
A Appendix

A.1 Dataset Statistics

We conduct experiments on four benchmark graph datasets, including Cora, Pubmed, Coauthor-
Physics and Ogbn-arxiv. They are widely used to study the over-smoothing issue and test the
performance of deep GNNs. We use the public train/validation/test split in Cora and Pubmed,
and randomly split Coauthor-Physics by following the previous practice. Their data statistics are
summarized in Table 3.

Table 3: Data statistics.
Datasets # Nodes # Edges # Classes# Features# Train/Validation/Test nodes Setting

Cora 2,708 5,429 7 1,433 140/500/1,000 Transductive (one graph)
Pubmed 19,717 44,338 3 500 60/500/1,000 Transductive (one graph)

Coauthor-Physics 34,493 247,962 5 8,415 100/150/34,243 Transductive (one graph)
Ogbn-arxiv 169,3431,166,243 40 128 90,941/29,799/48,603 Transductive (one graph)

A.2 Baselines

To validate the effectiveness of the Dirichlet energy constrained learning principle and our EGNN on
the node classification problem, we consider baseline GCN and other state-of-the-art deep GNNs
based upon GCN. They are summarized as follows:

• GCN [15]. It is mathematically defined in Eq. (1), which learns the node embeddind by simply
propagating messages over the normalized adjacency matrix.

• PairNorm [23]. Based upon GCN, PairNorm is applied between the successive graph convolutional
layers to normalize node embeddings and to alleviate the over-smoothing issue.

• DropEdge [29]. It randomly removes a certain number of edges from the input graph at each
training epoch, which reduces the convergence speed of over-smoothing.

• SGC [45]. It simplies the vanilla GCN by removing all the hidden weights and activation functions,
which could avoid the over-fitting issue in GCN.

• Jumping knowledge network (JKNet) [27]. Based upon GCN, all the hidden node embeddings
are combined at the last layer to adapt the effective neighborhood size for each node. Herein we
apply max-pooling to combine the the series of node embeddings from the hidden layers.

• Approximate personalized propagation of neural predictions (APPNP) [50]. It applies per-
sonalized PageRank to improve the message propagation scheme in vanilla GCN. Furthermore,
APPNP simplifies model by removing the hidden weight and activation function and preserving a
small fraction of initial embedding at each layer.

• Graph convolutional network via initial residual and identity mapping (GCNII) [28]. It is an
extension of the vanilla GCN model with two simple techniques at each layer: an initial connection
to the input feature and an identity mapping added to the trainable weight.

A.3 Implementation Details

For each experiment, we train with a maximum of 1500 epochs using the Adam optimizer and early
stopping. Following the previous common settings in the considered benchmarks, we list the key
training hyperparameters for each of them in Table 4. All the experiment results are reported by the
averages of 10 independent runs.

A.4 Lower Limit Setting

We carefully choose the lower limit hyperparameter cmin from range [0.1, 0.75] for each dataset
based on the classification performance and Dirichlet energy on the validation set. Note that we have
the residual connection strengths α and β which satisfy constraint: α+ β = cmin. Specially, we use
cmin of 0.2 (layer number K < 32) and 0.15 (K ≥ 32) in Cora, where α, β = 0.1 in all the layer
cases. We use cmin of 0.12 (K < 32) and 0.11 (K ≥ 32) in Pubmed, where β = cmin and α = 0.
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Table 4: The training hyperparameter settings in benchmarks.
Dataset Dropout rate Weight decay (L2) Learning rate # Training epoch

Cora 0.6 5 · 10−4 5 · 10−3 1500
Pubmed 0.5 5 · 10−4 1 · 10−2 1500

Coauthor-Physics 0.6 5 · 10−5 5 · 10−3 1500
Ogbn-arxiv 0.1 0 3 · 10−3 1000

We apply cmin of 0.12 in Coauthor-Physics, where β = 0.1 and α = 0.02. We apply cmin and β of
0.6 and 0.1 when K < 32, respectively; we make use of cmin and β of 0.75 and 0.25 if K ≥ 32,
respectively. In these two cases, the residual connection strength α to the last layer is 0.5.

A.5 Proof for Lemma 1

Lemma 1. The Dirichlet energy at the k-th layer is bounded as follows:

(1− λ1)2s
(k)
minE(X(k−1)) ≤ E(X(k)) ≤ (1− λ0)2s(k)maxE(X(k−1)).

Proof. By ignoring the activation function, we obtain the upper bound as below.

