
(
Im

1

mptl
∇Fl(xt)

)
=

1

n

m∑
l=1

E(Im)× E(
1

mptl
∇Fl(xt))

=
1

n
E(

m∑
l=1

Im)× E(
1

mptl
∇Fl(xt)) =

1

n
n×

m∑
l=1

ptl
1

mptl
∇Fl(xt)

=
1

n

m∑
l=1

nptl ×
1

mptl
∇Fl(xt) =

1

m

m∑
l=1

∇Fl(xt) = ∇f(xt) , (20)

where Im ≜

{
1 if xl ∈ St ,

0 otherwise .
658

In the expectation, there are three sources of stochasticity. They are client sampling, local SGD, and659

the filtration of xt. Therefore, the expectation is taken over all of these sources of randomness. Here,660

S represents the sources of stochasticity other than client sampling. More precisely, S represents the661

filtration of the stochastic process xj , j = 1, 2, 3. . . at time t and the stochasticity of local SGD.662

Lemma C.2 (update gap bound).

χ2 = E∥ 1
n

∑
i∈St

1

mpti
∇Fi(xt)−∇f(xt)∥2 = E∥∇f̃(xt)∥2 − ∥∇f(xt)∥2 ≤ E∥∇f̃(xt)∥2 . (21)

where the first equation follows from E[x− E(x)]2 = E[x2]− [E(x)]2 and Lemma C.1.663

For ease of understanding, we give a detailed derivation of the Lemma C.2.664

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
=E

(
∥∇f̃(xt)∥2 | S

)
− 2E

(
∥∇f̃(xt)∥∥∇f(xt)∥ | S

)
+ E

(
∥∇f(xt)∥2 | S

)
, (22)

where E(x | S) means the expectation on x over the sampling space. We have E
(
∥∇f̃(xt) | S

)
=665

∇f(xt) and E
(
∥∇f(xt)∥2 | S

)
= ∥∇f(xt)∥2 (∥∇f(x)∥ is a constant for stochasticity S and the666

expectation over a constant is the constant itself.)667

Therefore, we conclude668

E
(
∥∇f̃(xt)−∇f(xt)∥2 | S

)
= E

(
∥∇f̃(xt)∥2 | S

)
− ∥∇f(xt)∥2 ≤ E

(
∥∇f̃(xt)∥2 | S

)
.

(23)

We can further take the expectation on both sides of the inequality according to our needs, without669

changing the relationship.670

The following lemma follows from Lemma 4 of [47], but with a looser condition Assumption 3,671

instead of σ2
G bound. With some effort, we can derive the following lemma:672

Lemma C.3 (Local updates bound.). For any step-size satisfying ηL ≤ 1
8LK , we can have the673

following results:674

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (24)
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Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lσ
2
G + 4Kη2L(A

2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (25)

Unrolling the recursion, we obtain:675

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (26)

676

In the following Proposition, we will demonstrate that the convergence rate in this paper with the677

relaxed version of Assumption 3 remains unchanged.678

Proposition C.4 (convergence under relaxed Assumption 3 [24]). The relaxed version of Assump-679

tion 3 in this paper is:680

E∥∇Fi(x)∥2 ≤ 2B(f(x)− f inf ) + (A2 + 1)∥∇f(x)∥2 + σ2
G . (27)

Since we have f(x)−f inf ≤ f0−f inf ≤ F , where F is a positive constant. This implies that we can681

substitute σg with 2BF +σG in all analyses without altering the outcomes (one can directly conclude682

this from using the above bound in Lemma C.3). In the final convergence rate, it is straightforward to683

see that the convergence rate remains unchanged, yet the constant term σg becomes 2BF + σG.684

Thus, we can assert that we have furnished the analysis under the relaxed assumption condition.685

D Convergence of FedIS, Proof of Theorem 3.1686

The complete version of FedIS algorithm is shown below:687

We first restate the convergence theorem (Theorem 3.1) more formally, then prove the result for the688

nonconvex case.689

Theorem D.1. Under Assumptions 1–3 and the sampling strategy FedIS, the expected gradient690

norm will converge to a stationary point of the global objective. More specifically, if the number691

of communication rounds T is predetermined and the learning rate η and ηL are constant, then the692

expected gradient norm will be bounded as follows:693

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+Φ , (28)

where F = f(x0) − f(x∗), M2 = σ2
L + 4Kσ2

G, and the expectation is over the local datasets694

samples among workers.695
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Algorithm 2 FedIS and FedPracIS : Federated learning with importance sampling

Require: initial weights x0, global learning rate η, local learning rate ηl, number of training rounds T
Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Select clients by using IS (5) or Practical IS (15) .

3: for each worker i ∈ St,in parallel do
4: xi

t,0 = xt

5: for k = 0, · · ·,K − 1 do
6: compute git,k = ∇Fi(x

i
t,k, ξ

i
t,k)

7: Local update:xi
t,k+1 = xi

t,k − ηLg
i
t,k

8: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k

9: Send gradient to server
10: At Server:
11: Receive ∆i

t, i ∈ St

12: let ∆t =
1

|St|
∑

i∈St

ni

npti
∆i

t

13: Server update: xt+1 = xt + η∆t

14: Broadcast xt+1 to clients

Let ηL < min (1/(8LK), C), where C is obtained from the condition that 1
2 − 10L2K2(A2 +696

1)η2L − L2ηK(A2+1)
2n ηL > 0 ,and η ≤ 1/(ηLL), it then holds that:697

Φ =
1

c
[
5η2LL

2K

2m

m∑
i=1

(σ2
L + 4Kσ2

G) +
ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (29)

where c is a constant that satisfies 1
2 − 10L2K2(A2 + 1)η2L − L2ηK(A2+1)

2n ηL > c > 0, and698

V ( 1
mpt

i
ĝti) = E∥ 1

mpt
i
ĝti − 1

m

∑m
i=1 ĝ

t
i∥2.699

Corollary D.2. Suppose ηL and η are such that the conditions mentioned above are satisfied,700

ηL = O
(

1√
TKL

)
and η = O

(√
Kn
)

, and let the sampling probability be FedIS (75). Then for701

sufficiently large T, the iterates of Theorem 3.1 satisfy:702

min
t∈[T ]

E∥∇f(xt)∥2 = O
(

σ2
L√

nKT
+

Kσ2
G√

nKT
+

σ2
L + 4Kσ2

G

KT

)
. (30)

Proof.

