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A RELATED WORKS

A.1 IMITATION LEARNING AND MULTI-AGENT IMITATION LEARNING

Imitation learning (IL) recovers expert policies from demonstrations without requiring reward func-
tion information. IL methods fall into two main categories: Behavior Cloning (BC) and Inverse
Reinforcement Learning (IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004). BC aims to mimic the
expert by maximizing state-action pair likelihoods in demonstrations. However, BC often faces co-
variate shift issues due to not considering policy distribution in the environment (Ross & Bagnell,
2010; Ross et al., 2011). In contrast, IRL first recovers a reward function, and then optimizes the
policy using reinforcement learning, not supervised learning like BC. Recent methods, based on ad-
versarial frameworks, excel in data efficiency compared to traditional IRL approaches (Ho & Ermon,
2016; Finn et al., 2016; Fu et al., 2017).

In multi-agent scenarios, Le et al. (2017) develop a latent coordination model for players in coop-
erative games with distinct roles. However, many multi-agent scenarios involve agents who need
cooperation or specific roles (e.g., self-driving). Bhattacharyya et al. (2018) extend generative ad-
versarial imitation learning for multi-agent problems using parameter sharing but do not model agent
interactions. Interaction Network (Battaglia et al., 2016) simulates physical object relations with bi-
nary links, while CommNet (Sukhbaatar et al., 2016) learns dynamic agent communication but does
not explicitly characterize agent action dependencies. Some researchers propose using graph tech-
niques or attention mechanisms to infer multi-agent relationships. For instance, Kipf et al. (2018)
use graph neural networks (GNN) to infer agent relationship types. Hoshen (2017) introduce atten-
tion mechanisms into multi-agent predictive modeling.

Additionally, Li et al. (2020) combine generative models and attention mechanisms to capture the
behavior generation process of multi-agent systems. These works address agent relationship reason-
ing rather than explicitly capturing agent action dependencies. Most existing works primarily focus
on agent behavior prediction but offer limited insights into agent behavior interdependence.

A.2 DISTRIBUTION MATCHING IN MULTI-AGENT IMITATION LEARNING

Ho & Ermon (2016) originally introduced the concept of adversarial distribution matching as a
methodology for executing imitation learning within the single-agent framework (the GAIL algo-
rithm). Building upon this foundation, Song et al. (2018) extended the applicability of GAIL to
the multi-agent environment, albeit with specific nuanced adaptations. Their analytical framework
posits independent imitation learning as an endeavor to seek a Nash equilibrium, assuming a unique
equilibrium point. In pursuing this line of inquiry, MAGAIL harnesses recent advancements in
single-agent GAIL convergence theory, as elucidated by Guan et al. (2021), to elucidate the pro-
cess of convergence towards the joint expert policy. Furthermore, Wang et al. (2021) undertake a
comprehensive exploration of Multi-Agent Reinforcement Learning (MARL) by employing cop-
ula functions to explicitly capture the interdependence between the marginal policies of individual
agents in the context of multi-agent imitation learning. Additionally, a pair of complementary stud-
ies by Durugkar et al. (2020) and Radke et al. (2022) establish the efficacy of balancing individual
preferences, such as aligning with the state-action visitation distribution of specific strategies, in
conjunction with the shared task reward. These approaches can accelerate progress on the shared
task. Wang et al. (2023) view multi-agent imitation learning as a decentralized distribution match-
ing problem and combine the distribution matching reward with the task reward. In contrast to the
aforementioned body of research, the primary objective of the present paper diverges from the con-
ventional study of imitation learning. Instead, we focus enhancing cooperative task performance
through distribution matching techniques that model inter-agent dependencies.

B PROOFS OF THE THEORETICAL RESULTS

B.1 PROOF OF LEMMA 2

Lemma 2. (Multi-agent Advantage Decomposition (Kuba et al., 2021)). Let i1:N be a permuta-
tion of N agents. For any state s ∈ S and joint actions a = a1:N ∈ A, the following equation
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holds for any subset of N agents and any permutation of their labels: Ak+1:N
πθ

(s,a1:k,ak+1:N ) =∑N
j=k+1A

j
πθ
(s,a1:j−1, aj), where k = 0, . . . , N − 1.

