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Roadmap of Appendix The Appendix is organized as follows. We list the notations table in
Section A. We provide theoretical proof of convergence in Section B. The algorithm of FedBN is
described in Section C. The details of experimental setting are in Section D and additional results
on benchmark datasets are in Section E. We show experiment on synthetic data in Section F. We
demonstrate the ability of generalizing FedBN to test on a new client in Section G.

A NOTATION TABLE

Notations Description
x features, x 2 Rd

d dimension of x
y labels, y 2 R

P (·) probability distribution
N total number of clients
T total number of epochs in training
E number of local iteration in FL
M number of training samples in each client
[N ] set of numbers, [N ] = {1, . . . , N}
i indicator for client, i 2 [N ]
j indicator for sample in each client, j 2 [M ]

(xi
j , y

i
j) the j-th training sample in client i

m number of neurons in the first layer
k indicator for neuron, k 2 [m]
vk parameters for the k-th neuron in the first layer
k v kS vector norm, k v kS,

p
v>Sv, given a matrix S

Si covariance matrix for features in client i, Si = Exixi>

p, q indicator for sample, p, q 2 [NM ]
f two layer ReLU neural network with BN
f

⇤ two layer ReLU neural network with BN with client-specified BN parameters
V parameters of the first phase neurons, V 2 Rm⇥d

� the scaling parameter of BN
c top layer parameters of the network

�(·) ReLU activation function, �(·) = max{·, 0}
N(µ,⌃) Gaussian with mean µ and covariance ⌃
U [�1, 1] Rademacher distribution

↵ variance of vk at initialization
L(f) empirical risk with square loss for network f

⇤(t) evolution dynamic for FedAvg at epoch t

V(t) evolution dynamic with respect to V for FedAvg at epoch t

G(t) evolution dynamic with respect to � for FedAvg at epoch t

⇤⇤(t) evolution dynamic for FedBN at epoch t

V⇤(t) evolution dynamic with respect to V for FedBN at epoch t

G⇤(t) evolution dynamic with respect to � for FedBN at epoch t

�min(A) the minimal eigenvalue of matrix A

G1 expectation of G(t)
G⇤1 expectation of G⇤(t)

Table 2: Notations occurred in the paper.
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B CONVERGENCE PROOF

B.1 EVOLUTION DYNAMICS

In this section, we calculate the evolution dynamics ⇤(t) for training with function f and ⇤⇤(t)
for training with f

⇤. Since the parameters are updated using gradient descent, the optimization
dynamics of parameters are
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The gradients of fp and L with respect to vk and �k are computed as
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We define Gram matrix V(t) and G(t) as
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It follows that
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Let f = (f1, . . . , fn)> = (f (x1) , . . . , f (xNM ))>. The full evolution dynamics are given by

df
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= �⇤(t)(f(t)� y), where ⇤(t) :=
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We compute the NTK for FedBN with f
⇤ analogously. We define the Gram matrix V⇤(t) and G⇤(t)
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The full evolution dynamics are then

df⇤

dt
= �⇤⇤(t)(f⇤(t)� y), where ⇤⇤(t) :=

V⇤(t)

↵2
+ G⇤(t).

B.2 PROOF OF LEMMA 4.3

Dukler et al. (2020) proved that the matrix G1 is strictly positive definite. In their proof, G1 is the
covariance matrix of the functionals �p define as

�p(v) := �
�
v>xp

�

over the Hilbert space V of L
2
�
N

�
0, ↵

2I
��

. G⇤1 is strictly positive definite by showing that
�1, · · · , �NM are linearly independent, which is equivalent to that

c1�1 + c2�2 + · · · + cNM�NM = 0 in V (10)

holds only for cp = 0 for all p.

Let G1
i be the i-th M ⇥ M block matrices on the diagonal of G1. Then G⇤1 =

diag(G1
1 , · · · ,G1

N ). To prove that G⇤1 is strictly positive definite, we will show that G1
i is

positive definite. Define

�
⇤
j,i(v) := �

�
v>xj

�
{j 2 site i}, j = 1, · · · , M.