Et[f(xt+1)]
(a1)

≤ f(xt) + ⟨∇f(xt),Et[xt+1 − xt]⟩+
L

2
Et[∥xt+1 − xt∥2]

= f(xt) + ⟨∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]⟩+
L

2
η2Et[∥∆t∥2]

= f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

,

(31)

where (a1) follows from the Lipschitz continuous condition. The expectation is conditioned on703

everything prior to the current step k of round t. Specifically, it is taken over the sampling of clients,704

the sampling of local data, and the current round’s model xt.705
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Firstly we consider A1:706

A1 = ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩

=

〈
∇f(xt),Et[−

1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηLK∇f(xt)]

〉

(a2)
=

〈
∇f(xt),Et[−

1

m

m∑
i=1

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f(xt)]

〉

=

〈√
ηLK∇f(xt),−

√
ηL√
K

Et[
1

m

m∑
i=1

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))]

〉

(a3)
=

ηLK

2
∥∇f(xt)∥2 +

ηL
2K

Et

∥∥∥∥∥ 1

m

m∑
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K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))

∥∥∥∥∥
2

− ηL
2K

Et∥
1

m

m∑
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K−1∑
k=0

∇Fi(x
i
t,k)∥2

(a4)

≤ ηLK

2
∥∇f(xt)∥2 +

ηLL
2

2m

m∑
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K−1∑
k=0

Et

∥∥xi
t,k − xt

∥∥2 − ηL
2K

Et∥
1

m

m∑
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K−1∑
k=0

∇Fi(x
i
t,k)∥2

≤
(
ηLK

2
+ 10K3L2η3L(A

2 + 1)

)
∥∇f(xt)∥2 +

5L2η3L
2

K2σ2
L + 10η3LL

2K3σ2
G

− ηL
2K

Et∥
1

m

m∑
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K−1∑
k=0

∇Fi(x
i
t,k)∥2 , (32)

where (a2) follows from Assumption 2 and LemmaC.1. (a3) is due to ⟨x, y⟩ =707
1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and (a4) comes from Assumption 1.708

Then we consider A2. Let ĝti =
∑K−1

k=0 gti,k =
∑K−1

k=0 ∇Fi(x
i
t,k, ξ

i
t,k)709

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥ηL 1

n

∑
i∈St

1

mpti

K−1∑
k=0

git,k

∥∥∥∥∥
2

= η2L
1

n
Et

∥∥∥∥∥ 1

mpti
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git,k − 1

m

m∑
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K−1∑
k=0

git,k

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

gi(x
i
t,k)

∥∥∥∥∥
2

=
η2L
n
V (

1

mpti
ĝti)

+ η2LE∥
1

m

m∑
i=1

K−1∑
k=0

[gi(x
i
t,k)−∇Fi(x

i
t,k) +∇Fi(x

i
t,k)]∥2

≤ η2L
n
V (

1
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ĝti)

+ η2L
1

m2

m∑
i=1

K−1∑
k=0

E∥gi(xi
t,k)−∇Fi(x

i
t,k)∥2 + η2LE∥

1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2

≤ η2L
n
V (

1

mpti
ĝti) + η2L

K

m
σ2
L + η2LE∥

1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)∥2 . (33)

22



The third equality follows from independent sampling.710

Specifically, for sampling with replacement, due to every index being independent, we utilize711

E∥x2
1 + ...+ xn∥2 = E[∥x1∥2 + ...+ ∥xn∥2].712

For sampling without replacement:713

E∥ 1
n

∑
i∈St

(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2

=
1

n2
E∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2

=
1

n2
E

(
∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 | Ii = 1

)
× P(Ii = 1)

+
1

n2
E

(
∥

m∑
i=1

Ii(
1

mpti
ĝti −

1

m

m∑
i=1

ĝti)∥
2 | Ii = 0

)
× P(Ii = 0)

=
1

n

m∑
i=1

pti∥
1

mpti
ĝti −

1

m

m∑
i=1

ĝti∥
2

=
1

n
E∥ 1

mpti
ĝti −

1

m

m∑
i=1

ĝti∥
2 . (34)

From the above, we observe that it is possible to achieve a speedup by sampling from the distribution714

that minimizes V ( 1
mpt

i
ĝti). Furthermore, as we discussed earlier, the optimal sampling probability715

is p∗i =
|ĝt

i |∑m
i=1 |ĝt

i |
. For MD sampling [31], which samples according to the data ratio, the optimal716

sampling probability is p∗i, t = qi|ĝt
i |∑

i=1mqi|ĝt
i |

, where qi =
ni

N .717

Now we substitute the expressions of A1 and A2:718

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
∥∇f(xt)∥2 +

5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti)−

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ f(xt)− cηηLK∥∇f(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti) ,

(35)

where the last inequality follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a9) holds because719

there exists a constant c > 0 (for some ηL) satisfying 1
2 − 10L2 1

m

∑m
i−1 K

2η2L(A
2 + 1) > c > 0.720

Rearranging and summing from t = 0, . . . , T − 1,we have:721

T−1∑
t=1

cηηLKE∥∇f(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (36)

Which implies:722

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+Φ , (37)
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where723

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2m
σ2
L +

LηηL
2nK

V (
1

mpti
ĝti)] . (38)

724

D.1 Proof for convergence rate of FedIS (Theorem 3.1) under Assumption 1–3.725

In this section, we compare the convergence rate of FedIS with and without Assumption 4. For726

comparison, we first provide the convergence result under Assumption 4.727

First we show Assumption 4 can be used to bound the update variance V
(

1
mpt

i
ĝti

)
, and under the728

sampling probability FedIS (73):729

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 ≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2 ≤ K2G2

(39)

While for using Assumption 3 instead of additional Assumption 4, we can also bound the update730

variance:731

V

(
1

mpti
ĝti

)
≤ 1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 ≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2

≤ K2σ2
G +K2(A2 + 1)∥∇f(xt)∥2 (40)

We replace the variance back to equation (35):732

Et[f(xt+1)] ≤ f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩+
L

2
η2Et∥∆t∥2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)

)
∥∇f(xt)∥2 +

5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2m
σ2
L +

Lη2η2L
2n

V (
1

mpti
ĝti)−

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m
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K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ f(xt)− ηηLK

(
1

2
− 10L2K2η2L(A

2 + 1)− LηηLK(A2 + 1)

2n

)
∥∇f(xt)∥2

+
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

η2η2LKL

2m
σ2
L +

Lη2η2L
2n

K2σ2
G

−
(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

.

