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A Architecture of the Encoder
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Figure S1: Architecture of the encoder. The image first passes through a CNN (BN = Batch
Normalization ; MP = 2-by-2 Max-Pooling). The numbers above the arrows indicate the number of
channels.

Fig.S1 shows the architecture of the encoder. The image is fed into a Convolutional Neural Network
(CNN) that produces 256 channels of sizes (D/32)2, where D is the resolution of the images in
pixels. The output is flattened and fed through a shared Multi-Layer Perception (MLP) with 4 hidden
layers of dimension 256. The output yi ∈ R256 is fed through the conformation MLP that contains 3
hidden layers of dimension 256 and one output layer of dimension d, interpreted as zi. Concatenated
vectors (yi, zi) pass through the rotation and the translation MLPs to produce, respectively, Ri and
ti.
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Figure S2: Architecture of the neural representation V̂θ : R3+d → R, approximation of the Hartley
transform of V . k is positionally encoded (PE) with K = D/2 frequencies.

B Neural Representation

The architecture of the neural representation V̂θ is summarized in Fig. S2. The coordinates k ∈ R3

are positionally encoded with (D/2) randomly sampled frequencies (with Gaussian distribution) [4].
Coordinates of image pixels are defined on a lattice spanning [−1, 1]2. We then restrict evaluation of
the model to the pixels in a circle of radius 1, thus the support of our model is defined on a sphere
with radius 1. The network contains 4 hidden layers of dimensions 256 and outputs a vector of
dimension 2, interpreted as the Cartesian representation of the (complex) number F3D[V](k, zi) (F3D
is the 3D Fourier transform on spatial coordinates). The Hartley transform is obtained by subtracting
the imaginary part from the real part of the Fourier transform. The advantage of working in Fourier
space is that we can make use of the fact

F3D[V](−k, zi) = F3D[V](k, zi)∗, (1)

and therefore query D2/2 points through the neural representation (instead of D2).

C Dataset Preparation

Ribosome - Bimodal Ribosome - Ribo1d EMPIAR10028 EMPIAR10180

Figure S3: Sample images from the synthetic and experimental datasets.

Table S1: Summary of the parameters for synthetic and experimental datasets. D is the resolution of
the images, in pixels.

Dataset D N Å/pix. Trans. Classes

Bimodal 128 50k-5M 3.77 ±8 pix. 2
Ribo1d 128 100k 3.77 ±8 pix. 2 / 3 / 10

EMPIAR-10028 128 105,247 3.77 N/A N/A
EMPIAR-10180 128 139,722 4.25 N/A N/A
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Synthetic 80S ribosome — “Bimodal”

We use two reconstructed volumes of the Plasmodium falciparum 80S ribosome in the rotated and
unrotated state as the ground truth volumes for the “Bimodal” dataset. Volumes were originally
reconstructed by cryoDRGN analysis of EMPIAR-10028 [6, 7] and downloaded from zenodo [8]
(D = 256, 1.88 Å/pix). Any voxels with density below a manually chosen isosurface threshold of
0.05 were zeroed to remove background density. Volumes were then downsampled to D = 128.

With these two ground truth volumes, we then prepare three synthetic datasets of varying sizes –
small (50k images), medium (500k images) and large (5M images). Images were generated using a
simulation of the image formation model on ground truth volumes. Each dataset contains a mix of
projections with 90% sampled from the unrotated volume as the major state and the rest from the
rotated volume as the minor state. Rotations were sampled uniformly from SO(3) and translations
were sampled uniformly from [−8 pix., 8 pix.]2. CTFs were drawn randomly with a log-normal
distribution over the defocus range from EMPIAR-10028. We add Gaussian noise with variance
σ2 = 10 to the normalized projections (SNR=−10dB). Example images are shown in Figure S3.

Synthetic 80S ribosome — “Ribo1d”

For the Ribo1d dataset, we simulate a continuous transition of the 80S ribosome between the rotated
and unrotated state using 10 volumes along this path as the ground truth volumes. Instead of linearly
interpolating the two rotated and unrotated state volumes, which produces nonphysical artifacts,
volumes were generated by interpolating in the latent space of the trained cryoDRGN model deposited
to zenodo [8]. Specifically we use cryoDRGN’s graph traversal algorithm to generate the interpolation
path between the two end states. The resulting volumes were pre-processed similarly as described in
the bimodal dataset.