Then, we are going to show that

c1�
⇤
1,i + c2�

⇤
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⇤
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holds only for cj = 0 for all j 2 [M ]. Suppose there exist c1, · · · , cM that are not identically 0,
satisfying (11). Let the coefficients for client i c be the same as c1, · · · , cM and let the coefficients for
other client be 0. Then, we have s sequence of coefficients satisfying (10), which is a contradiction
of that G1 is strictly positive definite. This implies G1

i is strictly positive definite, which means
the eigenvalues are positive. Since the eigenvalues of G⇤1 are exactly the eigenvalues of G1

i ,
�min(G⇤1) is positive and thus, G⇤1 is strictly positive definite.

B.3 PROOF OF COROLLARY 4.6

To compare the convergence rates of FedAvg and FedBN when E = 1, we compare the exponential
factor in the convergence rates, which are (1� ⌘µ0/2) and (1� ⌘µ

⇤
0/2) for FedAvg and FedBN,

respectively. Then, it reduces to comparing µ0 = �min(G1) and µ
⇤
0 = �min(G⇤1). Comparing

equation (7) and (9), G⇤1 takes the M ⇥M block matrices on the diagonal of G1:
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where G1
i is the i-th M ⇥M block matrices on the diagonal of G1. By linear algebra,

�min(G1
i ) � �min(G1), 8i 2 [N ].

Since the eigenvalues of G⇤1 are exactly the union of eigenvalues of G1
i , we have

�min(G⇤1) = min
i2[N ]

{�min(G1
i )},

� �min(G1).

Thus, (1� ⌘µ0/2) � (1� ⌘µ
⇤
0/2) and we can conclude that the convergence rate of FedBN is

faster than the convergence of FedAvg.
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C FEDBN ALGORITHM

We describe the details algorithm of our proposed FedBN as following Algorithm 1:

Algorithm 1 Federated Learning using FedBN
Notations: The user indexed by k, neural network layer indexed by l, initialized model param-

eters: w
(l)
0,k, local update pace: E, and total optimization round T .

1: for each round t = 1, 2, . . . , T do
2: for each user k and each layer l do
3: w

(l)
t+1,k  SGD(w(l)

t,k)
4: end for
5: if mod(t, E) = 0 then
6: for each user k and each layer l do
7: if layer l is not BatchNorm then
8: w

(l)
t+1,k  

1
K

PK
k=1 w

(l)
t+1,k

9: end if
10: end for
11: end if
12: end for
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D EXPERIMENTAL DETAILS

D.1 VISUALIZATION OF BENCHMARK DATASETS

MN
IST

MN
IST
_M

Syn
thD

igit
s

SVH
N

US
PS

(a) (b)

Figure 6: Data visualization. (a) Examples from each dataset (client). (b) Non-iid feature distribu-
tions across the datasets (over random 100 samples for each dataset).

D.2 MODEL ARCHITECTURE AND TRAINING DETAILS ON BENCHMARK

We illustrate our model architecture and training details of the digits classification experiments in
this section.

Model Architecture. For our benchmark experiment, we use a six-layer Convolutional Neural
Network (CNN) and its details are listed in Table 3.

Layer Details

1 Conv2D(3, 64, 5, 1, 2)
BN(64), ReLU, MaxPool2D(2, 2)

2 Conv2D(64, 64, 5, 1, 2)
BN(64), ReLU, MaxPool2D(2, 2)

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

4 FC(6272, 2048)
BN(2048), ReLU

5 FC(2048, 512)
BN(512), ReLU

6 FC(512, 10)

Table 3: Model architecture of the benchmark experiment. For convolutional layer (Conv2D), we
list parameters with sequence of input and output dimension, kernal size, stride and padding. For
max pooling layer (MaxPool2D), we list kernal and stride. For fully connected layer (FC), we list
input and output dimension. For BatchNormalization layer (BN), we list the channel dimension.

Training Details. We give detailed settings for the experiments conducted in 5.1: (1) convergence
rate (Table 4), (2) analysis of local update epochs (Table 5), (3) analysis of local dataset size (Table
6), (4) effects of statistical heterogeneity (Table 7) and (5) comparison with state-of-the-art (Table
8). Each table describes the number of clients, samples and the local update epochs.

