
Published as a conference paper at ICLR 2025

MANISKILL-HAB: A BENCHMARK FOR LOW-LEVEL
MANIPULATION IN HOME REARRANGEMENT TASKS

Arth Shukla, Stone Tao & Hao Su
Hillbot Inc. and University of California, San Diego
{arshukla,stao,haosu}@ucsd.edu

ABSTRACT

High-quality benchmarks are the foundation for embodied AI research, enabling
significant advancements in long-horizon navigation, manipulation and rearrange-
ment tasks. However, as frontier tasks in robotics get more advanced, they require
faster simulation speed, more intricate test environments, and larger demonstra-
tion datasets. To this end, we present MS-HAB, a holistic benchmark for low-
level manipulation and in-home object rearrangement. First, we provide a GPU-
accelerated implementation of the Home Assistant Benchmark (HAB). We sup-
port realistic low-level control and achieve over 3x the speed of prior magical
grasp implementations at a fraction of the GPU memory usage. Second, we train
extensive reinforcement learning (RL) and imitation learning (IL) baselines for fu-
ture work to compare against. Finally, we develop a rule-based trajectory filtering
system to sample specific demonstrations from our RL policies which match pre-
defined criteria for robot behavior and safety. Combining demonstration filtering
with our fast environments enables efficient, controlled data generation at scale.

Videos, models, data, code, and more at http://arth-shukla.github.io/mshab

1 INTRODUCTION

An important goal of embodied AI is to create robots that can solve manipulation tasks in home-scale
environments. Recently, faster and more realistic simulation, home-scale rearrangement bench-
marks, and large robot datasets have provided important platforms to accelerate research towards
this goal. However, there remains a need for all of these features in one unified benchmark.

We present MS-HAB, a holistic, open-sourced, home-scale manipulation benchmark with four key
features: (1) fast simulation with realistic physics and manipulation, including low-level control,
for efficient training, evaluation, and dataset generation, (2) home-scale manipulation tasks through
the Home Assisitant Benchmark (HAB) (Szot et al., 2021), (3) extensive baselines for future work
to compare against, and (4) scalable, controlled data generation using an automated, rule-based
trajectory filtering system.

Fast Manipulation Simulation with Realistic Physics and Rendering: Using ManiSkill3 (Tao
et al., 2024), we implement a GPU-accelerated version of the HAB (Szot et al., 2021), an apartment-
scale rearrangement benchmark containing three long-horizon tasks using the Fetch mobile manipu-
lator (ZebraTechnologies, 2024). While the original HAB uses magical grasp (teleport closest object
within 15cm to the gripper), we require realistic grasping.

The MS-HAB environments support low-level control for realistic grasping, manipulation, and in-
teraction, while the original Habitat 2.0 implementation does not support such kind of low-level
control. Furthermore, by scaling parallel environments, MS-HAB environments achieve over 4300
samples per second (SPS) while the robot actively collides with multiple dynamic objects and the
environment renders 2 128x128 RGB-D images — 3x faster than Habitat 2.0 at a fraction of the GPU
memory usage. This significant speedup allows us to scale training, evaluation, and data generation.

Reinforcement Learning (RL) Baselines: Online RL provides a promising framework to learn
from online interaction without needing preexisting demonstration data. As in Gu et al. (2023a),
we train individual mobile manipulation skills and chain them to solve long-horizon tasks. We
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hand-engineer dense rewards for the Fetch embodiment, designed for low-level control with mobile
manipulation. Furthermore, we train manipulation policies overfit to one specific object’s geometry,
outperforming all-object policies when grasping many objects or in conditions with tight tolerances
depending on object geometry. Leveraging our fast environments, we run extensive RL baselines,
training 150 policies across 3 seeds (50 policies/seed) with 1.83 billion environment samples.

Automated Event Labeling and Trajectory Categorization: We use privileged information from
the simulator to distill trajectories into chronologically ordered lists of events (e.g. Pick events
include ‘Contact (object)’, ‘Grasped’, ‘Dropped’, ‘Success’, and ‘Excessive (robot) Collisions’).
Using these events lists, we define mutually exclusive, collectively exhaustive success and failure
modes. For example, Pick success mode “reach success ∧ cumulative robot collisions < 5000N
∧ object not dropped” requires events list (Contact, Grasp, Success) and forbids events ‘Dropped’
and ‘Excessive Collisions’. We filter our dataset by selecting demonstrations labeled with success
modes that guarantee particular behaviors (e.g. pick without dropping) and safety constraints (e.g.
cumulative robot collisions < 5000N). Furthermore, we provide trajectory categorization statistics
for all baselines in Appendix A.6 so future work can gear its methodology to solve frequent failure
modes discovered by our policies.