Proof. By the definition of the multi-agent advantage, we have:

Ak+1,...,N
πθ

(s,a1:k,ak+1:N )

=Q1:k,k+1:N
πθ

(s,a1:k,k+1:N )−Q1:k
πθ

(s,a1:k) (7)

which can be written as a telescoping sum:

Q1:k,k+1:N
πθ

(s,a1:k,k+1:N )−Q1:k
πθ

(s,a1:k)

=

N∑
j=k+1

[
Q1:j

πθ
(s,a1:j)−Q1:j−1

πθ
(s,a1:j−1)

]
=

N∑
j=k+1

Aj
πθ
(s,a1:j−1, aj) (8)

So the Multi-agent Advantage Decomposition lemma is proved. ■

B.2 PROOFS OF THEOREMS 1 AND 3

Theorem 1. Let Rcdr
ω be the cumulative discounted individual reward given by the discriminator

parameterized by w, and let Vϕ be the joint value function parameterized by ϕ. Let Dπ denote the
total data collected by π. Then increasing the joint advantage variance

∑N
k=1 Var[A

k
πθ
(s, ak)] of

multi-agent policy gradients is equivalent to solving a bi-level joint value loss optimization problem
that is related to the joint reward function and the joint value function:

max
w

N∑
k=1

Es,ak∈Dπk [Rcdr
ω (s, ak)− Vϕ∗(s)]2, (9)

s. t. ϕ∗(s) = min
ϕ

N∑
k=1

Es,ak∈Dπk [R
cdr
ω (s, ak)− Vϕ(s)]

2,

where Rcdr
ω (s, ak) = −

∑T
t=l γ

t−l(log σ(1 − Dω(st, a
k
t ))) denotes the individual reward function

for the agent ik, and σ be activation function (generally Sigmoid).

Proof. To prove it, we need to establish the connection between the sum of individual value loss∑N
k=1 Es,ak∈Dπk [Rcdr

ω (s, ak)−Vϕ∗(s)]2 and the individual advantage function Ak
πθ
(s, ak). Let Dπ

t

denote the data collected starting at time step t. Following (Zhang et al., 2022), we have:

N∑
k=1

Es,ak∈Dπk [Rcdr
ω (s, ak)− Vϕ(s)]

2

=N E
s,ak∈Dπk

(Vπ(s)− Vϕ(s))
2 +

∞∑
t=0

γ2t
|Dπ

t |
|Dπ|

N∑
k=1

Var
s,ak∈Dπk

t

[Ak
πθ
(s, ak)]. (10)
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Then we look for ϕ∗ to minimize the loss of joint value. Ideally, ϕ∗ would keep the difference
between Vπ(s) and Vϕ∗(s) at a small level, then we have:

min
ϕ

N∑
k=1

Es,ak∈Dπk [Rcdr
ω (s, ak)− Vϕ(s)]

2

=min
ϕ

N∑
k=1

Es,ak∈Dπk [Rcdr
ω (s, ak)− Vϕ∗(s)]2

=N E
s,ak∈Dπk

(Vπ(s)− Vϕ(s))
2 +

∞∑
t=0

γ2t
|Dπ

t |
|Dπ|

N∑
k=1

Var
s,a∈Dπk

t

[Ak
πθ
(s, ak)]

≈
∞∑
t=0

γ2t
|Dπ

t |
|Dπ|

N∑
k=1

Var
s,a∈Dπk

t

[Ak
πθ
(s, ak)]. (11)

Then in order to increase the joint advantage variance, we should add the maximization operator on
both sides of the equation:

max
w

N∑
k=1

Es,ak∈Dπk [Rcdr
ω (s, ak)− Vϕ∗(s)]2

≈max
w

∞∑
t=0

γ2t
|Dπ

t |
|Dπ|

N∑
k=1

Var
s,ak∈Dπk

t

[Ak
πθ
(s, ak)]. (12)

So the original proposition that increasing the joint advantage variance is equivalent to solving a
bi-level joint value loss optimization problem is proved. ■

Theorem 3. Let Ak
πθ
(s,a−k, ak) be the advantage function of agent ik with global dependency-

enhanced discriminator, and let Aπθ
(s,a) be the joint advantage function of all agents in inde-

pendent framework, global dependency-enhanced discriminator framework has a more significant
advantage variance compared to the independent framework:

N∑
k=1

Var
s,a−k∈Dπ−k

t

s,ak∈Dπk

t

[Ak
πθ
(s,a−k, ak)] ≥

N∑
k=1

Var
s,ak∈Dπ

t

[Ak
πθ
(s, ak)] (13)

Proof. According to Lemma. (2), we take an arbitrary k, cause E
s,ak∈Dπk

t

[
Ak

πθ
(s, ak)

]
= 0, then

following (Kuba et al., 2021) we have:

