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Abstract: In this supplementary document, we provide additional implementation1

details, including network architecture and training protocol, as well as additional2

analysis, including ablative studies, results on CARLA, and additional qualitative3

examples. Qualitative results can also be seen in our supplementary video.4

1 Implementation Details5

This section first provides details regarding our proposed network architecture and discuss differ-6

ences with baseline models (Sec. 1.1). Next, we provide details regarding the processing of the7

driving datasets to construct the multi-city benchmark used throughout the analysis (Sec. 1.2). Fi-8

nally, we discuss evaluation settings (Sec. 1.3) and training protocol (Sec. 1.4).9

1.1 Architecture and Baselines10

We leverage an ImageNet-pretrained ResNet-34 [1] as our backbone ϕ. All images are resized to11

400 × 225 prior to being inputted to the model. To leverage diverse camera viewpoints, we build12

on prior models in conditional imitation learning [2, 3] and train a direct image-to-BEV prediction13

model, i.e., without assuming a fixed known BEV perspective transform. Moreover, we also find14

the removal intermediate image-level heatmaps [2, 3] (and directly regressing the BEV waypoints)15

to improve model performance. Fig. 1 compares our proposed network architecture for image-16

to-BEV planning to a standard baseline architecture (e.g., [3, 2]). Prior image-based models may17

utilize deconvolutional layers to obtain an image-aligned heatmap and followed by a soft-argmax18

(‘SA’ in Fig. 1) and 2D waypoint projection to the BEV space. The projection can be implemented19

either using a homography (i.e., known extrinsic parameters [2, 4, 5]) or with a learned projection20

layer [3]. In contrast, we find it beneficial to remove the intermediate image-level processing and21

directly predict BEV waypoints, as shown in Fig. 1(b). We replace the upsampling layers with a22

3× 3 convolutional layer which fuses the image and speed-based features prior to inputting to three23

fully-connected final prediction layers. By removing unnecessary processing steps and enabling24

more expressive image-to-BEV mappings, the proposed planner architecture improves from 2.4525

FDE to 2.17 FDE. This improvement comes with a minimal gain in parameters (23.8M vs. 24.1M).26

Incorporating the geo-conditional module with three adapters further improves trajectory prediction27

performance to 1.93 FDE with a 24.2M parameter model. We do not find it necessary to leverage28

more complex, e.g., GRU-based [5, 4], prediction heads.29

Baselines: While related methods are often studied in simulation [4, 2], we provide several base-30

lines by following publicly available implementations. In particular, we leverage the state-of-the-art31

monocular agent TCP [4]. To ensure meaningful comparison with single-frame models, we also32

remove the temporal refinement module. As TCP leverages a control prediction branch in addi-33

tion to the waypoint prediction branch, we normalize the raw control signals among the different34

vehicle platforms across the multiple datasets to [0, 1]. When comparing with the semi-supervised35

learning scheme of SelfD [3], we leverage a 10-hour YouTube driving dataset with available city36

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.
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(a) The baseline BEV Planner [3] relies on alignment with the image input
through upsampling (i.e., to obtain a waypoint heatmap), followed by soft-argmax (SA) [2].
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(b) The proposed planner model simplifies the architecture such that each command branch
directly predicts BEV waypoints without intermediate upsampling, 2D heatmap, or soft-argmax.
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(c) The complete GeCo architecture with geo-aware feature modulation.
Figure 1: Comparing Network Architectures. As discussed in the main paper (Sec. 3.4 and
Sec. 4.1), our proposed planner architecture abandons the intermediate image-aligned heatmaps and
consequent soft-argmax employed by several prior works [2, 3] (top figure) and directly predicts
waypoints (middle figure). The proposed architecture improves BEV waypoint prediction results
by 12.9% FDE (2.45 vs. 2.17 FDE, shown in Table 1 of the main paper). Incorporating a geo-
conditional module (bottom figure) further boosts performance by 4.1% (2.08 FDE) and 11.1%
(1.93 FDE) without and with the proposed loss function, respectively.