Dataset Generation and Imitation Learning (IL) Baselines: When generating our dataset, we
use trajectory categorization to filter demonstrations without needing manual labor, and we provide
Imitation Learning (IL) baselines using our dataset. Our results show that selecting demonstrations
with particular behavior biases IL policies towards that behavior. Paired with our fast simulator,
users can generate massive datasets and control demonstration type in fast wall-clock time.

Summary of Contributions: The contributions of MS-HAB are summarized as follows: 1) GPU-
accelerated HAB implementation which supports realistic low-level control and achieves over 4300
SPS while interacting and rendering, 2) extensive RL and IL baselines, 3) automated event labeling
and trajectory categorization, providing success and failure mode statistics for all baseline policies,
and 4) efficient, controlled vision-based robot dataset generation at scale.

2 RELATED WORK

Simulators and Scene-Level Embodied AI Platforms: Earlier scene-level simulators focus on
navigation and simple interaction with realistic visuals (Savva et al., 2019). Other simulators add
kinematic object state transitions (Kolve et al., 2017; Li et al., 2021), significant scene randomization
(Deitke et al., 2022; Nasiriany et al., 2024), soft-body physics and audio (Gan et al., 2022), flexible
and deformable materials, object composition rules, and so on (Li et al., 2022). However such
complicated features often slow down simulation speed.

Habitat 2.0 forgoes additional features, supporting rigid-body dynamics, articulations, and magical
grasping, to achieve best-in-class single-process scene-level simulation speed (Szot et al., 2021).
However, it is constrained by the limited parallelization of CPU simulation.

Other simulators focus on low-level, contact-rich control in simpler settings (James et al., 2020; Zhu
et al., 2020; Xiang et al., 2020). ManiSkill3 in particular achieves state-of-the-art GPU simulation
speed (Tao et al., 2024), however its suite of tasks are simpler than the Home Assistant Benchmark
(HAB) (Szot et al., 2021), which we implement for MS-HAB.

Scalable Demonstration Datasets: Real-world robot datasets are promising for direct deployment
to the real world (Brohan et al., 2023). However, these initiatives are limited in scaling and use cases
due to small-scale toy setups (Ebert et al., 2022), vision-only data (Dasari et al., 2019), or requiring
massive coordinated (et al., 2024; Khazatsky et al., 2024) or distributed (Mandlekar et al., 2018)
human effort over many months or even years. Furthermore, real robot datasets cannot efficiently
generate new data, and do not support online sampling.

Generative interactive world models allow some interactivity on similarly realistic data by generating
new frames based on provided actions (Yang et al., 2024). However, these models suffer from arti-
facts and long-term memory issues which rule out home-scale rearrangement, and low frame rates
make training high-frequency low-level control policies intractable. Furthermore, neither real-robot
datasets nor generative world models currently support querying privileged data from a simulator,
which is necessary for MS-HAB’s automated event labeling and trajectory categorization.
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Meanwhile, classical physical simulation supports data generation from a variety of sources (ex-
pert teleoperated, suboptimal human, etc), and machine-generated data is largely scalable; however,
datasets like Fu et al. (2020); Mandlekar et al. (2021); Gu et al. (2023b) only support smaller-scale
continuous control tasks.

RoboCasa combines different aspects of above approaches (Nasiriany et al., 2024): a physical sim-
ulator, diverse AI-generated textures and models, 1250 human-teleoperated demonstrations, and
MimicGen to scale data (Mandlekar et al., 2023). However, RoboCasa achieves only 31.9 SPS with-
out rendering, does not support filtering trajectories by behavior, and its demonstrations alternate
between manipulation and navigation. Meanwhile, we achieve 125x faster simulation while ren-
dering 2 128x128 RGB-D images and interacting with multiple dynamic objects. We also support
automated filtering under customizable constraints, and our demonstrations use whole-body control.

Skill Chaining: Chen et al. (2023) and Lee et al. (2021) use finetuning methods to bias the initial and
terminal state distributions to increase handoff success while skill chaining. However, these meth-
ods are applied to tasks with unchanging order (e.g. furniture assembly, block orient/grasp/insert).
Meanwhile, Gu et al. (2023a) formulate composable and reusable skills with mobility to create
greater overlap in initial and terminal state distributions, achieving better results than stationary
manipulation. However, Gu et al. (2023a) uses magical grasp with online RL, while we provide
RL and IL baselines, and we include additional considerations for low-level grasping, such as new
rewards and subtask success conditions, sampling grasp poses from Pick policies, and overfitting
object manipulation policies to specific object geometries.

3 PRELIMINARIES

3.1 TASKS, SUBTASKS, AND POLICIES

The Home Assistant Benchmark (HAB) (Szot et al., 2021) includes three long-horizon tasks which
involve rearranging objects from the YCB dataset (Çalli et al., 2015):

• TidyHouse: Move 5 target objects to different open receptacles (e.g. table, counter, etc).