Var
s,ak∈Dπ

t

[Ak
πθ
(s, ak)] = E

s,ak∈Dπk
t

[
Ak

πθ
(s, ak)2

]
= E

s,ak∈Dπk
t

[
E

s,a−k∈Dπ−k
t

[
A1:N

πθ
(s,a1:N )

]2]

≤ E
s,ak∈Dπk

t

[
E

s,a−k∈Dπ−k
t

[
A1:N

πθ
(s,a1:N )2

]]

= E
s,a−k∈Dπ−k

t

[
E

s,ak∈Dπk
t

[
A1:N

πθ
(s,a1:N )2

]]
(14)
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The above can be equivalently, but more tellingly, rewritten after permuting (cyclic shift) the labels
of agents, in the following way

E
s,a−k∈Dπ−k

t

[
E

s,ak∈Dπk
t

[
A1:N

πθ
(s,a1:N )2

]]

= E
s,a−k∈Dπ−k

t

[
E

s,ak∈Dπk
t

[
A1:k−1,k+1:N,k

πθ
(s,a1:k−1,k+1:N,k)2

]]

= E
s,a−k∈Dπ−k

t

[
Var

s,ak∈Dπk
t

[
A1:k−1,k+1:N,k

πθ
(s,a1:k−1,k+1:N,k)

]]
, (15)

which, by the Lemma. 2, equals

E
s,a−k∈Dπ−k

t

[
Var

s,ak∈Dπk
t

[
Ak

πθ
(s,a−k, ak)

]]
. (16)

The equation above can be further simplified by

E
s,a−k∈Dπ−k

t

[
Var

s,ak∈Dπk
t

[
Ak

πθ
(s,a−k, ak)

]]

= E
s,a−k∈Dπ−k

t

[
E

s,ak∈Dπk
t

[
Ak

πθ
(s,a−k, ak)2

]]
= E

s,a∈Dπ
t

[
Ak

πθ
(s,a−k, ak)2

]
= Var

s,a∈Dπ
t

[
Ak

πθ
(s,a−k, ak)2

]
.

Then we have
Var

s,a−k∈Dπ−k

t

s,ak∈Dπk

t

[Ak
πθ
(s,a−k, ak)] ≥ Var

s,ak∈Dπ
t

[Ak
πθ
(s, ak)], (17)

and We sum both sides of the Eq. (17) from k = 1 to N , we have∑N
k=1 Var

s,a−k∈Dπ−k

t

s,ak∈Dπk

t

[Ak
πθ
(s,a−k, ak)] ≥

∑N
k=1 Var

s,ak∈Dπ
t

[Ak
πθ
(s, ak)]. The proof is finished. ■

C METHODOLOGY DETAILS

C.1 DETAILS OF REGULARIZATION FOR LIPSCHITZ CONTINUITY CONDITION

Lipschitz continuity is essential when employing the Wasserstein loss in various GAN settings (Ar-
jovsky et al., 2017; Xiao et al., 2019). However, recent research (Kim et al., 2021) has demon-
strated that the Lipschitz constant of the standard dot product self-attention layer can be un-
bounded, thereby violating the Lipschitz continuity condition in transformer-based discriminators.
We employ two regularization techniques to ensure the Lipschitz continuity condition of our de-
signed discriminator (Lee et al., 2022). Firstly, we adopt L2 attention regularization as proposed
in (Kim et al., 2021). It replaces dot product similarity with Euclidean distance and establishes
a linkage between the weights of the projection matrices used for querying and self-attention as
Attentionh(X) = Softmax(d(XW1,XWk)√

dh
)XWv , where Wq = Wk, Wq , Wk, and Wv are the

projection matrices for query, key, and value, respectively. d(·, ·) computes vectorized L2 distances
between two sets of points.

√
dh is the feature dimension for each head. Secondly, we incorpo-

rate Spectral Normalization (SN) during discriminator training to further bolster Lipschitz conti-
nuity (Miyato et al., 2018). Given that Transformer blocks are sensitive to the Lipschitz constant,
and a low Lipschitz constant for MLP blocks can cause the Transformer’s output to collapse into a
rank-1 matrix (Dong et al., 2021; Lee et al., 2022), we suggest augmenting the spectral norm of the
projection matrices to address this concern. Specifically, inspired by (Lee et al., 2022), we multiply
the normalized weight matrices of each layer by the spectral norm during initialization and update
them according to the following rule for spectral normalization, wherein the standard spectral norm
of the weight matrices is computed as W̄SN (W) := σ(Winit) ·W/σ(W).

