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ABSTRACT

This is the supplementary information for the "Emergence of surprise and predic-
tive signals from local contrastive learning.”

A APPENDIX A: EQUIVALENCE BETWEEN FORWARD-FORWARD
ARCHITECTURE AND HEBBIAN LEARNING

In this section, we apply a simple argument to the underlying dynamics as result minimizing cumu-
lative objective functions.

For a N > 3 Forward-Forward architecture where N is the total number of layers, I is the data
input, and ¢ is the label input, the dynamics of each layer are governed by

—

1=

(Whdy + By () + Bids)
T = ¢ (Wi + Fiyo1 + Bidig)
o = ¢ (Wniy + Fyin_1 + ByL(E)).

Z

where 2; = [EAl is the layer-normed pre-synaptic drive.

The locally defined loss for a one-step update takes the form of:

Elayer(tl) = (—1)770(5;111_"74 — T)

where o(z) represents the softplus as o(z) = log(1l + €%) and is a smooth version of the ReLU
nonlinearity. Importantly, the dynamics of the 7)(¢) are governed by bistable dynamics switching
between:

n(t/) = 5L(f/),[(t’)

where §;; is the Kronecker delta notation. This bistable switching-like dynamics occurs with long
timescales between switches and could have compelling correspondence with our understanding of
neuromodulatory induced switching of the underlying dynamics. This also suggests a criteria for the
selection of n(t') on the instantaneous surprise of the stimulus against the speculative label. While
beyond the scope of this work, the closure of this loop between activations and cost function may
generate valuable insights into unsupervised variants of these learning rules.

We then execute a single step-gradient update in each parameter:

W, = —aVw,L(t)

0B; = —aVpg,L(1)

OF;, = —aV g L(t)
By iteratively minimizing this locally defined objective function, we seek a heiarhical structure
which will work in concert with the other layers to minimize activations for positive data. However,

when there is a data mismatch between label and image class, the representations will learn to avoid
cancellation to maximize their surprise.
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Indeed this single step update for a given layer takes the form of a Hebbian learning rule.

Vi, Li(t)) =
(=170 (& (¢)Z () — T)E () ¢/ (Widi(t — 1) + Figy1 (' — 1) + Bidaya (' — 1)) Z(H — 1)
———
Gating factor Pre-synaptic current post-synaptic firing rate

This takes the form a gated Hebbian or three-factor rule Bahroun et al.; Kusmierz et al.| (2017);
Bredenberg et al.[(2021); |Pogodin & Latham| (2020) linking the locally defined objective function
to the product of the pre-synaptic current and the post-synaptic activation.Crucially, this loss for a
single trial is indeed the cumulative sum over the full sequence:

Ami =« Z leﬁz (t/)
t/

These gradients have important implications on the shape of the learned solutions. These learned
solutions (where the gradient goes toward zero can occur under a number of conditions). These con-
ditions include the direct cancellation of the synaptic drive currents (input components) governing
the time dynamics of hidden layer: W;z; + Fiz;—1 + B;x;y1 = 0.

A.1 LINEARIZING EVERYTHING AND REDUCING THE DIMENSION OF THE LAYERS TO ONE
UNIT EACH

Our goal in this subsection is to stricly apply two simplifying assumptions to show how the in-
verted FF objective function enforces cancellation in an easily understandable environment. The
first assumption is that the dynamics are linear. The second assumption is that each layer is only
represented by a single unit to simply our view of cancellation. These assumptions enforce direct
learned cancelation of top-down and bottom-up signals in these networks.

In the limit of linear dynamics of the underlying network and linear dynamics of the locally defined

objective function:
Lt)=>y a}-T
and
x; = Wit + BiZiy1 + Fiti
The gradients give rise to the simple learning dynamics of the form:
Wi = a(=1)"z;(t + 1)a4(t)
Fy = a(=1)"2(t + 1)z (t)
B; = a(=1)"2;(t + 1)z (t)
With the edge cases taking the form of:
Bya(=1)"z;(t + 1)L(t)
Fra(=1)"z(t 4+ 1)I(t)
These linear dynamics are determined by the discrete variable 1 which tells you if the data is positive

data or not. We can call then positive data where the labels are presented as classes and the images
are presented as floats near the given class identity.

These nonlinear dynamics give us a rich learning sequence in which the we have fast time dynamics
governing the layer population scalars x; and the slower dynamics of the learned parameters. This
separation of timescales allows us to represent the mean population activity over the trial to study
the convergence of the learning dynamics to steady state solutions.