(i.e., region) descriptions. In this manner, we are able to use GeCo to pseudo-label videos that were37



0

20000

40000

60000

80000

MIA PIT WDC DTW PHX SFO BOS SGP ATX MTV PAO

Data Distribution Across Cities

Co
un

t

Figure 2: Imbalanced Training Data Distribution. Our training data is unevenly distributed across
different cities, as often is the case in real-world data (y-axis is sample count).

taken within the 11 cities leveraged in our experiments. Subsequently, we mix the datasets to train a38

semi-supervised GeCo model, which is then evaluated over our multi-city benchmark.39

1.2 Data Processing and Distributions40

To obtain BEV waypoints for training, we standardize formats across three datasets, Argoverse 241

(AV2) [6], nuScenes (nS) [7] and Waymo (Waymo) [8]. The datasets provide post-processed world42

coordinates for each frame obtained from GPS and other mounted sensors, e.g., LiDAR [7]. We43

leverage these reported ego-poses to generate a waypoint prediction benchmark. For each frame,44

we use the global coordinate as an intermediate to get relative positions of the future 2.5s as ground45

truth waypoints. The conditional command (left, forward, or right) is inferred in a semi-automatic46

process. First, we extract the preliminary command by thresholding the curvature of the trajectory.47

However, this process cannot detect subtle maneuvers, such as lane changes, which are included in48

our dataset. Consequently, we manually verify and annotate the initial automatic command predic-49

tions. For our geo-conditional module, we do not require accurate GPS information as we quantize50

each latitude and longitude into a city-level cluster. Each dataset provides a front-view RGB image51

and speed (either from the raw CAN bus or from the positioning information), which are inputted52

into our model as observations.53

The data spans 11 cities: Pittsburgh (PIT), Washington, DC (WDC), Miami (MIA), Austin (ATX),54

Palo Alto (PAO) and Detroit (DTW), Boston (BOS), Singapore (SGP), Phoenix (PHX), San Fran-55

cisco (SFO) and Mountain View (MTV). The data distribution across different cities is shown in56

Fig. 2.57

1.3 Evaluation Metrics and Settings58

Open-Loop Evaluation: Average Displacement Error (ADE) and Final Displacement Error (FDE)59

are standard metrics for trajectory prediction [9]. We first compute the error within each city, and60

then average to obtain a balanced average metric. We also generate more fine-grained analysis by61

providing a breakdown over 11 semantic events in the dataset, as will be further discussed in Sec. 2.62

The extracted events include left turns, forward command, right turns, highway driving, heavy down-63

town traffic, red traffic lights, stop signs, uncontrolled intersections, pedestrian crossings, rain, and64

construction zones.65

CARLA Evaluation: The open-loop evaluation measures the distance of waypoint predictions with66

real-world human drivers under complex maneuvers, including yielding, merging, and irregular in-67

tersections. To further validate our proposed approach, we sought to evaluate GeCo in closed-loop68

settings where continuous predictions are made in order to navigate a vehicle to a destination along a69

route. While closed-loop real-world evaluation is challenging due to safety requirements, we lever-70

age the CARLA [10] simulator. Yet, standard CARLA evaluation does not generally involves social71

and regional behavior that is dynamic across towns. Subsequently, models do not currently incorpo-72

rate regional modeling, and GPS information is solely used to determine a command at intersections73

along a route. Hence, motivated by our 11-city real-world benchmark, we introduce a new bench-74

mark where different towns have different traffic behavior. Our benchmark is defined over Town 1,75

Town 2, and Town 10. We have modified Town 2 for left-hand driving and added pedestrians and76



vehicles with more aggressive behaviors, e.g., with jaywalking, higher speeds, and closer proximity,77

to Town 10. We tune the autopilot’s controller in order to generate optimal behavior under the novel78

settings. When performing closed-loop evaluation in CARLA, we also compute a Driving Score79

(DS) [5, 11], which is a product between the route completion and a penalty based on infractions.80

1.4 Training Protocol81

We study the role of our proposed network for scalable deployment use-cases using three training82

paradigms. To ensure standardized training across both centralized and federated training, we train83

the model using Stochastic Gradient Descent (SGD) [12]. In centralized training (where all the84

raw observation data is shared in a single server), we use a batch size of 48 and train for 7,50085

iterations. We set the initial learning rate to 1e-1, learning rate decay as 0.997, and weight decay as86

1e-3. The loss hyper-parameters are set as λc = 1e-3, λg = 1e-4, λd = 1e-4. For semi-supervised87

training settings, model training is done in three stages. We first download a set of online videos88

based on their tag which provides city-level information. We then train a supervised model using89

the same hyper-parameters as in centralized training above, and pseudo-label the unlabeled videos.90