(41)

This shows that the requirement for ηL is different. It needs that there exists a constant c > 0 (for733

some ηL) satisfying 1
2 − 10L2K2η2L(A

2 + 1) − LηηLK(A2+1)
2n > c > 0. One can still guarantee734

that there exists a constant for ηL to satisfy this inequality according to the properties of quadratic735

functions. Specifically, for the quadratic equation −10L2K2(A2 + 1)η2L − LηK(A2+1)
2n ηL + 1

2 , we736

know that −10L2K2(A2 + 1) < 0, −LηK(A2+1)
2n and 1

2 > 0. Based on the solution of quadratic737

equations, we can ensure that there exists a ηL > 0 solution.738

Then we can substitute equation (35) with equation (41) and let ηL = O
(

1√
TKL

)
and η =739

O
(√

Kn
)

, yielding the convergence rate of FedIS under Assumptions 1– 3:740

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(
f0 − f∗
√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
Kσ2

G√
nKT

)
︸ ︷︷ ︸

order of Φ

. (42)
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E Convergence of DELTA. Proof of Theorem 3.4741

E.1 Convergence rate with improved analysis method for getting DELTA742

As we see FedIS can only reduce the update variance term in Φ. Since we want to reduce the743

convergence variance as much as possible, the other term σL and σG still needs to be optimized.744

However, it is not straightforward to derive the optimization problem from Φ. In order to further745

reduce the variance in Φ (cf. 4), i.e., local variance (σL) and global variance (σG), we divide the746

convergence of the global objective into a surrogate objective and an update gap and analyze them747

separately. The analysis framework is shown in Figure 8.748

Figure 8: Theoretical analysis flow. The figure shows the theoretical analysis flow of FedIS (left) and DELTA
(right), highlighting the differences in sampling probability due to variance.

As for the update gap, inspired by the expression form of the update variance, we formally define749

it as follows:750

Definition E.1 (Update gap). In order to measure the update inconsistency, we define the update gap:751

χt = E
[∥∥∥∇f̃(xt)−∇f(xt)

∥∥∥] . (43)

Here, the expectation is taken over the distribution of all clients. When all clients participate, we752

have χ2
t = 0. The update inconsistency exists as long as only a partial set of clients participate.753

The update gap is a direct manifestation of the objective inconsistency in the update process. The754

presence of an update gap makes the analysis of the global objective different from the analysis of755

the surrogate objective. However, by ensuring the convergence of the update gap, we can re-derive756

the convergence result for the global objective. Formally, the update gap allows us to connect global757

objective convergence and surrogate objective convergence as follows:758

E∥∇f(xt)∥2 = E∥∇f̃(xt)∥2 + χ2
t . (44)

The equation follows from the property of unbiasedness, as shown in Lemma C.1.759

To deduce the convergence rate of the global objective, we begin by examining the convergence760

analysis of the surrogate objective.761

Theorem E.2 (Convergence rate of surrogate objective). Under Assumption 1–3 and let local and762

global learning rates η and ηL satisfy ηL < 1/(
√
40KL

√
1
n

∑m
l=1

1
mpt

l

) and ηηL ≤ 1/KL, the minimal763

gradient norm of surrogate objective will be bounded as below:764

mint∈[T ] E
∥∥∥∇f̃ (xt)

∥∥∥2 ≤ f0−f∗

c̃ηηLKT
+ Φ̃

c̃
, (45)

where f0 = f(x0), f∗ = f(x∗), the expectation is over the local dataset samples among workers.765

Φ̃ is the new combination of variance, representing combinations of local variance and client766

gradient diversity.767

For sampling without replacement:768

Φ̃ =
5L2Kη2

L
2mn

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i , (46)
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For sampling with replacement:769

Φ̃ =
5L2Kη2

L
2m2

∑m
i=1

1
pti
(σ2

L,i + 4Kζ2G,i) +
LηLη
2n

∑m
i=1

1
m2pti

σ2
L,i (47)

where ζG,i represents client gradient diversity: ζG,i = ∥∇Fi(xt)−∇f(xt)∥ 3, and c̃ is a constant.770

The proof of Theorem E.2 is provided in Appendix E.2.1 and Appendix E.2.2. Specifically, the proof771

for sampling with replacement is shown in Appendix E.2.1, while the proof for sampling without772

replacement is shown in Appendix E.2.2.773

Remark E.3. We observe that there is no update variance in Φ̃, but the local variance and global774

variance are still present. Additionally, the new combination of variance Φ̃ can be minimized by775

optimizing the sampling probability, as will be shown later.776

Derive the convergence from surrogate objective to global objective. As shown in Lemma C.1,777

unbiased sampling guarantees that the expected partial client updates are equal to the participation778

of all clients. With sufficient training rounds, unbiased sampling can ensure that the update gap χ2779

will converge to zero. However, we still need to know the convergence speed of χ2
t to recover the780

convergence rate of the global objective. Fortunately, we can bound the convergence behavior of χ2
t781

by the convergence rate of the surrogate objective according to Definition E.1 and Lemma C.2. This782

means that the update gap can achieve at least the same convergence rate as the surrogate objective.783

Corollary E.4 (New convergence rate of global objective). Under Assumption 1–3 and based on the784

above analysis that update variance is bounded, the global objective will converge to a stationary785

point. Its gradient is bounded as:786

mint∈[T ] E∥∇f(xt)∥2 = mint∈[T ] E∥∇f̃(xt)∥2 + E∥χ2
t∥ ≤ mint∈[T ] 2E∥∇f̃(xt)∥2 ≤ f0−f∗

cηηLKT
+ Φ̃

c
.