The simulation of these linearized but still nonlinear dynamics for a three layer network in an online
learning setting confirms our analytic for this one-dimensional projection of population activity in
that F' — — B over training timesteps|[I]

For a one-layer architecture with similar top-down/bottom-up representations of image class and
label respectively, the positive data equivalence trivially forces the feedforward F' and feedback B
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Figure 1: E[) Over training the evolution of the simplified connectivity matrix develops opposing terms
resulting in the cancellation of matched signals (top-down and bottom-up) into layer 2. [b) The time course of
training these linearized dynamics generates a system capable of switching between positive and negative data
samples in an online fashion. Negative data is characterized by growing activations in layer 2 while positive
data is characterized by cancelling activations in layer 2. These linearized dynamics give us a simplified
playground to understand the emergence of cancellation with simple local learning rules.

matrices to converge toward the negative of each other, B — —F'. This can be seen in the evolution
of the above dynamics of the weight vectors. The only way that the linearized dynamics can go to

zero is when B; = 0 = —z; L(t) and thus since L(t) is fixed at a non-zero value by the supervision,
the x; must go to zero. To achieve this, we must have clean cancellation of the underlying dynamics
in the hidden layer. This forms the basis of the positive data cancellation and finds solutions which
are consistent with increasing activation in response to mismatch or surprise.

B APPENDIX B: TEMPORAL DYNAMICS OF LAYER SIMILARITY
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Figure 2: EI) Layerwise input components differences (negative minus positive) dynamics across the timesteps.
Noticeably the forward component is higher for negative data compared to positive data. We notice that for
layer O the forward component is trivially identical for positive and negative data as it is driven by the input
image.

We expanded the cosine similarity analysis across all timesteps for any two consecutive layers to
further investigate this phenomenon. Figs. [3a)] - to [3b)] illustrate the cosine similarity between ac-
tivations of layers 2 and 3 across any two timesteps during the processing phase for both positive
(Fig. left panel) and negative (Fig. [3b) left panel) data. For positive data, cosine similarities
decrease over timesteps confirming that activations across different layers decorrelate over this pe-
riod. On the other hand, for negative data, similarities increase over the same period, confirming
and generalizing our findings in the main text. This analysis demonstrates the emergence of a strik-
ing temporal ordering of cancellations (positive data) and activations (negative data) which reflects
the structurally imposed hierarchy of the layers. This relationship emphasizes the importance of a
mechanistic understanding going beyond the naive cancellation of image and label representations
as their first collision.
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Figure 3: EI) Cosine similarity analysis across all timesteps of layer 2 and 3 (left panel). Similarity Difference
metric (SD) across timesteps between layer 2 and 3. E[) Same as panel d but for negative data.

To examine the temporal dynamics further, we analyzed the difference between such similarities: for
any pair of time steps, we computed the following metric. Denoted with cos(a;2(t1), a;3(t2)) is the
cosine similarity between the activations a3 (1) of layer 2 at time ¢; and the activations a;3(t2) of
layer 3 at time to. We also defined the Similarity Difference SDja3(t1, t2) = cos(aia(t1), aiz(t2)) —
cos(aj2(t2), ai3(t1)). This quantity provides insight into the temporal dynamics because, for t; <
to, it is positive if the similarity between earlier activations in the first layer and later activations
in the second layer is greater than the similarity between later activations in the first layer and
earlier activations in the second layer. This value quantifies when current signals in one layer are
analogous to subsequent signals in a second layer for any given timestep. A positive SD above the
diagonal (accompanied by a negative SD below the diagonal) quantifies the influence of the first
layer on subsequent timesteps in the second layer. This case, as described, is what we observed for
negative data, confirming a bottom-up flow in late timesteps, Fig.[3b)] For positive data, a top-down
signal appears to flow into layer for a few time steps before activities across layers decorrelate and
cancellation of activity occurs, Fig. [(3a) right panel.

This analysis validates the presence of two information flows for positive and negative data, with
distinct temporal relationships between layers. It further illustrates that such information flows have
specific dynamical properties across layers, where the activity in a given layer precedes or follows
the activity in others across the hierarchy, enabling the generation of predictive types of signals.

B.1 VISUALIZING THE IMAGE SPECIFIC LOW-DIMENSIONAL DYNAMICS

A temporal analysis of the same latent space in two dimensions was conducted on the higher-order
PCs with stronger class representation (Fig. [(4a)). Activations start in the middle of the represented
structure, before diverging and returning back to the beginning. This analysis shows behavior cor-
roborating the above looping mechanics, driven by the recovery of the initial low activation state
after initial excitement(Fig. [(4b)).

B.2 LABEL INFORMATION AND PRINCIPAL COMPONENTS

To understand if the principal component representation of the network dynamics effectively cap-
tured the variance of the underlying data, we trained a slew of multilayer perceptrons (MLPs) on the
latents of 1000 samples at every timestep, reduced in dimensionality by a sliding-window of three
PCs. This analysis shows high label decodability for the PCs plotted above which showed cleaner
separability (4-6) (??), motivating the choice of these particular PCs. Additionally, most of the vari-
ance within this data is captured within the first 20 PCs, with decodability dropping to chance levels
for PCs greater than 20.

C APPENDIX C: PREDICTIVE CODING

In our predictive coding network (PCN), the inference and learning phases optimize the same fol-
lowing loss function:

L(t) = Z | @1 — o(Bid)|3,
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Figure 4: @) Representation of the layer-wise latent spaces on two dimensions via PCA where classes are
represented by color. [B) Same latent space representation, but color-coded based on timestep. [c) Decodability
(y-axis) across different layer’s PCs (x-axis), indicating that PCs 4-10 capture rich representations. The x-axis
label indicates the lower most PC out of the triplet used for decoding.

where z is clamped to the input image.