We train three models from different initial seeds to compute a confidence score (i.e., variance) for91

each pseudo-label and filter low-confidence predictions. Subsequently, we train our model using the92

original training dataset combined with the large pseudo-labeled dataset. Here, we set the initial93

learning rate to 1e-3 and train the model for 500 iterations. Finally, for a fair comparison between94

the centralized training and the federated training settings, we train our federated model for 1,50095

synchronous communication rounds. We treat each city as its own ‘node’ or ‘device,’ but do not96

share the private geo-embedding with the server (i.e., we aggregate all model parameters on the97

server using FedAvg [13] and FedDyn [12] excluding E). For each communication round, the98

model is updated for five local iterations with SGD (in this manner, total iterations remain at 7,500).99

We further note that we remove the geo-contrastive loss term Lg−ct in the federated learning settings100

(as this information is not shared among the locations). We keep all other hyper-parameters fixed101

throughout the training settings.102

2 Additional Ablation and Results103

To supplement our findings in the main paper, we discuss four additional results. First, we provide104

supplementary analysis in terms of FDE (corresponding to Table 2 of the main paper with ADE),105

context and event-based performance evaluation (Sec. 2.1). Second, we perform additional ablation106

studies regarding the role of the number of heads in the multi-head module, impact of GPS noise107

over waypoints ground-truth in training, and clusters of the neighborhood-level models (Sec. 2.2).108

Third, we analyze an adaptation experiment to a novel city in Sec. 2.3 and show additional qualitative109

waypoint prediction results in Sec. 2.5. Finally, we perform closed-loop evaluation results using the110

introduced CARLA benchmark.111

2.1 Additional Analysis112

Final Displacement Error: For completeness, we report FDE results across training paradigms and113

models in Table 1. While FDE is more challenging as it emphasizes long-term prediction, we ob-114

serve similar trends among the models and cities compared to the complementary ADE-based anal-115

ysis in the main paper. Specifically, we demonstrate GeCo to improve over our baseline even using116

this harsher metric, i.e., from 2.55 to 1.93 average FDE. Semi-Supervised Learning (SSL) provides117

further gains compared to the centralized GeCo for most cities (excluding ATX and DTW, which118

show slight under-performance). When compared with Federated Learning (FL), the improvement119

is less pronounced compared to the gains observed with ADE and FL. While some cities are shown120

to significantly benefit FL over CL (e.g., BOS, SGP, PHX, SFO, MTV) others do not (e.g., MIA and121

ATX). ATX is a small dataset with limited diversity and high speed variability. While evaluation122

becomes less reliable, a low-shot learning setting can also be studied to understand such challenges123

in the future.124



Table 1: Analyzing GeCo with Different Training Paradigms (FDE Version). We analyze the
Final Displacement Error (FDE) counterpart of Table 2 in the main paper (which shows Average Dis-
placement Error, ADE). FDE only considers the final waypoint, while ADE considers all waypoints
along the predicted route, thus providing complementary analysis. Although both metrics demon-
strate similar performance trends, final waypoint prediction is a more challenging task (hence, errors
are higher). We analyze the three GeCo training paradigms (CL-Centralized Learning, SSL-Semi-
Supervised Learning, and FL-Federated Learning). The results show FDE across the 11 cities in our
dataset. Our planner refers to the direct image-to-BEV prediction (without the geolocation informa-
tion or introduced auxiliary loss terms, see middle architecture in Fig. 1).

Settings Methods Avg PIT WDC MIA ATX PAO DTW BOS SGP PHX SFO MTV

CL

CIL [2] 2.55 2.20 2.71 2.85 2.47 3.05 2.02 1.69 2.14 3.03 3.07 2.86
CIRL [14] 2.48 2.39 2.55 2.82 2.37 3.13 2.21 1.61 2.03 2.59 2.88 2.72
BEV Planner [3] 2.45 2.30 2.08 2.66 2.64 3.25 2.04 1.75 2.09 2.51 2.87 2.73
TCP [4] 2.37 2.17 2.27 2.77 2.28 3.02 1.95 1.69 1.99 2.52 2.71 2.71
Our Planner 2.17 2.36 2.16 2.15 2.69 2.85 1.98 1.72 2.07 1.97 1.73 2.69
GeCo 1.93 2.19 1.97 1.94 2.48 2.83 1.80 1.55 1.96 1.88 1.62 2.80