During training process, we use SGD optimizer with learning rate 10�2 and cross-entropy loss,
we set batch size to 32 and training epochs to 300. For hyper-parameter µ, we use the best value
µ = 10�2 founded by grid search from the the default settings in FedProx Li et al. (2020b).
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Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1 1 1 1 1

Table 4: Settings for convergence rate. Each dataset has 1 client with 743 samples, local update
epoch is set to 1.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1,4,8,16 1,4,8,16 1,4,8,16 1,4,8,16 1,4,8,16

Table 5: Settings for local update epochs. Each dataset has 1 client with 743 samples, local update
epoch for all datasets is set to 1, 4, 8, 16 successively.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples ! ! ! ! !

Local update epochs 1 1 1 1 1

Table 6: Settings for local dataset size, we set local update epochs to 1 and each dataset has 1 client.
The number of samples ! 2 {74, 371, 743, 1487, 2975, 4462, 7438}.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
Number of samples [1, 10]⇥743 [1, 10]⇥743 [1, 10]⇥743 [1, 10]⇥743 [1, 10]⇥743
Local update epochs 1 1 1 1 1

Table 7: Settings for statistical heterogeneity, [1, 10] for the range from 1 to 10. We increase number
of clients step by step and number of samples will increase accordingly.

Datasets SVHN USPS SynthDigits MNIST-M MNIST

Number of clients 1 1 1 1 1
Number of samples 743 743 743 743 743
Local update epochs 1 1 1 1 1

Table 8: Settings for comparison with SOTA, we use 1 client with 743 samples and 1 local update
epoch for comparison experiment.
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D.3 MODEL ARCHITECTURE AND TRANING DETAILS OF IMAGE CLASSIFICATION TASK ON
OFFICE-CALTECH10 AND DOMAINNET

In this section, we provide the details of our model and training process on both Office-Caltech10
Gong et al. (2012) and DomainNet Peng et al. (2019) dataset.

Model Architecture. For the image classification tasks on these two real-worlds datasets Office-
Caltech10 and DomainNet data, we use adapted AlexNet added with BN layer after each convolu-
tional layer and fully-connected layer (except the last layer), architecture is shown in Table 9.

Layer Details

1 Conv2D(3, 64, 11, 4, 2)
BN(64), ReLU, MaxPool2D(3, 2)

2 Conv2D(64, 192, 5, 1, 2)
BN(192), ReLU, MaxPool2D(3, 2)

3 Conv2D(64, 128, 5, 1, 2)
BN(128), ReLU

3 Conv2D(192, 384, 3, 1, 1)
BN(384), ReLU

4 Conv2D(384, 256, 3, 1, 1)
BN(256), ReLU

5 Conv2D(256, 256, 3, 1, 1)
BN(256), ReLU, MaxPoll2D(3, 2)

6 AdaptiveAvgPool2D(6, 6)

7 FC(9216, 4096)
BN(4096), ReLU

8 FC(4096, 4096)
BN(4096), ReLU

9 FC(4096, 10)

Table 9: Model architecture for Office-Caltech10 and DomainNet experiment. For convolutional
layer (Conv2D), we list parameters with sequence of input and output dimension, kernal size, stride
and padding. For max pooling layer (MaxPool2D), we list kernal and stride. For fully connected
layer (FC), we list input and output dimension. For BatchNormalization layer (BN), we list the
channel dimension.

Training Details. Office-Caltech10 selects 10 common objects in Office-31 Saenko et al. (2010)
and Caltech-256 datasets Griffin et al. (2007). There are four different data sources, one from
Caltech-256 and three from Office-31, namely Amazon(images collected from online shopping web-
site), DSLR and Webcam(images captured in office environment using Digital SLR camera and web
camera).

We first reshape input images in the two dataset into 256⇥256⇥3, then for training process, we use
cross-entropy loss and SGD optimizer with learning rate of 10�2, batch size is set to 32 and training
epochs is 300. When comparing with FedProx, we set µ to 10�2 which is tuned from the default
settings. The data sample number are kept into the same size according to the smallest dataset,
i.e. Office-Caltech10 uses 62 training samples and DomainNet uses 105 training samples on each
dataset. In addition, for simplicity, we choose top-10 class based on data amount from DomainNet
containing images over 345 categories.
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D.4 ABIDE DATASET AND TRAINING DETAILS

Here we describe the real-world medical datasets, the preprocessing and training details.