(48)

Theorem E.5 (Restate of Theorem 3.4). Under Assumptions 1-3 and the same conditions as in787

Theorem 3.1, the minimal gradient norm of the surrogate objective will be bounded as follows788

by setting ηL = 1√
TKL

and η
√
Kn. Let the local and global learning rates η and ηL satisfy789

ηL < 1
√
40KL

√
1
n

∑m
l=1

1
mpt

l

and ηηL ≤ 1
KL . Under Assumptions 1-3 and with partial worker790

participation, the sequence of outputs xk generated by Algorithm 1 satisfies:791

min
t∈[T ]

E∥∇f(xt)∥2 ≤ F

cηηLKT
+

1

c
Φ̃ , (49)

where F = f(x0)− f(x∗), and the expectation is over the local dataset samplings among workers.792

c is a constant. ζG,i is defined as client gradient diversity: ζG,i = ∥∇Fi(xt)−∇f(xt)∥.793

For sample with replacement: Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,i.794

For sampling without replacement: Φ̃ =
5L2Kη2

L

2mn

∑m
l=1

1
pt
l
(σ2

L,l + 4Kζ2G,l) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L,l.795

Remark E.6 (Condition of ηL). Here, though the condition expression for ηL relies on a dynamic796

sampling probability ptl , we can still guarantee that there a constant ηL satisfies this condition.797

Specifically, one can substitute the optimal sampling probability 1
pt
i

=
∑m

j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

798

back to the above inequality condition. As long as the gradient ∇Fi(xt) is bounded,799

we can ensure 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j+α2σ2
L,j√

α1ζ2
G,i+α2σ2

L,i

≤ maxj

√
α1ζ2

G,j+α2σ2
L,j

mini

√
α1ζ2

G,i+α1σ2
L,i

≤ G̃, therefore800

1

2
√

10(A2+1)KL

√√√√ 1
m2

∑m
i=1

∑m
j=1

√
α1ζ2

G,j
+α2σ2

L,j√
α1ζ2

G,i
+α2σ2

L,i

≥ 1

2
√

10(A2+1)KL
√

G̃
≥ C, where G̃ and C are801

positive constants. Thus, we can always find a constant ηL to satisfy this inequality under dynamic802

sampling probability pti.803

3In the Appendix, we abbreviate ζG,i,t to ζG,i for the sake of simplicity in notation, without any loss of
generality.
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Corollary E.7 (Convergence rate of DELTA). Suppose ηL and η are such that the conditions804

mentioned above are satisfied, ηL = O
(

1√
TKL

)
and η = O

(√
Kn
)

. Then for sufficiently large T,805

the iterates of Theorem 3.4 satisfy:806

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

F√
nKT

)
+O

(
σ2
L√

nKT

)
+O

(
σ2
L + 4Kζ2G

KT

)
. (50)

Lemma E.8. For any step-size satisfying ηL ≤ 1
8LK , we can have the following results:807

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (51)

where ζG,i = ∥∇F (xt) − ∇f(xt)∥, and the expectation is over local SGD and filtration of xt,808

without the stochasticity of client sampling.809

Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lζ
2
G,i + 4Kη2L(A

2 + 1)∥∇f(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (52)

Unrolling the recursion, we get:810

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lζ

2
G,i + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
≤ 5K(η2Lσ

2
L + 4Kη2Lζ

2
G,i) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (53)

811

E.2 Proof for Theorem E.2.812

In Section E.2.1 and Section E.2.2, we provide the proof for Theorem E.2. Specifically, the proof813

for sampling with replacement is shown in Appendix E.2.1, while the proof for sampling without814

replacement is shown in Appendix E.2.2.815

E.2.1 Sample with replacement816

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (54)

where Φ̃ =
5L2Kη2

L

2m2

∑m
l=1

1
pt
l
(σ2

L + 4Kζ2G,i) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L.817
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Proof.

Et[f̃(xt+1)]
(a1)

≤ f̃(xt) +
〈
∇f̃(xt),Et[xt+1 − xt]

〉
+

L

2
Et[∥xt+1 − xt∥2]

= f̃(xt) +
〈
∇f̃(xt),Et[η∆t + ηηLK∇f̃(xt)− ηηLK∇f̃(xt)]

〉
+

L

2
η2Et[∥∆t∥2]

= f̃(xt)− ηηLK
∥∥∥∇f̃(xt)

∥∥∥2 + η
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
︸ ︷︷ ︸

A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

.

(55)

Where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the local818

data SGD and the filtration of xt. However, in the next analysis, the expectation is over all randomness,819

including client sampling .This is achieved by taking expectation on both sides of the above equation820

over client sampling.821

To begin, let us consider A1:822

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]
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where (a2) follows from Assumption 2, and (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
for823

x =
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To bound A1, we need to bound the following part:826
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where (a4) follows from the fact that E|x1 + · · · + xn|2 ≤ nE
(
|x1|2 + · · ·+ |xn|2

)
, (a5) is a827

consequence of Assumption 1, and (a6) is a result of Lemma E.8.828

Combining the above expressions, we obtain:829
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Next, we consider bounding A2:830
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where S represents the whole sample space and (a7) is due to Assumption 2.831

Now we substitute the expressions for A1 and A2 and take the expectation over the client sampling832

distribution on both sides. It should be noted that the derivation of A1 and A2 above is based on833

considering the expectation over the sampling distribution:834
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∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
∇f̃(xt),∆t + ηLK∇f̃(xt)

〉
+

L

2
η2Et∥∆t∥2

(a8)

≤ f(xt)−KηηL

(
1

2
− 20K2η2LL

2(A2 + 1)

m2

m∑
l=1

1

ptl

)
Et

∥∥∥∇f̃(xt)
∥∥∥2

+
5L2K2η3Lη

2m2

m∑
l=1

1

ptl

(
σL + 4Kζ2G,i

)
+

Lη2Lη
2K

2n

m∑
l=1

1

m2ptl
σ2
L −

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇fi(x
i
t,k)

∥∥∥∥∥
2

(a9)

≤ f(xt)−KηηL

(
1

2
− 20K2η2LL

2(A2 + 1)

m2

m∑
l=1

1

ptl

)
Et∥∇f̃(xt)∥2

+
5L2K2η3Lη

2m2

m∑
l=1

1

ptl
(σL + 4Kζ2G,i) +

Lη2Lη
2K

2n

m∑
l=1

1

m2ptl
σ2
L

(a10)