17



Under review as a conference paper at ICLR 2024

Algorithm 1: Multi-agent Imitation Learning via Global Dependency-enhanced Distribution Match-
ing (MILD2)
Input: Initial parameters of policies θ0, discriminator ω0, and value estimator ϕ0; expert trajectories
D = {(s, ak)}Nk=1; batch size B; Markov game as a black box (N,S, {Ai}Ni=1, T , {Ri}Ni=1, γ).
Output: Learned policies πθ and reward functions Dω .

1: for u = 0, 1, 2, . . . do
2: Obtain trajectories of size B from π by the process: s0 ∼ S,at ∼ πθu(at|st), st+1 ∼

T (st|at).
3: Sample state-action pairs from D with batch size B.
4: Denote state-action pairs from π and D as Dπ and DE .
5: Update ω to minimize the objective Eq. (6).
6: for k = 1, . . . , N do
7: Compute value estimate V k and advantage estimate Ak for (s,a1:k) ∈ Sπ .
8: Update ϕk to decrease the objective Eq. (18).
9: Update θk by policy gradient with small step sizes as Eq. (19).

10: end for
11: end for
12: return policy model πθ and reward model Dω .

C.2 DETAILS OF SEQUENTIAL AUTOREGRESSIVE MODELING GENERATOR

Similar to the designed sequential autoregressive discriminator, we also need to consider the prob-
lem of modeling complex dependencies among multiple intelligent agents for the generator (policy
model). Agents commonly collaborate in various multi-agent cooperative tasks to accomplish a
shared objective. Consequently, the efficacy of an agent’s actions can be influenced by the actions
of teammates, as well as have an impact on their behavior. Neglecting the actions of other agents
can result in suboptimal value assessment and hinder effective collaboration. Diverging from ex-
isting mechanisms that match individual policies in multi-agent imitation learning, our objective is
to construct a generator that incorporates multi-agent interactions to facilitate joint policy matching
among intelligent agents. To this end, we propose employing the MAT (Wen et al., 2022) model
as the generator, which adeptly models sequences of actions performed by multiple agents in an
autoregressive fashion, thereby generating a joint policy distribution for the intelligent agents.

Hence, the generator also adopts “encoder-decoder” architecture, consisting of an encoder that learns
representations of the joint observations, and a decoder that outputs actions for each agent in an au-
toregressive manner. The encoder of the generator exhibits a similar architecture to that of the
discriminator, with the distinction that it lacks any regularization mechanisms and includes an addi-
tional MLP layer for estimating the individual state values. During the training phase, our objective
is to approximate the value function using the encoder and minimize the empirical Bellman error,
which can be achieved through the equation:

LV (ϕ) =
1

Tn

N∑
k=1

T−1∑
t=0

[
rkt (st,a

−k
t , akt ) + γVϕ̄(ô

k
t+1)− Vϕ(ô

k
t )
]2
, (18)

where ϕ̄ is the target network’s parameter, which is non-differentiable and updated every few
epochs (Wen et al., 2022). In contrast, the decoder of the generator captures the dependencies
among the actions of multiple intelligent agents by employing a masked self-attention mechanism.
It further incorporates a cross-attention layer to merge the encoder’s hidden state representation with
the intelligent agents’ action representation. The first input to the decoder is a symbol denoting the
initiation of the decoding process, enabling the generation of the individual action for the first agent.
Subsequently, the decoder sequentially produces the complete joint action of the multiple intelligent
agents in an autoregressive manner. Following (Wen et al., 2022), to train the decoder, we minimize
the following clipping PPO objective of

Lπ(θ) =
1

Tn

N∑
k=1

T−1∑
t=0

min(rkt (θ)Â
m
t , clip(r

k
t (θ), 1± ϵ)Âk

t ), (19)
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(a) HalfCheetah (b) CatchOver2Underarm (c) DoorOpenInward (d) DoorCloseOutward (e) DoorCloseInward

Figure 6: Demonstrations of the Bi-DexHands and the HalfCheetah environments.

(a) 3 vs 1 with Keeper (b) Easy Counter-attack (c) Pass and Shoot

Figure 7: Demonstrations of the Google Football environments.

where rkt (θ) =
πk
θ (a

k
t |st,â

1:k−1
t )

πk
θold

(ak
t |st,â

1:k−1
t )

, and Âk
t (st,a

1:k−1
t ) = rkt (st,a

−k
t , akt ) + γNVϕ(st+1,at+1) −

Vϕ(st,at) is an estimate of the individual advantage function.