Dataset: The study was carried out using resting-state fMRI (rs-fMRI) data from the Autism
Brain Imaging Data Exchange dataset (ABIDE I preprocessed, (Di Martino et al., 2014)). ABIDE
is a consortium that provides preciously collected rs-fMRI ASD and matched controls data for the
purpose of data sharing in the scientific community. We downloaded Regions of Interests (ROIs)
fMRI series of the top four largest sites (UM, NYU, USM, UCLA viewed as clients) from the
preprocessed ABIDE dataset with Configurable Pipeline for the Analysis of Connectomes (CPAC)
and parcellated by Harvard-Oxford (HO) atlas. Skipping subjects lacking filename, resulting in 88,
167, 52, 63 subjects for UM, NYU, USM, UCLA separately. Due to a lack of sufficient data, we
used sliding windows (with window size 32 and stride 1) to truncate raw time sequences of fMRI.
The compositions of four sites were shown in Table 10. The number of overlapping truncate is the
dataset size in a client.

NYU UM1 USM UCLA1
Total Subject 167 88 52 63
ASD Subject 73 43 33 37
HC Subject 94 45 19 26
ASD Percentage 44% 49% 63% 59%
fMRI Frames 176 296 236 116
Overlapping Trunc 145 265 205 85

Table 10: Data summary of the dataset used in our study.

Training Process : For all the strategies, we set batch size as 100. The total training local epoch
is 50 with learning rate 10�2 with SGD optimizer. Local update epoch for each client is E = 1. We
selected the best parameters µ = 0.2 in FedProx through grid search.
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E MORE EXPERIMENTAL RESULTS ON BENCHMARK DATASETS

E.1 CONVERGENCE COMPARISON OVER FEDAVG AND FEDBN

In this section we conduct an additional convergence analysis experiment over different local update
epochs settings: E = 1, 4, 8, 16. As shown in Fig. 7, FedBN converges faster than FedAvg under
different values of E, which is supportive to our theoretical analysis in section 4 and experimental
results in section 5.

Figure 7: Training loss over epochs with different local update frequency.

E.2 DETAILED STATISTICS OF FIGURE 5

Methods SVHN USPS Synth MNIST-M MNIST
Single 65.82 (0.76) 95.44 (0.20) 80.69 (0.52) 77.99 (0.45) 94.46 (0.14)
FedAvg 70.59 (0.51) 96.91 (0.11) 86.66 (0.21) 82.44 (0.41) 97.38 (0.05)
FedProx 71.55 (0.75) 96.98 (0.19) 86.60 (0.18) 82.67 (0.75) 97.30 (0.17)
FedBN 76.93 (0.25) 97.69 (0.10) 87.46 (0.20) 83.57 (0.38) 97.55 (0.11)

Table 11: The detailed statistics reported with format mean (std) of accuracy presented on Fig. 5 .
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E.3 COMPARE FEDBN WITH CENTRALIZED TRAINING

To better understand the significance of the numbers reported in our main context, we compare
FedBN with centralized training, that pools all training data in to a center. We present the testing
accuracy on each digit dataset in Table 12. FedBN, federated learning with data-specific BN layers,
even performs better than vanilla centralized training strategy.

SVHN USPS SynthDigits MNIST-M MNIST
Centralized 74.18 (0.44) 96.46 (0.30) 84.57 (0.38) 79.65 (0.24) 96.53 (0.19)
FedBN 76.93 (0.25) 97.69 (0.10) 87.46 (0.20) 83.57 (0.38) 97.55 (0.11)

Table 12: Testing accuracy on each testing sets with format mean(std) from 5-trial run.

E.4 DIFFERENT COMBINATIONS OF E AND B

In this section, we show different combinations of local update epochs E and batch size B. Specif-
ically, E 2 {1, 4, 16} and B 2 {10, 50,1}, 1 denotes full batch learning. Following the setting
in original FedAvg paper McMahan et al. (2017), we present the comparisons between FedBN and
FedAvg on each combination of E and B in Table 13. The results are in good agreement that FedBN
can consistently outperform FedAvg and robust to batch size selection. Further, we depicts the test
sets accuracy vs. communication epochs under different combination of E and B in Figure 8. In
conformity with the observation in McMahan et al. (2017), increasing local update frequency by
decreasing E can produce a striking decrease on the communication round to meet a given accuracy
target (e.g., the gray line in Figure 8). B does not have a clear trend of affecting communication cost
in Figure 8, but smaller B achieved better final accuracy as shown in Table 13.