E(X(k)) = E(P̃X(k−1)W (k))
= tr((P̃X(k−1)W (k))>∆̃(P̃X(k−1)W (k)))
= tr((P̃X(k−1))>∆̃(P̃X(k−1))W (k)(W (k))>)
≤ tr((P̃X(k−1))>∆̃(P̃X(k−1)))σmax(W (k)(W (k))>)

= tr((P̃X(k−1))>∆̃(P̃X(k−1)))s
(k)
max

= tr([(In − ∆̃)X(k−1)]>∆̃[(In − ∆̃)X(k−1)])s
(k)
max

= tr((X(k−1))>∆̃(In − ∆̃)2X(k−1))s
(k)
max

≤ (1− λ0)2tr((X(k−1))>∆̃X(k−1))s
(k)
max

= (1− λ0)2s
(k)
maxE(X(k−1)).

σmax(·) denotes the maximum eigenvalue of a matrix, and P̃ = In − ∆̃. Since tr(X>∆̃X) ≥
0, where X ∈ Rn×d is a feature matrix, we can obtain the inequality relationship:
tr(X>∆̃XW (k)(W (k))>) ≤ tr(X>∆̃X)σmax(W (k)(W (k))>). In a similar way, we can also get
the upper bound of (1− λ0)2s

(k)
maxE(X(k−1)).

Similarly, we derive the lower bound as below.

E(X(k)) = E(P̃X(k−1)W (k))
= tr((P̃X(k−1)W (k))>∆̃(P̃X(k−1)W (k)))
≥ tr((P̃X(k−1))>∆̃(P̃X(k−1)))σmin(W (k)(W (k))>)

= tr((P̃X(k−1))>∆̃(P̃X(k−1)))s
(k)
min

= tr((X(k−1))>∆̃(In − ∆̃)2X(k−1))s
(k)
min

≥ (1− λ1)2tr((X(k−1))>∆̃X(k−1))s
(k)
min

= (1− λ1)2s
(k)
minE(X(k−1)).

A.6 Derivation of Proposition 2

All the trainable weights at the graph convolutional layers of EGNN are initialized as the orthogonal
diagonal matrices. At the first layer, the upper bound of Dirichlet energy is given by s(1)maxE(X(0)).
Given constraint s(1)maxE(X(0)) = cmaxE(X(0)), we can obtain W (1) =

√
cmax · Id. The square

singular values are then restricted as: s(1)min = s
(1)
max = cmax. For layer k > 1, we further relax

the upper bound as: s(k)maxE(X(k−1)) ≤
∏k
j=1 s

(j)
maxE(X(0)). Note that s(1)max = cmax at the first

layer. Given constraint
∏k
j=1 s

(j)
maxE(X(0)) = cmaxE(X(0)), we can obtain weight W (k) = Id. The

square singular values are restricted as: s(k)min = s
(k)
max = 1, and

∏k
j=1 s

(j)
max = cmax.
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A.7 Proof for Lemma 3

Lemma 3. Based on the above orthogonal initialization, at the starting point of training, the
Dirichlet energy of EGNN satisfies the upper limit at each layer k: E(X(k)) ≤ cmaxE(X(0)).

Proof. According to Lemma 2, the Dirichlet energy at layer k is limited as:

E(X(k)) ≤ s(k)maxE(X(k−1))

≤
∏k
j=1 s

(j)
maxE(X(0))

= cmaxE(X(0)).

A.8 Proof for Lemma 4

Lemma 4. Suppose that cmax ≥ cmin/(2cmin − 1)2. Based upon the orthogonal controlling and
residual connection, the Dirichlet energy of initialized EGNN is larger than the lower limit at each
layer k, i.e., E(X(k)) ≥ cminE(X(k−1)).

Proof. To obtain the Dirichlet energy relationship between E(X(k)) and E(X(k−1)), we first
expand node embedding X(k) as the series summation in terms of the initial node embedding X(0).
We then re-express the graph convolution at layer k, which is simplified to depend only on node
embedding X(k−1). As a result, we can easily derive Lemma 4. The detailed proofs are provided in
the following.