The proposed framework’s training pipeline follows classical adversarial generative imitation learn-
ing (Song et al., 2018; Wang et al., 2023), i.e., alternate training for the generator and discriminator
according to Eq. (19), Eq. (18), and Eq. (6). We include the MILD2algorithm as Alg. (1).

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL SETUP

Benchmark datasets. We evaluated MILD2 using four benchmarks: StarCraftII Multi-Agent
Challenge (SMAC) benchmark (Samvelyan et al., 2019), Google Research Football bench-
mark (Football) (Kurach et al., 2020), Bimanual Dexterous Hands Manipulation benchmark (Bi-
DexHands) (Chen et al., 2022), and Multi-agent MuJoCo benchmark (Ma-Mujoco) (de Witt et al.,
2020). We constructed several multi-agent offline datasets on these benchmarks by collecting 10,000
(for tasks in Bi-DexHands) and 100,000 (for tasks in others) transitions of expert policy from
HAPPO (Kuba et al., 2022).

• SMAC. We constructed an offline dataset using data from the game “StarCraft II” on four maps
with discrete action space, each with varying difficulty settings. All maps employ an identical
reward function, and the dataset for each map comprises 100,000 transitions.

• Football. This benchmark encompasses a series of discrete control tasks in a football game that
require cooperation. Our approach was evaluated using data consisting of an average of 100,000
transitions.

• Bi-DexHands. This benchmark offers a set of challenging bimanual manipulation tasks: continu-
ous control tasks involving the control of two 24-DoF robotic hands to mimic human behavior. We
constructed an offline dataset for three tasks and evaluated our method using 10,000 transitions.

• Ma-Mujoco. This benchmark comprises a collection of continuous control tasks in machine
learning. In each Ma-MuJoCo environment, each agent controls a specific part of a shared robot
(e.g., a leg of a Hopper), and all agents aim to maximize a shared reward function. Our method
was evaluated using 100,000 transitions.

We adopt the open-source implementations for these Benchmarks. Fig. (6) and Fig. (7) illustrate
tasks from these benchmarks. The HalfCheetah 6×1 task is shown in Fig. (6a) while Fig. (6b-e)
illustrate the CatchOver2Underarm, DoorOpenInward, DoorCloseOutward and DoorCloseInward
environments from the Bi-DexHands benchmark. Fig. (7a-c) illustrate the 3 vs 1 with Keeper, Easy
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Table 2: Specs of tested tasks (maps) in the SMAC benchmark.

Name Agents Enemies Type
3m 3 Marines 3 Marines homogeneous & symmetric
3s5z 3 Stalkers and 5 Zealots 3 Stalkers and 5 Zealots heterogeneous & asymmetric
6h vs 8z 6 Hydralisks 8 Zealots micro-trick: focus fire
MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines heterogeneous & asymmetric
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Figure 8: The learning curve comparisons on several complex and challenging tasks from SMAC, Football, and
Bi-DexHands benchmarks. MILD2 and MAGAIL use environmental steps as the horizontal axis, and other
non-GAIL methods use gradient steps.

Counter-attack, and Pass and Shoot environments from the Football benchmark. Tested maps in the
StarCraft II micromanagement benchmark are summarized in Tab. (2).

Baselines. We compare our method against five classical multi-agent offline RL methods, including
MAGAIL (Song et al., 2018), the multi-agent version of CQL (CQL-MA) (Kumar et al., 2020), ICQ-
MA (Yang et al., 2021), TD3-BC (Fujimoto & Gu, 2021), and OMAR (Pan et al., 2022). Following
most baseline methods, each algorithm runs with five seeds, where the performance is evaluated 20
times every 50 episodes.

Implementation Details. All baseline methods were implemented consistently with their official
repositories, maintaining their hyper-parameters at their original best-performing settings. In our ap-
proach, we employed a 1-block Transformer-based discriminator and a 1-block Transformer-based
generator for all tasks. Following MAT (Wen et al., 2022), the feature dimension for all Transformer
blocks and MLP layers was set to 64. The learning rates for the actors and critics were set to 5e-4,
5e-4, 5e-5, and 5e-5 for the SMAC, Football, Bi-DexHands, and Ma-Mujoco benchmarks, respec-
tively. The training of our models was conducted on a single NVIDIA Tesla V100 GPU. The batch
size and update epoch for updating the generator and discriminator once were set to 128 and 5.