SSL SelfD [3] 1.98 2.24 2.08 2.03 2.49 2.70 1.89 1.54 1.84 1.55 1.52 2.53
GeCo 1.89 2.12 1.93 1.89 2.57 2.76 1.83 1.45 1.83 1.65 1.50 2.45

FL

FedAvg [13] 2.63 2.65 2.85 2.69 3.68 3.43 2.55 1.76 2.31 2.87 2.67 3.13
FedDyn [12] 2.14 2.48 2.34 2.44 3.42 3.10 2.35 1.53 1.86 1.86 1.85 2.55
GeCo (FedAvg) 2.23 2.51 2.21 2.12 3.52 3.40 2.04 1.58 2.09 2.43 1.97 2.79
GeCo (FedDyn) 1.92 2.25 1.91 1.94 3.26 3.29 1.90 1.37 1.68 1.31 1.49 2.28

Table 2: Event-Driven Analysis. We perform separate evaluations over subsets of our total eval-
uation benchmark based on semantic events defined over commands and driving conditions. The
settings are, in order: left turns, forward command, right turns, highway driving, heavy downtown
traffic, red traffic lights, stop signs, uncontrolled intersections, pedestrian crossings, rain, and con-
struction zones. GeCo is shown to benefit from improved robustness across conditions compared to
the baseline, i.e., due to the improved modeling capacity.

Method Metric Left Fwd. Right Hwy. DTown Red Stop Unctrl. Cross Rain Constr.

Our Planner ADE 1.60 1.01 1.43 7.66 1.12 0.66 0.63 0.77 1.36 1.37 0.76
Full GeCo 1.48 0.92 1.19 1.37 1.04 0.60 0.66 0.72 0.80 0.80 0.56
Our Planner FDE 2.93 1.95 2.68 12.80 2.36 1.41 1.62 1.28 2.20 2.24 0.83
Full GeCo 2.75 1.85 2.30 2.40 2.20 1.05 1.62 1.22 1.44 1.44 1.30

Event-Driven Analysis: Table 2 shows a breakdown of driving performance over different events125

and maneuvers. Here, we see a significant benefit for the introduced regional awareness, higher126

modeling capacity, and more balanced contrastive objective. For instance, GeCo improves perfor-127

mance over the unevenly distributed commands (a ratio of 2 : 20 : 3 among left:forward:right in our128

dataset), for right command from 1.43 ADE with the planner and up to 1.19 ADE with GeCo. Other129

conditions, such as highway, downtown, crossings, and rain conditions all show improvements as130

well. These results suggest that the situational adapters are able to accommodate various conditions131

both within and across geo-locations.132

2.2 Ablation Studies133

Number of Heads : We investigated the impact of increasing the number of heads in Table 3 on134

the performance of the model in cities with different amounts of data. We observe that when cities135

have a sufficient amount of data (defined as more than 10,000 frames), the error rate decreases and136

remains consistently low as the number of heads increases. This can be attributed to the increased137

model capacity, allowing for more effective feature extraction and improved learning of city-specific138

patterns. However, when the training data is limited, increasing the number of heads can still result139

in worse performance on some of the cities, potentially due to overfitting the small data sample.140

Thus, efficiently increasing model capacity in small-data domains remains a challenge.141



Table 3: Number of Heads in the Multi-Head Module. We vary the number of heads in the
transformer model and compute the resulting model’s ADE. We observe a drop in performance
beyond three heads (selected throughout the experiments). We demonstrate this to be due to the
cities with small (less than 10,000) data samples which may not benefit from the increased modeling
capacity.

# of Heads (H) Large-Data Cities Small-Data Cities All Cities

1 1.09 1.27 1.20
2 1.00 1.28 1.15
3 0.98 1.22 1.09
5 1.01 1.28 1.13
7 1.00 1.27 1.12
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Figure 3: Head Weight Distribution over Cities. While the heads and their weights are learned
in a data-driven manner, we do find specialization of certain heads across regions. For instance, the
unique tropical scenery of Miami (MIA) gives rise to a distinctive pattern among head 1 and head 3,
as well as Singapore (SGP).
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Figure 4: Attention Visualization in the Geo-Conditional Transformer. We visualize the atten-
tion pattern of the selected head (head with the highest weight) under the same input observations but
given different region embeddings. Given Boston embeddings, the weight is shown to concentrate
more on the objects in the middle and right portion of the image. While the Singapore embeddings
guide attention towards the left portion of the image, which is attributable to the left-hand driving
scenario in Singapore.