Setting SVHN USPS SynthDigits MNIST-M MNIST

B=10, E=1 FedAvg 72.26 97.20 88.57 81.66 97.46
FedBN 78.23 97.74 89.64 86.82 97.78

B=10, E=4 FedAvg 75.18 97.47 89.37 84.88 97.47
FedBN 78.69 97.96 90.19 87.68 97.89

B=10, E=16 FedAvg 73.87 96.77 88.43 83.53 97.22
FedBN 79.35 98.12 90.34 87.00 97.70

B=50, E=1 FedAvg 69.11 96.40 85.01 80.26 96.96
FedBN 75.89 97.69 86.30 82.26 97.34

B=50, E=4 FedAvg 71.34 96.67 85.81 80.91 97.05
FedBN 76.13 97.69 86.25 82.64 97.09

B=50, E=16 FedAvg 70.86 96.45 85.67 81.16 97.09
FedBN 76.43 97.26 86.11 82.05 97.03

B=1, E=1 FedAvg 68.73 96.77 84.70 79.30 96.71
FedBN 73.30 97.96 85.00 81.39 97.41

B=1, E=4 FedAvg 71.87 97.10 85.38 80.27 96.91
FedBN 76.02 97.58 85.40 82.49 97.17

B=1, E=16 FedAvg 71.56 96.77 84.24 79.99 96.56
FedBN 74.83 97.04 83.76 81.44 97.25

Table 13: Test sets accuracy using different combinations of batch size B and local update epoch E

on benchmark experiment with the default non-iid setting.
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Figure 8: Test set accuracy curve (average of 5 datasets) vs. communication round of using different
local updating epochs E and batch size B for FedBN.

E.5 DETAILED STATISTICS OF VARYING LOCAL DATASET SIZE EXPERIMENT

Considering putting all results in one figure (15 lines) might affect readability of the figure, we
excluded the statistics of FedAvg in our Fig. 4 (b), the ablation study of our method on the effect of
local dataset size. Here, we list the full results in Table 14. It is not too surprising that at Singleset
can be the best when the a local client gets a lot of data.

Setting 100% 60% 40% 20% 10% 5% 1%

MNIST
SingleSet 98.09 97.89 97.45 96.24 94.35 90.86 75.28
FedAvg 98.82 98.65 98.19 97.18 95.99 94.01 79.49
FedBN 98.93 98.57 98.35 97.76 96.73 95.24 84.19

SVHN
SingleSet 86.76 84.62 82.75 76.42 68.54 53.85 12.06
FedAvg 82.68 80.00 78.33 72.79 64.06 48.47 21.95
FedBN 87.31 85.05 83.55 78.43 72.10 58.88 28.30

USPS
SingleSet 98.87 98.49 97.85 96.94 95.11 93.01 80.11
FedAvg 98.39 98.17 97.85 97.04 95.38 94.30 81.02
FedBN 99.30 98.98 98.55 98.33 97.47 96.24 85.00

Synth
SingleSet 94.33 92.82 91.02 87.50 80.47 70.61 14.10
FedAvg 94.07 92.27 90.97 86.95 82.44 72.51 37.22
FedBN 94.91 93.16 91.58 88.47 83.29 74.81 40.39

MNISTM
SingleSet 92.41 91.63 89.41 84.34 77.59 66.02 17.46
FedAvg 90.04 88.74 86.20 83.11 76.11 67.74 40.69
FedBN 91.66 89.75 88.00 83.84 79.20 70.93 44.82

Table 14: Model performance over varying dataset sizes on local clients

E.6 TRAINING ON UNEQUAL DATASET SIZE

In our benchmark experiment (Section 5.1), we truncate the sample size of the five datasets to their
smallest number. This data preprocessing intends to strictly control non-related factors (e.g., imbal-
anced sample numbers across clients), so that the experimental findings can more clearly reflect the
effect of local BN. In this regard, truncating datasets is a reasonable way to make each client have
an equal number of data points and local update steps. It is also possible to keep the data sets in their
original size (which is unequal), by allowing clients with less data to repeat sampling. In this way,
all clients use the same batch size and same local iterations of each epoch. We add results of such a
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setting with 10% and full original datasize in Table 15 and Table 16 respectively. It is observed that
FedBN still consistently outperforms other methods.