D.2 ABLATION STUDIES

Analysis on different distribution matching settings. We comprehensively analyzed three variants
of the MILD2 model to evaluate the effects of incorporating global dependencies on the discrim-
inator and generator components. As shown in Tab. (3), a substantial deterioration in the model’s
performance was observed when the global dependencies were eliminated from the discriminator
(i.e., independent modeling of individual reward distributions). Likewise, a significant decline in
performance was observed when the global dependencies were removed from the generator (i.e.,
independently modeling individual policy distributions). These empirical findings emphasize the
indispensability of introducing global dependencies and establishing joint reward and policy distri-
butions within the model.

Analysis on different model architectures. We also compare the implementation of different
model architectures to verify the necessity of different architecture components. We conducted
this ablation study on both homogeneous and heterogeneous scenarios, as depicted in Tab. (4). The
complete Transformer architecture achieved the best performance, highlighting the advantages of
the Transformer and the necessity of the encoder-decoder framework.
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Table 3: Performance comparison across different distribution matching settings to evaluate the effect of intro-
ducing global dependencies on the discriminator and generator, where MILD2 is the original implementation;
Ind. Disc involves an independent discriminator (reward function) without global dependencies; Ind. Gen
utilizes independent generator (individual policies) without global dependencies; Ind. D & G combines both
independent discriminator and independent generator. The winning rates are shown in brackets.

Tasks MILD2 MILD2 MILD2 MILD2

(Ind. Disc) (Ind. Gen) (Ind. D & G)

3m
20.00±0.00 19.91±0.06 18.88±0.06 19.97±0.05
(1.00±0.00) (0.99±0.01) (0.99±0.01) (0.99±0.01)

3s5z 20.00±0.02 19.80±0.08 19.89±0.08 19.92±0.02
(1.00±0.00) (0.95±0.02) (0.97±0.02) (0.94±0.02)

6h vs 8z 19.78±0.07 19.54±0.14 17.10±0.24 16.82±0.29
(0.96±0.01) (0.88±0.02) (0.49±0.05) (0.47±0.02)

MMM2
20.52±0.09 5.39±0.07 20.21±0.15 5.01±0.03
(0.86±0.03) (0.00±0.00) (0.85±0.12) (0.00±0.00)

Table 4: Performance comparison for different discriminator and generator architectures to explore the effect
of each component, where MILD2 is the original implementation; MILD2-dec is implemented with the
encoder only, without the autoregressive process; MILD2-enc is implemented with the decoder only, keeping
the auto-regressive process.

Tasks MILD2 MILD2-Dec MILD2-Enc

3s5z
20.00±0.02 19.81±0.08 19.93±0.03
(1.00±0.00) (0.95±0.02) (0.98±0.00)

6h vs 8z 19.78±0.07 16.22±0.21 19.57±0.16
(0.96±0.01) (0.39±0.03) (0.92±0.02)

MMM2 20.52±0.09 4.87±0.03 18.29±0.35
(0.86±0.03) (0.00±0.00) (0.64±0.03)

DoorOpenInward 395.98±0.39 382.31±0.05 386.23±0.78

D.3 ROBUSTNESS STUDIES

D.3.1 NOISY DATA REGIME

In this section, we endeavor to substantiate our hypothesis, positing that the sequential autoregres-
sive policy and reward models exhibit enhanced robustness. This heightened robustness stems from
the model’s action evaluation and decision-making processes contingent upon global correlations
rather than solely relying on localized information. Even in scenarios where datasets encompass a
degree of noisy transitions, the model continues to demonstrate commendable performance. This
capability to harness global correlations proves particularly advantageous in settings characterized
by non-Markovian dynamics, such as cooperative tasks, wherein the decisions made by other agents
wield influence over future outcomes. To empirically investigate the validity of our hypothesis, we
created a “mixed” dataset through the amalgamation of medium datasets (exploring with medium-
score policies), deliberately introduced as sources of noise, with an expert dataset. This amalga-
mation comprises datasets featuring varying noise ratios. Subsequently, we subjected the proposed
sequential autoregressive framework MILD2, along with the baseline models MAGAIL and ICQ-
MA, to a battery of tests under diverse noise ratios, as illustrated in Fig. (9). The results consistently
demonstrated that MILD2 outperformed MAGAIL and ICQ-MA across all experimental configu-
rations. Notably, the performance of both MAGAIL and ICQ-MA exhibited conspicuous suscep-
tibility to variations in the noise ratio, showing a precipitous decline as the noise ratio increased
from 0% to 50%. In contrast, MILD2 performed well even when the noise ratio reached 50%. For
instance, in the 6h vs 8z scenario, MILD2 maintained a win rate of approximately 90%, even in
the presence of a 50% noise ratio. Conversely, in the 3s vs 5z scenario, MAGAIL and ICQ-MA
displayed vulnerability to noise, even at lower noise ratios such as 5%.