≤ f(xt)− cKηηLEt∥∇f̃(xt)∥2 +
5L2K2η3Lη

2m2

m∑
l=1

1

ptl
(σ2

L + 4Kζ2G,i) +
Lη2Lη

2K

2n

m∑
l=1

1

m2ptl
σ2
L ,

(60)

where (a8) comes from Lemma C.2, (a9) follows from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL , and (a10)835

holds because there exists a constant c > 0 satisfying ( 12 − 20K2η2
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Rearranging and summing from t = 0, . . . , T − 1, we have:839
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Which implies:840

min
t∈[T ]
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842

E.2.2 Sample without replacement843
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t∈[T ]
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where Φ̃ =
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Proof.
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Where the first inequality follows from Lipschitz continuous condition. The expectation here is taken845

over both the local SGD and the filtration of xt. However, in the subsequent analysis, the expectation846

is taken over all sources of randomness, including client sampling.847

Similarly, we consider A1 first:848

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
=

〈
∇f̃(xt),Et

[
− 1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηLg
i
t,k + ηLK∇f̃(xt)

]〉

=

〈
∇f̃(xt),Et

[
− 1

|St|
∑
i∈St

1

mpti

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f̃(xt)

]〉

=

〈√
KηL∇f̃(xt),

√
ηL√
K

Et

[
− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)

]〉

=
KηL
2

∥∥∥∇f̃(xt)
∥∥∥2 + ηL

2K
Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k) +K∇f̃(xt)

∥∥∥∥∥
2

− ηL
2K

Et

∥∥∥∥∥− 1

n

∑
i∈St

1

mpti

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

. (65)

31



Since xi are sampled from St without replacement, this causes pairs xi1 and xi2 to no longer be849

independent. We introduce the activation function as follows:850

Im ≜

{
1 if x ∈ St ,

0 otherwise .
(66)

Then we obtain the following bound:851
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where (b1) follows from ∥
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i=1 ti∥2 =
∑

i∈[m] ∥ti∥2 +
∑

i ̸=j⟨ti, tj⟩
c1
=
∑

i∈[m] m∥ti∥2 −852

1
2

∑
i ̸=j ∥ti − tj∥2 ((c1) here is due to ⟨x, y⟩ = 1

2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
), (b2) is due to853

E∥x1 + · · ·+ xn∥2 ≤ nE
(
∥x1∥2 + · · ·+ ∥xn∥2

)
, and (b3) comes from Lemma E.8.854

Therefore, we have the bound of A1:855
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The expression for A2 is as follows:856
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Now we substitute the expressions for A1 and A2 and take the expectation over the client sampling857

distribution on both sides. It should be noted that the derivation of A1 and A2 above is based on858

considering the expectation over the sampling distribution:859
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Also, for (b4), step sizes need to satisfy
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2
√

10(A2+1)KL
√

1
n

∑m
l=1

1
mpt

l

.861

Rearranging and summing from t = 0, . . . , T − 1,we have:862

T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ̃ . (71)

Which implies:863

min
t∈[T ]

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+
1

c
Φ̃ , (72)

where Φ̃ =
5L2Kη2

L

2mn

∑m
l=1

1
pt
l
(σ2

L + 4Kζ2G,i) +
LηLη
2n

∑m
l=1

1
m2pt

l
σ2
L.864

865
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F Proof of the Optimal Sampling Probability866

F.1 Sampling probability FedIS867

Corollary F.1 (Optimal sampling probability for FedIS).

min
pt
l

Φ s.t.

m∑
l=1

ptl = 1 .

Solving the above optimization problem, we obtain the expression for the optimal sampling probabil-868

ity:869

pti =
∥ĝti∥∑m

j=1 ∥ĝtj∥
, (73)

where ĝti =
∑K−1

k=0 gik is the sum of the gradient updates across multiple updates.870

Recall Theorem 3.1; only the last variance term in the convergence term Φ is affected by sampling.871

In other words, we need to minimize the variance term with respect to probability. We formalize this872

as follows:873

min
pt
i∈[0,1],

∑m
i=1 pt

i=1
V (

1

mpti
ĝti) ⇔ min

pt
i∈[0,1],

∑m
i=1 pt

i=1

1

m2

m∑
i=1

1

pti
∥ĝti∥

2 . (74)

This optimization problem can be solved in closed form using the KKT conditions. It is straightfor-874

ward to verify that the solution to the optimization problem is:875

p∗i,t =
∥
∑K−1

k=0 git,k∥∑m
i=1 ∥

∑K−1
k=0 git,k∥

,∀i ∈ 1, 2, ...,m . (75)

Under the optimal sampling probability, the variance will be:876

V

(
1

mpti
ĝti

)
≤ E

∥∥∥∥∑m
i=1 ĝ

t
i

m

∥∥∥∥2 =
1

m2
E∥

m∑
i=1

K∑
k=1

∇Fi(xt,k, ξk,t)∥2 (76)

Therefore, the variance term is bounded by:877

V

(
1

mpti
ĝti

)
≤ 1

m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xt,k, ξk,t)∥2 ≤ K2G2 (77)

Remark: If the uniform distribution is adopted with pti =
1
m , it is easy to observe that the variance878

of the stochastic gradient is bounded by
∑m

i=1 |gi|2
m .879

According to Cauchy-Schwarz inequality,880 ∑m
i=1 ∥ĝti∥2

m

/(∑m
i=1 ∥ĝi∥
m

)2

=
m
∑m

i=1 ∥ĝi∥2

(
∑m

i=1 ∥ĝi∥)
2 ≥ 1 , (78)

this implies that importance sampling does improve convergence rate, especially when881

(
∑m

i=1 ∥gi∥)
2∑m

i=1 ∥gi∥2 << m.882

F.2 Sampling probability of DELTA883

Our result is of the following form:884

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗
cηηLKT

+ Φ̃ , (79)

It is easy to see that the sampling strategy only affects Φ̃. To enhance the convergence rate, we need885

to minimize Φ̃ with respect to ptl . As shown, the expression for Φ̃ with and without replacement is886
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similar, and only differs in the values of n and m. Here, we will consider the case with replacement.887

Specifically, we need to solve the following optimization problem:888

min
pt
l

Φ̃ =
1

c
(
5L2Kη2L
2m2

m∑
l=1

1

ptl
(σ2

L,l + 4Kζ2G,i) +
LηLη

2n

m∑
l=1

1

m2ptl
σ2
L,i) s.t.

m∑
l=1

ptl = 1 .