Fig. 3 studies the frequency of the head of the highest weight. Notably, our results indicate that142

the distribution in Singapore, where left-hand driving is practiced, differs from that of other cities.143

Additionally, the unique tropical scenery of Miami gives rise to a distinctive pattern as well.144

Effects of Geo-Conditional Transformer: Fig. 4 shows the visual effect of the attention pattern of145

the selected head (head with the highest weight) under the same observations, given different region146

embeddings. Given Boston embeddings, the head concentrates more on the objects in the middle147

and right portion of the image. While the Singapore embeddings guide attention towards the left148

portion of the image, which is attributable to the left-hand driving scenario in Singapore. We note149



Table 4: Impact of GPS Noise. Positioning accuracy (e.g., for obtaining waypoints for training over
new locations) is known to be variable. We analyze training with different degrees of Gaussian noise
imposed over the ground-truth waypoints (σ standard deviation, in meters). We introduce the noise
to simulate the data collection in real-world conditions, i.e., in scenarios where the model may be
trained over raw GPS measurements without extensive LiDAR-based filtering performed in current
autonomous driving datasets. Metrics are averaged over cities.

Noise ADE FDE
Original 1.05 1.93
σ = 1 1.16 2.21
σ = 3 1.28 2.39

Table 5: Number of K-Means Clusters vs. Model Performance. We vary the number of clusters
for K-means when obtaining additional finer-grained regions (i.e., neighborhood-level clusters) for
each city from publicly available GPS traces [15]. We note that this data may not always be available
within all city or country regions. While the additional fine-grained information can further improve
our model, we find performance to the plateau beyond three clusters for our data.

# of Clusters PIT WDC MIA ATX PAO DTW

1 1.15 1.27 1.60 1.13 1.65 0.96
3 1.16 1.09 1.11 1.10 1.42 0.95
10 1.21 1.06 1.09 1.22 1.39 0.98

Figure 5: Example Neighborhood Clustering by GPS Traces from OpenStreetMap. We utilize
GPS trace data from OpenStreetMap (OSM) [15] to automatically divide cities into sub-regions
based on traffic patterns. We leverage K-means clustering to analyze the ability of our model to
handle finer-grained regions within cities. Clustering results of Miami and Washington, D.C. with
respect to the number of clusters are shown (for 3 and 10 clusters). Despite the coarse clustering,
meaningful clusters emerge, e.g., Miami’s beach (blue) vs. downtown area (green) in the leftmost
K = 3 figure.

that our supplementary contains additional ablations regarding number of heads in the multi-head150

attention module and the impact of dataset size on training such higher capacity models.151

Ground-Truth Noise Analysis: To understand the role of scalable real-world deployment and data152

collection, we analyze the impact of potential GPS error in Table 4. While our analyzed datasets153

carefully post-process the reported world coordinates, we envision GeCo deployed across more154

diverse and potentially noisy settings. We therefore report the performance degradation due to the155

addition of 1m and 3m Gaussian noise over the training waypoints. Specifically, we find that even156

with added noise, GeCo obtains decent prediction performance, outperforming prior state-of-the-art157

models that are trained with clean waypoints, e.g., 2.39 FDE with 3m noise vs. 2.45 FDE for the158

baseline [2, 14]).159

Unsupervised Clustering of Regions: In Table 5, we explore the benefit of finer-grained regional160

clustering choices, i.e., within each city, when defining g. This experiment can uncover potential161



Table 6: Adaptation to a New City. We fine-tune on additional data from Guangzhou, China [16].
GeCo not only outperforms the baseline model on the new city but also maintains the performance
on previously seen cities.

Cities Seen Cities (Before −→ After) GZ

BEV Planner [3] 1.24 −→ 1.33 0.87
GeCo 1.05 −→ 1.04 0.84

Table 7: Closed-Loop Evaluation in CARLA. We report closed-loop metrics of Success Rate
(SR), Route Completion (RC), Infraction Score (IS) and Driving Score (DS) compared to a baseline
planner which is not trained in a geo-aware manner.