D.3.2 SMALL DATA REGIME

This section aims to investigate the advantages of capturing global dependencies for in-sample gen-
eralization using MILD2. Precisely, we assess its robustness compared to baseline models when
dealing with limited dataset size or reduced dataset diversity in specific states, common challenges
in imitation learning with real-world data. To conduct this investigation, we curated custom datasets
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Figure 9: Performance comparison of various methods in noisy data regimes. In the leftmost environment (from
the Bi-DexHands benchmark), cumulative rewards are employed as the performance evaluation metric, whereas
in the remaining environments (from SMAC and Football benchmark), win rates serve as the performance
evaluation metric.

Table 5: The average accumulated trajectory rewards (win rates) and standard deviation of MILD2, MAGAIL,
and ICQ-MA in small data regimes.

Benchamarks Bi-Dexhands SMAC Football

Tasks DoorCloseOutward 3s5z 6h vs 8z counterattack

Method ratio acc. rewards acc. rewards win. rate acc. rewards win. rate acc. rewards win. rate

MILD2

1% 1015.92±0.13 9.09±0.19 (0.00±0.00) 4.13±0.08 (0.00±0.00) 4.70±0.19 (0.90±0.04)
5% 1015.84±0.11 18.87±0.21 (0.79±0.03) 19.00±0.11 (0.74±0.03) 4.75±0.19 (0.91±0.08)

10% 1014.93±0.12 19.76±0.10 (0.94±0.01) 19.55±0.16 (0.93±0.03) 4.83±0.10 (0.93±0.02)
20% 1015.74±0.12 19.85±0.09 (0.96±0.02) 19.77±0.16 (0.96±0.03) 4.89±0.12 (0.94±0.03)
40% 1016.06±0.13 19.94±0.04 (0.98±0.01) 19.74±0.13 (0.96±0.02) 4.85±0.09 (0.93±0.02)

MAGAIL

1% 370.72±0.37 14.33±0.34 (0.29±0.04) 9.45±0.21 (0.00±0.00) 4.44±0.06 (0.85±0.01)
5% 445.81±0.28 19.47±0.17 (0.89±0.03) 12.24±0.37 (0.11±0.03) 4.50±0.13 (0.85±0.03)

10% 463.75±0.20 19.68±0.13 (0.89±0.03) 13.42±0.27 (0.17±0.04) 4.58±0.18 (0.87±0.04)
20% 480.00±0.23 19.82±0.11 (0.96±0.03) 14.82±0.42 (0.32±0.04) 4.58±0.25 (0.88±0.06)
40% 491.36±0.16 19.84±0.08 (0.96±0.02) 15.69±0.55 (0.35±0.08) 4.64±0.06 (0.89±0.01)

ICQ-MA

1% 149.74±0.21 13.25±0.45 (0.02±0.00) 8.09±0.22 (0.00±0.00) 0.98±0.19 (0.14±0.08)
5% 189.97±0.12 15.03±0.62 (0.17±0.09) 9.42±0.21 (0.00±0.00) 1.57±0.49 (0.26±0.09)

10% 202.61±0.09 16.24±0.69 (0.35±0.11) 9.37±0.30 (0.00±0.00) 1.78±0.59 (0.29±0.12)
20% 216.46±0.14 17.50±0.52 (0.49±0.09) 9.38±0.38 (0.00±0.00) 2.02±0.55 (0.36±0.18)
40% 177.30±0.12 18.29±0.60 (0.63±0.12) 9.88±0.44 (0.01±0.02) 1.15±0.28 (0.20±0.05)

by excluding specific transitions in datasets like DoorCloseOutward, 3s5z, 6h vs 8z, and counterat-
tack. The exclusion criteria are based on the proximity to the target location, simulating scenarios
where data near the task goal is constrained due to the stochastic nature of data generation poli-
cies (Xu et al., 2023). We introduced a retention ratio parameter governing dataset composition
to simulate demonstration data at different scales. We compared the performance of MILD2 to
two other models, MAGAIL and ICQ-MA, by measuring average accumulated trajectory rewards
(win rate) during evaluation and training standard deviation, as shown in Tab. (5). MAGAIL and
ICQ-MA experience a significant drop in performance as the retention ratio decreases. In more
challenging tasks, the standard deviation increases exponentially, indicating a substantial growth in
generalization error with limited data. In contrast, MILD2 consistently demonstrates stable and
commendable performance across various retention ratios. Additionally, MILD2 has a notably
more minor standard deviation than MAGAIL and ICQ-MA. This compelling evidence highlights
the advantage of capturing global dependencies, enabling better use of dataset samples to mitigate
incorrect value estimations and improve overall performance.