Solving this optimization problem, we find that the optimal sampling probability is:889

p∗i,t =

√
5KLηL(σ2

L,i + 4Kζ2G,i) +
η
nσ

2
L,l∑m

l=1

√
5KLηL(σ2

L,l + 4Kζ2G,l) +
η
nσ

2
L,l

. (80)

For simplicity, we rewrite the optimal sampling probability as:890

p∗i,t =

√
α1ζ2G,i + α2σ2

L,i∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

, (81)

where α1 = 20K2LηL, α2 = 5KLηL + η
n .891

Remark: Now, we will compare this result with the uniform sampling strategy:892

ΦDELTA =
LηL
2c

∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

m

2

. (82)

For uniform pl =
1
m :893

Φuniform =
LηL
2c

∑m
l=1

(√
α1ζ2G,l + α2σ2

L,l

)2
m

. (83)

According to Cauchy-Schwarz inequality:894 ∑m
l=1

(√
α1ζ2G,l + α2σ2

L,l

)2
m

/

∑m
l=1

√
α1ζ2G,l + α2σ2

L,l

m

2

=
m
∑m

l=1

(√
α1ζ2G,l + α2σ2

L,l

)2
(∑m

l=1

√
α1ζ2G,l + α2σ2

L,l

)2 ≥ 1 ,

(84)

this implies that our sampling method does improve the convergence rate (our sampling895

approach might be n times faster in convergence than uniform sampling), especially when896

(
∑m

l=1

√
α1ζ2

G,l+α2σ2
L,l)

2∑m
l=1(

√
α1ζ2

G,l+α2σ2
L,l)

2 << m.897

G Convergence Analysis of The Practical Algorithm898

In order to provide the convergence rate of the practical algorithm, we need an additional Assumption 4899

(∥∇Fi(x)∥2 ≤ G2,∀i). This assumption tells us a useful fact that will be used later:900

It can be shown that ∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ ≤ U for all i and k, where the subscript s901

refers to the last round in which client i participated, and U is a constant upper bound. This tells us902

that the change in the norm of the client’s gradient is bounded. U comes from the following inequality903

constraint procedure:904

V

(
1

mpsi
ĝti

)
= E|| 1

mpsi
ĝti −

1

m

m∑
i=1

ĝti ||
2 ≤ E|| 1

mpti
ĝti ||

2 = E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1m ĝti

||ĝsi ||

m∑
j=1

||ĝsj ||

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ E

|| 1
m
||2 ||ĝ

t
i ||2

||ĝsi ||2

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

||ĝsj ||

∣∣∣∣∣∣
∣∣∣∣∣∣
2
 ≤ 1

m2
U2m

m∑
j=1

K

K∑
k=1

E||∇Fj(xk,s, ξk,s)||2. (85)
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We establish the upper bound U based on two factors: (1) Assumption 4, and (2) the definition905

of importance sampling Eq(z)(Fi(z)) = Ep(z) (qi(z)/pi(z)Fi(z)), where there exists a positive906

constant γ such that pi(z) ≥ γ > 0. Thus, for psi =
ĝs
i∑
j ĝs

j
≥ γ, we can easily ensure ∥gt

i∥
∥gs

i ∥
≤ U907

since ĝsi > 0 is consistently bounded.908

In general, the gradient norm tends to become smaller as training progresses, which leads to909

∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ going to zero. Even if there are some oscillations in the gra-910

dient norm, the gradient will vary within a limited range and will not diverge to infinity.911

Based on Assumption 4 and Assumption 3, we can re-derive the convergence analysis for both912

convergence variance Φ (4) and Φ̃ (46). In particular, for Assumption 3 (E∥∇Fi(x)∥2 ≤ (A2 +913

1)∥∇f(x)∥2 + σ2
G), we use σG,s and σG,t instead of a unified σG for the sake of comparison.914

Specifically, Φ = 1
c [

5η2
LL2K
2m

∑m
i=1(σ

2
L + 4Kσ2

G) +
ηηLL
2m σ2

L + LηηL

2nK V ( 1
mpt

i
ĝti)], where ĝti =915 ∑K

k=1 ∇Fi(xk,s, ξk,s). With the practical sampling probability psi of FedIS:916

V

(
1

mpsi
ĝti

)
= E∥ 1

mpsi
ĝti −

1

m

m∑
i=1

ĝti∥
2 ≤ E∥ 1

mpti
ĝti∥

2 = E∥ 1

m

ĝti
ĝsi

m∑
j=1

ĝsj∥2 . (86)

According to Assumption 4, we know ∥ ĝt
i

ĝs
i
∥2 = ∥

∑K
k=1 ∇Fi(x

i
t,k,ξ

i
t,k)∑K

k=1 ∇Fi(xi
s,k,ξ

i
s,k)

∥ ≤ U2. Then we get917

V
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mpsi
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)
≤ E

∥ 1

m
∥2∥∥ ĝ

t
i

ĝsi
∥2∥

m∑
j=1

ĝsj∥2
 ≤ 1

m2
U2E∥

m∑
i=1

K∑
k=1

∇Fi(xk,s, ξk,s)∥2

≤ 1

m2
U2m

m∑
i=1

K

K∑
k=1

E∥∇Fi(xk,s, ξk,s)∥2 (87)

Similar to the previous proof, based on Assumption 3. we can get the new convergence rate:918

min
t∈[T ]

E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√

nKT

)
+O

(
σ2
L√

nKT

)
+O

(
M2

T

)
+O

(
KU2σ2

G,s√
nKT

)
︸ ︷︷ ︸

order of Φ

. (88)

where M = σ2
L + 4Kσ2

G,s.919

Remark G.1 (Discussion on U and convergence rate.). It is worth noting that920

∥∇Fi(xt,k, ξt,k)/∇Fi(xs,k, ξs,k)∥ is typically relatively small because the gradient tends to921

go to zero as the training process progresses. This means that U can be relatively small, more922

specifically, U < 1 in the upper bound term O
(

KU2σ2
G,s√

nKT

)
. However, this does not necessarily mean923

that the practical algorithm is better than the theoretical algorithm because the values of σG are924

different, as we stated at the beginning. Typically, the value of σG,s for the practical algorithm is925

larger than the value of σG,t, which also comes from the fact that the gradient tends to go to zero as926

the training process progresses. Additionally, due to the presence of the summation over both i and927

k, the gap between σG,s and σG,t is multiplied, and σG,s/σG,t ∼ m2K2 1
U2 . Thus, the practical928

algorithm leads to a slower convergence than the theoretical algorithm.929

Similarly, as long as the gradient is consistently bounded, we can assume that ∥∇Fi(xt) −930