According to Eq. (8), by ignoring the activation function σ, we obtain the residual graph convolution
at layer k as:

X(k) = [(1− cmin)P̃X(k−1) + αX(k−1) + βX(0)]W (k).
= [(1− cmin)P̃ + αIn]X(k−1)W (k) + βX(0)W (k),

where In is an identity matrix with dimension n, and α+β = cmin. We defineQ , (1−cmin)P̃+αIn,
and then simply the above graph convolution as:

X(k) = QX(k−1)W (k) + βX(0)W (k). (10)

To facilitate the proof, we further expand the above graph convolution as the series summation in
terms of the initial node embedding X(0) as:

X(k) = QkX(0)
k∏
j=1

W (j) + β

k−1∑
i=0

(QiX(0)
k∏

j=k−i

W (j)),

where the weight matrix product is defined as:
∏k
j=1W

(j) , W (1)W (2) · · ·W (k), and Q0 , In.
Notably, in our EGNN, the trainable weight W (1) at the first layer is orthogonally initialized as
diagonal matrix of

√
cmax ·Id, whileW (j) at layer j > 1 is initialized as identity matrix Id. Therefore,

the series expansion of X(k) could be simplified as:

X(k) = (
√
cmaxQ

k + β
√
cmaxQ

k−1 + β
∑k−2
i=0 Q

i)X(0)

, Z(k)X(0).

Z(1) ,
√
cmaxQ+ β

√
cmaxIn at the case k = 1. Note that Z(k) is invertible if all the eigenvalues of

matrix Q are not equal to zero, which could be achieved by selecting an appropriate α depending on
the downstream task. Let Z̃(k) = [Z(k)]−1. We then represent the initial node embedding X(0) as:
X(0) = Z̃(k)X(k). Similarly, X(0) = Z̃(k−1)X(k−1) at layer k − 1. Therefore, we can re-express
the graph convolution at layer k in Eq. (10) as:

X(k) = (Q+ βZ̃(k−1))X(k−1)W (k)

According to Lemma 1, the lower bound of Dirichlet energy at layer k is given by:

E(X(k)) ≥ λ2min(Q+ βZ̃(k−1))s
(k)
minE(X(k−1)).
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λ2min(·) denotes the minimum square eigenvalue of a matrix. To get the minimum square eigenvalue,
we represent the eigenvalue decomposition of matrix Q as: Q = V ΛV −1, where V ∈ Rn×n is
the eigenvector matrix and Λ ∈ Rn×n is the diagonal eigenvalue matrix. We then decompose
(Q+ βZ̃(k−1)) as:

Q+ βZ̃(k−1) = Q+ β(
√
cmaxQ

k−1 + β
√
cmaxQ

k−2 + β
∑k−3
i=0 Q

i)−1

= V ΛV −1 + βV (
√
cmaxΛk−1 + β

√
cmaxΛk−2 + β

∑k−3
i=0 Λi)−1V −1.

Let λQ denote the eigenvalue of matrix Q. Recalling Q , (1 − cmin)P̃ + αIn and P̃ , In − ∆̃.
Since the eigenvalues of P̃ are within (−1, 1], we have−(1−cmin)+α < λQ ≤ (1−cmin)+α < 1.
To ensure that Q is invertible, we could apply a larger value of α to have −(1− cmin) + α > 0. The
square eigenvalue of matrix (Q+ βZ̃(k−1)) is:

λ2(Q+ βZ̃(k−1)) = (λQ + β(
√
cmaxλ

k−1
Q + β

√
cmaxλ

k−2
Q + β

1− λk−2Q

1− λQ
)−1)2

It could be easily validated that ∂ log(λ2(Q+βZ̃(k−1)))
∂k ≥ 0. That means the square eigenvalue increases

with the layer k. Considering the extreme case of k →∞, we obtain λ2(Q+ βZ̃(k−1))→ 1. Since
s
(k)
min = 1 at layer k > 1, we thus obtain E(X(k)) ≥ E(X(k−1)) ≥ cminE(X(k−1)) when k →∞.

In practice, since λ2(Q+ βZ̃(k−1)) approximates to one with the increasing of layer k, the Dirichlet
energy will be maintained as a constant at the higher layers of EGNN, which is empirically validated
in Figure 1.

The minimum square eigenvalue is achieved when k = 1, i.e., λ2min(Q+ βZ̃(0)), where Z̃(0) = In
and λQ is close to −(1− cmin) + α. In this case, we obtain λ2min(Q+ βZ̃(0)) = (2cmin − 1)2. At
layer k = 1, we have s(1)min = cmax. Since E(X(1)) ≥ λ2min(Q+ βZ̃(0))cmaxE(X(0)), to make sure
E(X(1)) ≥ cminE(X(0)) at the first layer, we only need to satisfy the following condition:

λ2min(Q+ βZ̃(0))cmax ≥ cmin

⇒ cmax ≥ cmin/(2cmin − 1)2.