With these ten volumes, we then follow the same image formation model as the bimodal dataset to
create synthetic datasets of 100k images that contain either an equal mixture of the two end states
(“2 class”), three volumes from the 1st, 5th, and 9th volume in the trajectory (“3 class”), or all 10
volumes (“10 class”).

80S ribosome (EMPIAR-10028 [6])

Images of the Plasmodium falciparum 80S ribosome were downloaded from EMPIAR-10028, and
downsampled to D = 128 (3.77 Å/pix).

Precatalytic spliceosome (EMPIAR-10180 [2])

Images of the precatalytic spliceosome were downloaded from EMPIAR-10180, and downsampled
to D = 128 (4.25 Å/pix). We train on the filtered set of 139,722 images available at [8]. Particle
images are shifted by their published poses, since the particles in this dataset are significantly out of
center [10].

D Additional Results

CryoDRGN2 CryoFIRE Ground Truth

Figure S4: (Left) Fourier Shell Correlation (FSC) to the ground truth volume from the end of the
training phase on the large (5M) ribosome bimodal dataset. (Right) Visualization of the reconstructed
major volume.
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Figure S5: (Left) Volumes reconstructed by traversing along PC1 of the predicted zi’s with cryoFIRE,
cryoDRGN2 [10] and cryoDRGN-BNB [9]. (Right) Correlation between PC1 obtained with tested
methods and PC1 obtained with cryoDRGN [7], where poses are given. Results from cryoDRGN2
and cryoDRGN-BNB are adapted from [10].

Figure S4 shows additional qualitative and quantitative results on the ribosome bimodal dataset.
Figure S5 shows additional qualitative comparisons between cryoFIRE, cryoDRGN2 [10] and
cryoDRGN-BNB [9] on the experimental precatalytic spliceosome dataset. See supplementary videos
for a dynamic reconstruction obtained by traversing along PC1 with cryoFIRE.

Table S2: Comparison of cryoFIRE with state-of-the-art methods cryoSPARC [3] and cryo-
DRGN2 [10] on the bimodal dataset. We report the rotation accuracy (Rot. in degrees, ↓), the
translation accuracy (Trans. in pixels, ↓), the confusion error (↓) and the resolution (Res. in pixels, ↓).
CryoSPARC did not converge after 70h on the large dataset (5M images).

Dataset / Method Time Rot. (Med/MSE) Trans. (Med/MSE) Confusion Res. (major/minor)

Small (50k)
cryoSPARC 0:53h (10 ep.) 1.2 / 1.2 0.02 / 0.02 0.008 2.1 / 2.2
cryoDRGN2 1:21h (20 ep.) 0.8 / 0.8 0.007 / 0.01 0.00005 2.4 / 2.8
cryoFIRE 1:33h (70 ep.) 2.3 / 2.6 0.09 / 0.1 0.0004 2.6 / 3.2

Medium (500k)
cryoSPARC 9:27h (2 ep.) 1.2 / 1.3 0.02 / 0.02 0.007 2.2 / 2.2
cryoDRGN2 5:10h (2 ep.) 0.8 / 0.9 0.007 / 0.01 0.002 2.5 / 3.0
cryoFIRE 1:28h (7 ep.) 2.7 / 2.9 0.1 / 0.2 0.0008 2.7 / 3.2

Large (5M)
cryoSPARC > 70h — — — —
cryoDRGN2 21:37h (1 ep.) 0.8 / 1.6 0.01 / 1.2 0.002 2.3 / 2.6
cryoFIRE 1:55h (1 ep.) 1.5 / 1.7 0.1 / 1.0 0.0002 2.3 / 2.7

4



Table S2 compares cryoFIRE with two state-of-the-art heterogeneous reconstruction methods:
cryoSPARC [3] and cryoDRGN2 [10]. All these methods can process the data batch-wise, but
cryoSPARC implements a fully non-amortized method where latent variables are inferred with an
approximate Expectation-Maximization algorithm while cryoDRGN2 only amortizes the inference
of the conformational state zi. We run cryoSPARC v3.2.0 heterogeneous ab initio reconstruction
with K = 2 classes using all default settings. The advantage of amortized approaches in terms of
runtime is clearly visible on the medium dataset.