∇f(xt)∥/∥∇Fi(xs) − ∇f(xs)∥ ≤ Ũ1 ≤ Ũ and ∥σL,t/σL,s∥ ≤ Ũ2 ≤ Ũ for all i, where931

σ2
L,s = E

[∥∥∇Fi(xs, ξ
i
s)−∇Fi(xs)

∥∥]. Then, we can obtain a similar conclusion by following932

the same analysis on Φ̃.933

Specifically, we have Φ̃ = LηL

2m2c

∑m
i=1

1
ps
i

(
α1ζ

2
G,i + α2σ

2
L,i

)
, where α1 and α2 are constants defined934

in (13). For the sake of comparison of different participation rounds s and t, we rewrite the symbols935

as ζiG,s and σi
L,s. Then, using the practical sampling probability psi of DELTA, and letting Rs

i =936
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√
α1ζiG,s

2
+ α2σi

L,s
2, we have:937
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Ũ2(5KLηL(σ
2
L,s + 4Kζ2G,s) +

η

n
σ2
L) (89)

Therefore, compared to the theoretical algorithm of DELTA, the practical algorithm of DELTA has938

the following convergence rate:939

mint∈[T ] E∥∇f(xt)∥2 ≤ O
(

f0−f∗
√
nKT

)
+O

(
Ũ2σ2

L,s√
nKT

)
+O

(
Ũ2σ2

L,s + 4KŨ2ζ2G,s

KT

)
︸ ︷︷ ︸

order of Φ̃

. (90)

This discussion of the effect of Ũ on the convergence rate is similar to the discussion of U in940

Remark G.1.941

H Additional Experiment Results and Experiment Details.942

H.1 Experimental Environment943

For all experiments, we use NVIDIA GeForce RTX 3090 GPUs. Each simulation trail with 500944

communication rounds and three random seeds.945

H.2 Experiment setup946

Setup for the synthetic dataset. To demonstrate the validity of our theoretical results, we first947

conduct experiments using logistic regression on synthetic datasets. Specifically, we randomly948

generate (x, y) pairs using the equation y = log
(

(Ax−b)2

2

)
with given values for Ai and bi as949

training data for clients. Each client’s local dataset contains 1000 samples. In each round, we select950

10 out of 20 clients to participate in training (we also provide the results of 10 out of 200 clients in951

Figure 11).952

To simulate gradient noise, we calculate the gradient for each client i using the equation gi =953

∇fi(Ai, bi, Di) + νi, where Ai and bi are the model parameters, Di is the local dataset for client i,954

and νi is a zero-mean random variable that controls the heterogeneity of client i. The larger the value955

of E∥νi∥2, the greater the heterogeneity of client i.956

We demonstrate the experiment on different functions with different values of A and b. Each function957

is set with noise levels of 20, 30, and 40 to illustrate our theoretical results. To construct different958

functions, we set A = 8, 10 and b = 2, 1, respectively, to observe the convergence behavior of959

different functions.960

All the algorithms run in the same environment with a fixed learning rate of 0.001. We train each961

experiment for 2000 rounds to ensure that the global loss has a stable convergence performance.962

Setup for FashionMNIST and CIFAR-10. To evaluate the performance of DELTA and FedIS,963

we train a two-layer CNN on the non-iid FashionMNIST dataset and a ResNet-18 on the non-iid964

CIFAR-10 dataset, respectively. CIFAR-10 is composed of 32× 32 images with three RGB channels,965

belonging to 10 different classes with 60000 samples.966

The "non-iid" follows the idea introduced in [66, 16], where we leverage Latent Dirichlet Allocation967

(LDA) to control the distribution drift with the Dirichlet parameter α. Larger α indicates smaller968

drifts. Unless otherwise stated, we set the Dirichlet parameter α = 0.5.969
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Unless specifically mentioned otherwise, our studies use the following protocol: all datasets are split970

with a parameter of α = 0.5, the server chooses n = 20 clients according to our proposed probability971

from the total of m = 300 clients, and each is trained for T = 500 communication rounds with972

K = 5 local epochs. The default local dataset batch size is 32. The learning rates are set the same for973

all algorithms, specifically lrglobal = 1 and lrlocal = 0.01.974

All algorithms use FedAvg as the backbone. We compare DELTA, FedIS and Cluster-based IS with975

FedAvg on different datasets with different settings.976

Setup for Split-FashionMNIST. In this section, we evaluate our algorithms on the split-977

FashionMNIST dataset. In particular, we let 10% clients own 90% of the data, and the detailed split978

data process is shown below:979

• Divide the dataset by labels. For example, divide FashionMNIST into 10 groups, and assign980

each client one label981

• Random select one client982

• Reshuffle the data in the selected client983

• Equally divided into 100 clients984

Setup for LEAF. To test our algorithm’s efficiency on diverse real datasets, we use the non-IID985

FEMNIST dataset and non-IID CelebA dataset in LEAF, as given in [3]. All baselines use a 4-layer986

CNN for both datasets with a learning rate of lrlocal = 0.1, batch size of 32, sample ratio of 20% and987

communication round of T = 500. The reported results are averaged over three runs with different988

random seeds.989

The implementation detail of different sampling algorithms. The power-of-choice sampling990

method is proposed by [7]. The sampling strategy is to first sample 20 clients randomly from all991

clients, and then choose 10 of the 20 clients with the largest loss as the selected clients. FedAvg992

samples clients according to their data ratio. Thus, FedAvg promises to be unbiased, which is given in993

[12, 31] to be an unbiased sampling method. As for FedIS, the sampling strategy follows Equation (5).994

For cluster-based IS, it first clusters clients following the gradient norm and then uses the importance995

sampling strategy similar to FedIS in each cluster. And for DELTA, the sampling probability follows996