The inference phase then takes the form of minimizing the loss with respect to the neural activities
for each layer i:

. rdo" " . -

T; = Vg, L(t) = 2B, FEA (Ti—1 — ¢(Bi)) + ¢(Biy1Tit1) — Ti,
where 2; = B;x;. which is equivalent to a leaky neuron subject two sources of synaptic drive: 1) the
feedback from top-down, and 2) the prediction error change. Allowing this to evolve to convergence
gives us 7.

The learning phase then adopts a gradient descent on the same loss with respect to B; for each layer
1 -
do

ﬁ(fz‘*q — (B:F))(@)T,

where we define z; = B}, ; which is the convergence input current. Usefully, this one-step
gradient also takes the form of a three-factor rule which combines pre-synaptic current, post-synaptic
activity and a third gating or ’gain’ factor. In this case, the third factor takes the form of the prediction
error.

B;=Vp L=

If we relax the convergence of assumption of the *inference phase’ and simply conduct online learn-
ing on this cost function, we can directly compare these updates to the inverted-FF model through
comparison of our three-factor terms.

C.1 COMPARISON BETWEEN INVERTED FF, PCN AND SUPERVISED UPDATE RULES

In the previous section we demonstrated that the update equations for the feedback weights B evolve
with a distinct third-factor responsible for gating the Hebbian updates of the weights in PCN. This
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form of the rule is notably quite different from the inverted FF. To round out our comparison to in-
clude a simple variant of supervised loss we include the third factor for a supervised loss. We choose
a simplified variant (with no feedback nonlinearities) of random feedback to focus our attention on
the form of supervisory error Lillicrap et al.| (2016).

These third factors for distinct learning rules can now be compared on the same standing:

(=)0’ (T (t)Z;(¢') — T)(Zi(t')) for the inverted FF
Third Factor = { (¢(Bifit1) — 74) for the PCN
(H;:N Bj(¢(Zn) — y*)) for a supervised signal

We emphasize two primary differences between the inverted FF and the PCN third factors.

The first is the presence of the contrastive sign flip designed to avoid the collapse of the dynamics
onto the trivial solution. This constrastive term plays the role of the supervisory signal in which
the information about the clamped label is passed to each layer through the top-down feedback
and the global error signal (reminiscent of neuromodulator volume transmission) driving either the
elimination or increae of surprise signal.

The second chief difference is that the inverted FF conditions weight updates on surprise being above
a threshold while the PCN conditions weight update upon the activity prediction error. This follows
from the supervised case where in both models, the surprise (inverted FF) and the prediction error
(PCN) are acting like error signals in the network gating the Hebbian Pre-synaptic, post-synaptic
concidence update rules.

REFERENCES

Yanis Bahroun, Dmitri B Chklovskii, and Anirvan M Sengupta. A Normative and Biologically
Plausible Algorithm for Independent Component Analysis.

Colin Bredenberg, Benjamin S. H. Lyo, Eero P. Simoncelli, and Cristina Savin. Impression learn-
ing: Online representation learning with synaptic plasticity. November 2021. URL https:
//openreview.net/forum?id=MAorPalLgam_.

Lukasz Ku$mierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulating
Hebbian plasticity with errors. Current Opinion in Neurobiology, 46:170-177, October 2017.
ISSN 0959-4388. doi: 10.1016/j.conb.2017.08.020. URL https://www.sciencedirect.
com/science/article/pii/S0959438817300612.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7
(1):13276, November 2016. ISSN 2041-1723. doi: 10.1038/ncomms13276. URL https:
//www.nature.com/articles/ncomms13276, Number: 1 Publisher: Nature Publishing
Group.

Roman Pogodin and Peter Latham. Kernelized information bottleneck leads to bi-
ologically plausible 3-factor Hebbian learning in deep networks. In Advances in
Neural Information Processing Systems, volume 33, pp. 7296-7307. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
517f24c02e620d5a4dacldb388664a63—-Abstract.html.


https://openreview.net/forum?id=MAorPaLqam_
https://openreview.net/forum?id=MAorPaLqam_
https://www.sciencedirect.com/science/article/pii/S0959438817300612
https://www.sciencedirect.com/science/article/pii/S0959438817300612
https://www.nature.com/articles/ncomms13276
https://www.nature.com/articles/ncomms13276
https://proceedings.neurips.cc/paper/2020/hash/517f24c02e620d5a4dac1db388664a63-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/517f24c02e620d5a4dac1db388664a63-Abstract.html

	Appendix A: equivalence between Forward-Forward architecture and Hebbian learning
	Linearizing everything and reducing the dimension of the layers to one unit each

	Appendix B: Temporal dynamics of layer similarity
	Visualizing the image specific low-dimensional dynamics
	Label information and principal components

	Appendix C: Predictive coding
	Comparison between inverted FF, PCN and supervised update rules