Note that the square eigenvalue is increasing with k, and s(k)min = 1 ≥ cmax for layer k > 1. At the
higher layer k > 1, we have λ2min(Q+βZ̃(k−1))s

(k)
min ≥ λ2min(Q+βZ̃(0))cmax. Therefore, once the

condition of cmax ≥ cmin/(2cmin − 1)2 is satisfied, we can obtain λ2min(Q+ βZ̃(k−1))s
(k)
min ≥ cmin

and E(X(k)) ≥ cminE(X(k−1)) for all the layers k in EGNN.

A.9 Proof for Lemma 5

Lemma 5. Suppose that
√
cmax ≥ β

(1−cmin)λ0+β
. Being augmented with the orthogonal controlling

and residual connection, the Dirichlet energy of initialized EGNN is smaller than the upper limit at
each layer k, i.e., E(X(k)) ≤ cmaxE(X(0)).

Proof. According to the proof of Lemma 4, we have X(k) = Z(k)X(0). Based on Lemma 1, the
upper bound of Dirichlet energy at layer k is given by:

E(X(k)) ≤ λ2max(Z(k))E(X(0)),

where λ2max(·) is the maximum square eigenvalue of a matrix. According to the definition of Z(k)

and the eigenvalue decomposition of Q in the proof of Lemma 4, we decompose Z(k) as:

Z(k) = (
√
cmaxQ

k + β
√
cmaxQ

k−1 + β
∑k−2
i=0 Q

i)

= V (
√
cmaxΛk + β

√
cmaxΛk−1 + β

∑k−2
i=0 Λi)V −1.

Therefore, the square eigenvalue of Z(k) is given by:

λ2(Z(k)) = (
√
cmaxλ

k
Q + β

√
cmaxλ

k−1
Q + β

1− λk−1Q

1− λQ
)2,
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Table 5: The mean node classification accuracies and standard deviations in percentage on Cora and
Pubmed with various depths: 2, 16, 64. The highest accuracy at each column is in bold.

Datasets Cora Pubmed
Layer Num 2 16 64 2 16 64

GCN 82.52±0.45 22.02±6.24 21.86±8.04 79.66±0.29 37.94±0.53 38.42±1.01
PairNorm 74.46±3.13 44.23±7.26 14.22±1.93 73.84±0.90 68.59±7.30 60.03±10.23
DropEdge 82.73±0.60 23.64±7.61 25.18±9.20 79.55±0.50 45.92±7.14 39.97±1.14

SGC 75.68±0.04 72.10±0.00 24.10±0.00 76.05±0.05 70.20±0.00 38.19±0.03
JKNet 80.84±0.66 74.54±3.72 70.01±7.66 77.15±0.68 69.98±6.26 66.16±8.35

APPNP 82.94±0.56 79.38±0.62 79.49±0.66 79.33±0.48 77.07±0.66 76.83±0.90
GCNII 82.42±0.45 84.55±0.43 85.44±0.58 77.49±1.91 79.83±0.56 79.94±0.33
EGNN 83.18±0.24 85.36±0.35 85.71±0.55 79.17±0.34 79.99±0.36 80.10±0.26

where λQ denotes the eigenvalue of matrix Q. Recalling Q , (1− cmin)P̃ + αIn and P̃ , In − ∆̃.
The maximum square eigenvalue λ2max(Z(k)) is achieved when λQ takes the largest value, i.e.,
λQ = θ0 = (1− cmin)(1− λ0) + α, where λ0 is the non-zero eigenvalue of matrix ∆̃ that is most

close to value 0. Therefore, we have λ2max(Z(k)) = cmax(θk0 +βθk−10 +
β(1−θk−1

0 )√
cmax(1−θ0) )

2. To ensure that

E(X(k)) ≤ cmaxE(X(0)) for all the layers, we have to satisfy the condition of λ2max(Z(k)) ≤ cmax.
Since θ0 > 0, we simplify this condition in the followings:

λ2max(Z(k)) ≤ cmax

⇒ θk0 + βθk−10 +
β(1−θk−1

0 )√
cmax(1−θ0) ≤ 1

⇒ β(1−θk−1
0 )

(1−θk0−βθ
k−1
0 )(1−θ0)

≤ √cmax

⇒ β(1−θk−1
0 )

(1−θk−1
0 (β+θ0))(1−θ0)

≤ √cmax

⇒ β(1−θk−1
0 )

(1−θk−1
0 (1−(1−cmin)λ0))(1−θ0)

≤ √cmax

Note that 0 < (1 − (1 − cmin)λ0) < 1 and 1 − θk−10 < 1 − θk−10 (1 − (1 − cmin)λ0). The above
condition can be satisfied if β

1−θ0 ≤
√
cmax. Note that 1 − θ0 = (1 − cmin)λ0 + β. Therefore,

if
√
cmax ≥ β

(1−cmin)λ0+β
, we obtain E(X(k)) ≤ cmaxE(X(0)) for all the layers in EGNN. Such

condition can be easily satisfied by adopting cmax = 1.