Equation (13). For the practical implementation of FedIS and DELTA, the sampling probability997

follows the strategy described in Section 4.998

H.3 Additional Experimental Results999

Performance of algorithms on the synthetic dataset. We display the log of the global loss of1000

different sampling methods on synthetic dataset in Figure 9, where the Power-of-Choice is a biased1001

sampling strategy that selects clients with higher loss [7].1002

We also show the convergence behavior of different sampling algorithms under small noise, as shown1003

in Figure 10.1004

To simulate a large number of clients, we increased the client number from 20 to 200, with only 101005

clients participating in each round. The results in Figure 11 demonstrate the effectiveness of DELTA.1006

Convergence performance of theoretical DELTA on split-FashionMNIST and practical DELTA1007

on FEMNIST. Figure 12(a) illustrates the theoretical DELTA outperforms other methods in conver-1008

gence speed. Figure 12(b) indicates that cluster-based IS and practical DELTA exhibit rapid initial1009

accuracy improvement, while practical DELTA and practical IS achieve higher accuracy in the end.1010

Ablation study for DELTA with different sampled numbers. Figure 13 shows the accuracy1011

performance of practical DELTA algorithms on FEMNIST with different sampled numbers of clients.1012

In particular, the larger number of sampled clients, the faster the convergence speed is. This is1013

consistent with our theoretical result (Corollary 4.2).1014

Performance on FashionMNIST and CIFAR-10. For CIFAR-10, we report the mean of the1015

best 10 test accuracies on test data. In Table 2, we compare the performance of DELTA, FedIS,1016
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(a) A = 8, b = 2, ν = 20 (b) A = 8, b = 2, ν = 30 (c) A = 8, b = 2, ν = 40

(d) A = 10, b = 1, ν = 20 (e) A = 10, b = 1, ν = 30 (f) A = 10, b = 1, ν = 40

Figure 9: Performance of different algorithms on the regression model. The loss is calculated by f(x, y) =∥∥∥y − log( (Aix−bi)
2

2
)
∥∥∥2, we report the logarithm of the global loss with different degrees of gradient noise ν.

All methods are well-tuned, and we report the best result of each algorithm under each setting.

(a) ν = 10 (b) ν = 5 (c) ν = 1

(d) ν = 0.5 (e) ν = 0.1

Figure 10: Performance of different algorithms on the regression model with different (small) noise settings.

and FedAvg on non-IID FashionMNIST and CIFAR-10 datasets. Specifically, we use α = 0.1 for1017

FashionMNIST and α = 0.5 for CIFAR-10 to split the datasets. As for Multinomial Distribution1018

(MD) sampling [29], it samples based on the clients’ data ratio and average aggregates. It is symmetric1019

in sampling and aggregation with FedAvg, with similar performance. It can be seen that DELTA has1020

better accuracy than FedIS, while both DELTA and FedIS outperform FedAvg with the same number1021

of communication rounds.1022

Assessing the Compatibility of FedIS with Other Optimization Methods. In Table 4, we1023

demonstrate that DELTA and FedIS are compatible with other FL optimization algorithms, such as1024

Fedprox [29] and FedMIME [20]. Furthermore, DELTA maintains its superiority in this setting.1025
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(a) ν = 30 (b) ν = 20 (c) ν = 10

(d) ν = 5 (e) ν = 1

Figure 11: Performance of different algorithms on synthetic data with different noise settings. Specifically, for
testing the large client number setting, in each round, 10 out of 200 clients are selected to participate in training.
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(b) Performance of algorithms on FEMNIST

Figure 12: Performance comparison of accuracy using different sampling algorithms.

Table 4: Performance of sampling algorithms integrated with momentum and prox. We run 500 communi-
cation rounds on CIFAR-10 for each algorithm. We report the mean of maximum 5 accuracies for test datasets
and the number of communication rounds to reach the threshold accuracy.

Algorithm Sampling + momentum Sampling + proximal

Acc (%) Rounds for 65% Acc (%) rounds for 65%

FedAvg (w/ uniform sampling) 0.6567 390 0.6596 283
FedIS 0.6571 252 0.661 266
DELTA 0.6604 283 0.6677 252

In Table 5, we demonstrate that DELTA and FedIS are compatible with other variance reduction1026

algorithms, like FedVARP [18].1027

It is worth noting that FedVARP utilizes the historic update to approximate the unparticipated clients’1028

updates. However, in this setting, the improvement of the sampling strategy on the results is somewhat1029

reduced. This is because the sampling strategy is slightly redundant when all users are involved.1030

Thus, when VARP and DELTA/FedIS are combined, instead of reassigning weights in the aggregation1031

step, we use (75) or (13) to select the current round update clients and then average aggregate the1032

updates of all clients. One can see that the combination of DELTA/FedIS and VARP can still show1033

the advantages of sampling.1034
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Figure 13: Ablation study of the number of sampled clients.

Table 5: Performance of DELTA/FedIS in combination with FedVARP. We run 500 communication rounds
on FashionMNIST with α = 0.1 for each algorithm. We report the mean of maximum 5 accuracies for test
datasets and the number of communication rounds to reach the threshold accuracy.

Algorithm FashionMNIST

Acc (%) Rounds for 73%

FedVARP 73.81 ± 0.18 470
FedIS + FedVARP 73.96 ± 0.14 452
DELTA +FedVARP 74.22± 0.14 436

Albation study for α. In Table 6, we experiment with different choices of heterogeneity α in the1035

CIFAR-10 dataset. The parameter of heterogeneity α changes from 0.1 to 0.5 to 1. We observe a1036

consistent improvement of DELTA compared to the other algorithms. This shows that DELTA is1037

robust to changes in the level of heterogeneity in the data distribution.1038

Table 6: Performance of algorithms under different α. We run 500 communication rounds on CIFAR10
for each algorithm (with momentum). We report the mean of maximum 5 accuracies for test datasets and the
number of communication rounds to reach the threshold accuracy.

Algorithm α = 0.1 α = 0.5 α = 1.0

Acc (%) Rounds for 42% Acc (%) rounds for 65% Acc (%) rounds for 71%

FedAvg (w/ uniform sampling) 0.4209 263 0.6567 283 0.7183 246
FedIS 0.427 305 0.6571 252 0.7218 239
DELTA 0.4311 209 0.6604 283 0.7248 221
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