Method SVHN USPS SynthDigits MNIST-M MNIST
7943 743 39116 5600 5600

FedAvg 87.00 98.01 97.55 88.69 98.75
FedProx 86.75 97.90 97.53 88.86 98.86
FedBN 89.34 98.28 97.83 90.34 98.89

Table 15: Testing accuracy of each clients when clients’ training samples are unequal using 10% of
original data. The number of training samples for each client are denoted under their names.

Method SVHN USPS SynthDigits MNIST-M MNIST
79430 7430 391160 56000 56000

FedAvg 99.59 92.27 98.71 99.30 95.27
FedProx 99.50 92.12 98.66 99.27 95.44
FedBN 99.62 94.34 98.92 99.54 96.72

Table 16: Testing accuracy of each clients when clients’ training samples are unequal using full size
data. The number of training samples for each client are denoted under their names.
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F SYNTHETIC DATA EXPERIMENT

Settings We generate data from two-pair of multi-Gaussian distributions. For one pair, samples
(x, 0) and (x, 1) are sampled from N (�1, ⌃1) and N (1, ⌃1) respectively, with coveriance ⌃1 2
R10⇥10. For another pair, samples (ex, 0) and (ex, 1) are sampled from N (�1, ⌃2) and N (1, ⌃2)
respectively, with coveriance ⌃2 2 R10⇥10. Specifically, we design convariance matrix ⌃1 as an
identity diagonal matrix and ⌃2 is different from ⌃1 by having non-zero values on off-diagonal
entries. We train a two-layer neural network with 100 hidden neurons for 600 steps using cross-
entropy loss and SGD optimizer with 1⇥10�5 learning rate. Denote Wk and bk are the in-connection
weigths and bias term of neuron k. We initialize the model parameters with Wk ⇠ N (0, ↵

2I), bk ⇠
N (0, ↵

2), where ↵ = 10.

Results. The aim of synthetic experiments is to study the behavior of using FedBN with a controlled
setup. We achieve 100% accuracy on binary classification for FedAvg and FedBN. Fig. 9 shows
comparison of training loss curve over steps using FedAvg and FedBN, presenting that FedBN
obtains significantly faster convergence than FedAvg.

 

MNISTSVHN USPS SynthDigits MNIST-M

(a) client 1 (b) client 2

Figure 9: Training loss on synthetic data. Data in client 1 is generated from Diagonal Gaussian,
client 2 is generated from combination of Diagonal Gaussian and Full Gaussian.

25



Published as a conference paper at ICLR 2021

G TRANSFER LEARNING AND TESTING ON UNKNOWN DOMAIN CLIENT

In this section, we discuss out-of-domain generalization of FedBN and prove the solutions for the
following two scenarios: 1) transferring FedBN to a new unknown domain clients during training;
2) testing a unknown domain client.

If a new center from another domain joins training, we can transfer the non-BN layer parameters
of the global model to this new center. This new center will compute its own mean and variance
statistics, and learn the corresponding local BN parameters.

Morpho-global Morpho-local
FedBN 92.45 94.61
FedProx 92.35 94.31
FedAvg 91.28 93.55

Table 17: Generalizing the global model to unseen-domain clients.

Testing the global model on a new client with unknown statistics outside federation requires allow-
ing access to local BN parameters at testing time (though BN layers are not aggregated at the global
server during training). In this way, the new client can use the averaged trainable BN parameters
learned at existing FL clients, and compute the (mean, variance) on its own data. Such a solution
is also in line with what was done in recent literature, e.g., SiloBN (Andreux et al., 2020). We
conduct the experiment with this solution for FedBN and compared its performance with FedAvg
and FedProx. Specifically, we use the digits classification task and treat the two unseen datasets –
Morpho-global and Morpho-local from Morpho-MNIST (Castro et al., 2019) as the two new clients.
The new clients contain substantially perturbed digits. Specifically, Morpho-global containing thin-
ning and thickening versions of MNIST digits, while Morpho-local changes MNIST by swelling
and fractures. The results are listed in Table 17. It is observed that the obtained results from three
methods are generally comparable in such a challenging setting, with FedBN presenting slightly
higher performance on overall average accuracy.
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