A.10 Proof for Lemma 6

Lemma 6. We have E(σ(X(k))) ≤ E(X(k)) if activation function σ is ReLU or Leaky-ReLU [33].

Proof. Herein we directly adopt the proof from [33] to support the self-containing in this paper. Let
c1, c2 ∈ R+, and let a, b ∈ R. We have the following relationships:

|c1a− c2b| ≥ |σ(c1a)− σ(c2b)|
= |c1σ(a)− c2σ(b)|.

The first inequality holds for activation function σ whose Lipschitz constant is smaller than 1,
including ReLU and Leaky-ReLU. The second equality holds because σ(cx) = cσ(x), ∀c ∈ R+ and

x ∈ R. Recalling the Dirichlet energy definition in Eq. (2): E(X(k)) = 1
2

∑
aij ||

x
(k)
i√
1+di

− x
(k)
j√
1+dj
||22.

By extending to the vector space and replacing c1, c2, a, and b with 1√
1+di

, 1√
1+dj

, x(k)i , and x(k)j ,

respectively, we can obtain E(σ(X(k))) ≤ E(X(k)).

A.11 Node Classification Results

Comparing with the baseline approaches of deep GNNs, we list their mean accuracies and standard
deviations in Table 5 and 6.
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Table 6: The mean node classification accuracies and standard deviations in percentage on Coauthors-
Physics and Ogbn-arxiv with various depths: 2, 16, 32. The highest accuracy at each column is in
bold.

Datasets Coauthors-Physics Ogbn-arxiv
Layer Num 2 16 32 2 16 32

GCN 92.36±0.14 13.55±2.88 13.13±2.80 70.42±0.21 70.64±0.25 68.51±0.96
PairNorm 86.32±1.06 84.02±3.34 83.56±5.08 67.56±0.14 70.37±0.15 69.63±0.21
DropEdge 92.46±0.14 85.10±3.02 35.23±17.5 70.49±0.23 70.41±0.55 67.14±1.78

SGC 92.19±0.00 91.74±0.00 84.80±0.01 69.19±0.04 64.01±0.05 59.46±0.07
JKNet 92.71±0.19 92.15±0.49 91.65±1.35 70.62±0.11 71.85±0.15 71.44±0.35

APPNP 92.33±0.15 92.65±0.46 92.63±0.42 68.26±0.78 65.47±0.23 60.71±0.16
GCNII 92.49±0.36 92.87±0.23 92.94±0.15 70.09±0.27 71.46±0.16 70.52±0.30
EGNN 92.59±0.09 93.10±0.16 93.31±0.12 68.41±0.25 72.74±0.23 72.74±0.35

A.12 Hyperparameter Analysis

To further understand the hyperparameter impacts on EGNN and answer research question Q4,
we conduct more experiments and show in Figures 3, 4 and 5 for Pubmed, Coauthor-Physics and
Ogbn-arxiv, respectively.

Similar to the hyperparameter study on Cora, we observe that our method is consistently not sensitive
to the choices of b, γ, cmin and cmax within wide value ranges for all the datasets. The appropriate
ranges of b, γ, cmin and cmax are (−∞, 0], [1,∞], [0.1, 0.75] and [0.2, 1], respectively. Specially, in
the large graph of Ogbn-arxiv, our model could even has a large initialization range for b. Given these
wide hyperparameter ranges, EGNN could be easily constructed and trained with deep layers.
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Figure 3: The impacts of hyperparameters b, γ, cmin and cmax on 64-layer EGNN trained in Pubmed.
Y-axis is test accuracy in percent.
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Figure 4: The impacts of hyperparameters b, γ, cmin and cmax on 32-layer EGNN trained in Coauthor-
Physics. Y-axis is test accuracy in percent.
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Figure 5: The impacts of hyperparameters b, γ, cmin and cmax on 32-layer EGNN trained in Ogbn-
arxiv. Y-axis is test accuracy in percent.
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