We run cryoFIRE on a published dataset of the 80S ribosome (EMPIAR-10028 [6]) for 300 epochs
and show quantitative and qualitative results in Fig. S6. The dataset is filtered following [7]. The
quantitative results validate the accuracy of the pose prediction (including translations) on a real
dataset. See supplementary videos for a dynamic reconstruction.
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Figure S6: Ab initio reconstruction of an experimental dataset of the 80S ribosome (EMPIAR-
10028 [6]). (a) Distribution of the two first principal components in the conformational landscape. (b)
Distribution of the view directions obtained with cryoFIRE and published in the “reference” [6]. We
indicate the median errors obtained on the predicted rotations and translations. (c) Reconstructed
volume when sampling the point (3) in the conformational space (a). See supplementary videos for
the reconstructed volumes (1) to (5).

E Discretization of the Image Formation Model

Although the image formation model described in Section 3 is continuous, the image collected on
the detector is discrete. Assuming the electrostatic potential of the molecule is supported on a ball
of radius S/2 (S being the length of the size of the detector) and assuming the volume V(., zi) is
“smooth” (the coefficients of V̂(., zi) decay rapidly), we show here that our method reconstructs the
volume V(., zi) even though the discretization is not explicitly modeled in the decoder.

In real space, the (noise-free) image formation model can be modeled as

Yi = Tti ∗ Pi ∗Qi (2)

If s is the size of a pixel, the pixel located at (xk,l, yk,l) ∈ R2 receives an intensity

I
(i)
k,l =

∫ xk,l+s/2

xk,l−s/2

∫ yk,l+s/2

yk,l−s/2

Yi(x, y)dxdy = (A2D ∗ Yi)(xk,l, yk,l) (3)

where

A2D(x, y) =

{
1 if |x| ≤ s

2 and |y| ≤ s
2

0 otherwise.
(4)

Î(i), the discrete Hartley transform of the image I(i) is defined by

Î(i)m,n =

D∑
k,l=1

(
cos

(
2π

km

D

)
+ sin

(
2π

ln

D

))
I
(i)
k,l , (5)

where D is the number of pixels along each side of the detector. Since the locations of the pixels are

xk,l = ks = k
S

D
; yk,l = ls = l

S

D
, (6)
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Î(i)m,n =

D∑
k,l=1

(
cos

(
2πxk,l

m

S

)
+ sin

(
2πyk,l

n

S

))
(A2D ∗ Yi)(xk,l, yk,l), (7)

which can be re-written
Î(i)m,n = H2D(D ⊙A2D ∗ Yi)

(m
S
,
n

S

)
, (8)

where D corresponds to the sampling operation:

D(x, y) =

D∑
k,l=1

δ(x− ks)δ(y − ls), (9)

with δ the δ-Dirac function. Finally, using the Fourier Slice Theorem we get

Î(i)m,n =
[
H2D(D) ∗ H2D(A2D)⊙ T̂ti ⊙ Ci ⊙ Si[V̂(., zi)]

] (m
S
,
n

S

)
(10)

=
[
T̂ti ⊙ Ci ⊙ Si[H3D(A

(i)
3D)⊙ V̂(., zi)])

] (m
S
,
n

S

)
(11)

where

A
(i)
3D(x, y, z) =

{
1 if ∥Ri · [x, y, z]T ∥∞ ≤ s

2

0 otherwise.
(12)

H2D(D) can be removed using the assumption that the signal is band-limited in real-space. Due to the
spatial averaging in real space, the reconstructed volume in Hartley space is H3D(A

(i)
3D)⊙ V̂(., zi) ≃

H3D(A
(0)
3D )⊙ V̂(., zi) if |V̂(k, zi)| decays rapidly with |k|, where

A
(0)
3D (x, y, z) =

{
1 if ∥[x, y, z]∥∞ ≤ s

2

0 otherwise.
(13)

In real space, the continuous volume is “blurred” by a 3D window function of size s.

F Other External Softwares

Fourier Shell Correlations are computed using the software EMAN v2.91 [5]. Molecular graphics
and analyses performed with UCSF ChimeraX [1], developed by the Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco, with support from Na-
tional Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational
Biology, National Institute of Allergy and Infectious Diseases.
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