Metics ADE ↓ FDE ↓ SR ↑ RC ↑ IS↑ DS ↑
BEV Planner [3] 0.58 0.97 0.29 0.50 0.61 0.36
GeCo 0.46 0.79 0.36 0.69 0.67 0.50

benefits from modeling intra-city settings. To achieve this, we utilize GPS trace data from Open-162

StreetMap (OSM)[15] and cluster cities into sub-regions based on traffic patterns. For example,163

MIA clustering results in semantic regions, e.g., downtown vs. beach areas, with large improve-164

ments in prediction performance for the finer-grained model (from 1.60 to 1.11 ADE). Similarly,165

WDC is clustered into downtown and highway regions, also benefiting performance (from 1.27 to166

1.09 ADE). We note that while these examples suggest our model can further benefit model im-167

provement, such clustering data may not be available for many locations, and thus cannot always be168

assumed.169

Table 5 further explores the benefits of finer-grained clustering on GeCo model performance, i.e.,170

within city neighborhoods. To achieve this, we employ GPS trace data from OpenStreetMap171

(OSM) [15] and divide cities into sub-regions based on traffic patterns via K-means clustering.172

Fig. 5 shows example clustering results in MIA and WDC with respect to K = 3 and K = 10 clus-173

ters. For instance, the downtown areas of both two cities can be seen as clusters for both K = 3 and174

K = 10. While somewhat coarse in its clustering, we find that this privileged region information175

(which may not always be available) can introduce additional benefits when used as g during model176

training and evaluation.177

2.3 Adaptation to a New City178

In practice, a geo-aware model may be required to learn to drive in a previously unseen region with a179

significant domain gap. To understand the model performance of GeCo under such learning settings,180

we extract an additional city (Guangzhou, China) from a different dataset, ApolloScape [16]. In this181

case, a large domain gap occurs due to the differing social norms and traffic density in China. We182

mix the new city with the prior 11, and continue fine-tuning the model. Our results in Table 6183

indicate that GeCo can learn to drive in the new city while also maintaining similar performance184

levels for the previously observed cities (i.e., without forgetting). In contrast, the baseline model,185

which does not incorporate the explicit geo-aware module, has higher error while also impacting186

performance on prior seen cities.187

2.4 Experiments on CARLA188

The results of the closed-loop experiments on CARLA are shown in Table 7. We find consistent189

improvements in success rate, route completion, and infractions (the supplementary video shows190

qualitative examples where the baseline model struggles with left-hand driving). We compute both191

open and closed-loop metrics by saving the expert actions for the test sequences. GeCo outperforms192

the baseline planner [3] on both open-loop metrics (reducing ADE from 0.58 to 0.46) and closed-193

loop metrics (improving driving score by 38%, from 0.36 to 0.50). Nonetheless, overall success rates194

are quite low for our benchmark, as it contains significant behavior variability. This highlights the195



challenging nature of the region-aware decision-making task for current imitation learning models,196

either in the real-world or in simulation.197

2.5 Qualitative Results198

We show additional qualitative results in Fig. 6 and Fig. 7 (on the next page). As depicted in the199

figures, the GeCo generally provides better performance on challenging tasks of navigating across200

different regions and events, including turns and merging (requires reasoning over traffic directional-201

ity) as well as speed limits. Fig. 8 depicts failure cases, which show challenging conditions involving202

rare rule violations by other vehicles.203

References204

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.205
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Figure 6: Qualitative Results across Cities in Argoverse 2 Dataset. We plot predicted waypoints
in the BEV for GeCo, the ground truth trajectory, and the baseline planner model. GeCo is shown
to improve reasoning over regional speed and scenarios as well as general navigation and intricate
maneuvers.
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Figure 7: Qualitative Results across Cities on nS and Waymo Dataset. We plot predicted way-
points in the BEV for GeCo, the ground truth trajectory, and the baseline planner model. GeCo is
shown to improve reasoning over regional speed and scenarios as well as general navigation and
intricate maneuvers.

• Faliure

Figure 8: Example Failure Cases. Challenging cases where GeCo fails to produce safe driving
behavior, often due to dense settings or rare behaviors.
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