D.4 ANALYSIS OF COOPERATION SCALE

As shown in Tab. (1), MILD2 performs better in tasks with large cooperation scales due to its abil-
ity to model global interdependencies among agents and increased variance of advantage actions.
For example, in the case of SMAC, agents’ scalability is demonstrated across four tasks: 3m, 3s5z,
6h vs 8z, and MMM2, with scalability factors of 3, 8, 8, and 12, respectively. MILD2 signif-
icantly outperforms baseline methods like MAGAIL, with an 81.27% improvement, especially in
the expansive cooperative setting of MMM2. However, in smaller-scale environments like 3m, the
improvement is only 0.15%.
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Table 6: Hyperparameters used for the discriminator (reward model) in four benchmarks.

Benchmarks Hyper-Parameter Default Configuration
optimizer Adam
scheduler StepLR

hidden size 64
batch size 128

Common learning rate 5e-6
parameters disc epoch 5

disc warmup epoch 100
disc warmup steps 10

layers num 1
heads num 1

Bi-DexHands
max grad norm 0.5
distance metric Wasserstein distance
attention type Dot-product attention

SMAC
max grad norm 10.0
distance metric KL divergence
attention type L2 attention

Football
max grad norm 0.5
distance metric KL divergence
attention type L2 attention

Ma-MuJoCo
max grad norm 0.5
distance metric Wasserstein distance
attention type Dot-product attention

Table 7: Common hyperparameters used for the generator (policy model) in the SMAC benchmark.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
critic lr 5e-4 actor lr 5e-4 use gae TRUE

gain 0.01 optim eps 1e-5 batch size 3200
training threads 16 num mini-batch 1 rollout threads 32

entropy coef 0.01 max grad norm 10 episode length 100
optimizer Adam hidden layer dim 64 use huber loss TRUE

These findings highlight that larger cooperative environments exhibit complex agent dependency
structures. MILD2’s ability to capture and represent these global dependencies is crucial for ac-
curately modeling cooperative relationships and allocating credit among agents. It helps reduce
distribution matching errors caused by the non-stationarity of environmental dynamics.

E HYPERPARAMETERS

During experiments, the implementations of baseline methods are consistent with their official
repositories, and all hyper-parameters left unchanged at the origin best-performing status. The hy-
perparameters adopted for the discriminator are listed in Tab. (6), and those adopted for the generator
are listed in Tab. (7-11).
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Table 8: Different hyperparameters used for the generator (policy model) in the SMAC benchmark.

Tasks ppo epochs ppo clip num blocks num heads stacked frames steps γ

3m 15 0.2 1 1 1 5e5 0.99
3s5z 10 0.05 1 1 1 3e6 0.99

6h vs 8z 15 0.05 1 1 1 1e7 0.99
MMM2 5 0.05 1 1 1 1e7 0.99

Table 9: Hyperparameters used for the generator (policy model) in the Bi-Dexhands benchmark.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
cirtic lr 5e-5 actor lr 5e-5 hidden dim 64
gamma 0.96 steps 5e7 stacked frames 1

gain 0.01 optim eps 1e-5 ppo epochs 5
ppo clip 0.2 num mini-batch 1 rollout threads 80

batch size 6000 episode length 75 optimizer Adam
entropy coef 0.001 max grad norm 0.5 training threads 16

Table 10: Hyperparameters used for the generator (policy model) in the Football benchmark.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
cirtic lr 5e-4 actor lr 5e-4 gamma 0.99
ppo clip 5e-2 num head/block 1 ppo epochs 10

gain 0.01 optim eps 1e-5 batch size 4000
training threads 16 num mini-batch 1 rollout threads 20

entropy coef 0.001 max grad norm 0.5 episode length 200
optimizer Adam hidden layer dim 64 stacked frames 1

Table 11: Hyperparameters used for the generator (policy model) in the Ma-Mujoco benchmark.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
cirtic lr 5e-5 actor lr 5e-5 ppo epochs 10
ppo clip 5e-2 num block 1 num head 1
gamma 0.99 steps 1e7 stacked frames 1

gain 0.01 optim eps 1e-5 batch size 4000
training threads 16 num mini-batch 40 rollout threads 40

entropy coef 0.001 max grad norm 0.5 episode length 100
optimizer Adam hidden layer dim 64 use huber loss TRUE
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