• PrepareGroceries: Move 2 objects from the opened fridge to goal positions on the counter,
then 1 object from the counter to the fridge.

• SetTable: Move 1 bowl from the closed drawer to the dining table and 1 apple from the
closed fridge to the same dining table.

To solve these tasks, Szot et al. (2021) define parameterized skills: Pick, Place, Open Fridge/Drawer,
Close Fridge/Drawer, and Navigate. For each skill, we define corresponding subtasks. Successful
low-level grasping is heavily dependent on an object’s pose. So, depending on the subtask, the
simulator provides ground-truth pose xpose = [xrot|xpos] for target object x, ground-truth handle
position apos for target articulation a, or 3D goal position gpos, updated each timestep during ma-
nipulation. Each subtask also fails if the robot cumulative force reaches beyond a set threshold. For
more details, see Appendix A.1. We provide brief descriptions of the subtasks below:

• Pick[a, optional](xpose): pick object x (from articulation a, if provided).

• Place[a, optional](xpose , gpos): place object x in goal g (in articulation a, if provided)

• Open[a](apos): open articulation a with handle at apos
• Close[a](apos): close articulation a with handle at apos
• Nav(∗pos): navigate to ∗

From a reinforcement learning perspective, we formulate each long-horizon task as a standard
Markov Decision Process (MDP) which can be described as a tuple M = (S,A,R, T , ρ, γ) with
continuous state space S, action space A, scalar reward function R : S × A → R, environment
dynamics function T : S ×A → S, initial state distribution ρ, and discount factor γ ∈ [0, 1]. Then,
as in Gu et al. (2023a), define a subtask ω as a smaller MDP (S,Aω,Rω, T , ρω, γ) derived from
M . For each task M with subtask ω, we train low-level control policy πω : S → Aω with RL or IL.
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In this work, we study a partially observable variant of each task, where the policy must use 2
128x128 depth images to infer collisions and obstructions. We train different policies for each
task/subtask combination (i.e., TidyHouse Pick, PrepareGroceries Pick, etc). Additionally, we train
Pick and Place RL policies to overfit to specific objects, i.e., one policy for each task/subtask/object
combination. Since this work focuses on low-level control, we use a teleport for the Navigation
subtask. Additional details on training policies and teleport navigation are provided in Sec. 5.1.

3.2 SKILL CHAINING

Similar to Szot et al. (2021), we split each task into a sequence of subtasks using a perfect task
planner. The sequences are defined below:

• TidyHouse: For (xi, gi) ∈ {(x0, g0), . . . , (x4, g4)}, complete:
Nav(xi,pos) → Pick(xi,pose) → Nav(gi,pos) → Place(xi,pose , gi,pos)

• PrepareGroceries: For (xi, gi) ∈ {(x0, g0), (x1, g1), (x2, g2)}, complete:
Nav(xi,pos) → PickFr[i≤1](xi,pose) → Nav(gi,pos) → PlaceFr[i=2](xi,pose , gi,pos)

• SetTable: For (xi, gi, ai) ∈ {(x0, g0,Dr), (x0, g0,Fr)}, complete:
Nav(ai,pos) → Openai

(ai,pos) → Nav(xi,pos) → Pick(xi,pose) → Nav(gi,pos) →
Place(xi,pose , gi,pos) → Nav(ai,pos) → Closeai

(ai,pos)

3.3 TRAIN AND VALIDATION SPLITS

The ReplicaCAD dataset (Szot et al., 2021) serves as the source for our apartment scenes. It com-
prises 105 scenes divided into 5 macro-variations, each containing 21 micro-variations. Macro-
variations alter the layout of large furniture items such as refrigerators and kitchen counters, while
micro-variations modify the placement of smaller furnishings like chairs and TV stands. The dataset
is split into three parts: 3 macro-variations for training, 1 for validation, and 1 for testing. However,
as the test split is not publicly accessible, our study utilizes only the train and validation splits.

Furthermore, for each long-horizon task, HAB provides 10,000 training episode configurations and
1,000 validation configurations. These configurations specify initial poses for YCB objects and
define target objects, articulations, and goals. Importantly, these configurations exclusively utilize
ReplicaCAD scenes from their respective splits.

4 ENVIRONMENT DESIGN AND BENCHMARKS

By scaling parallel environments with GPU simulation, MS-HAB achieves 4300 SPS on a bench-
mark involving representative interaction with dynamic objects — 3x Habitat 2.0’s implementation.
Our environments support realistic low-level control for successful grasping, manipulation, and in-
teraction, while the Habitat 2.0 environments do not support such kind of low-level control. This
section outlines environment design choices which leverage GPU acceleration and benchmarks MS-
HAB against Habitat’s implementation.

4.1 ENVIRONMENT DESIGN

Evaluation and Training Environments: First, we provide the base evaluation environment,
SequentialTask, which supports executing different subtasks simultaneously on GPU. We per-
form physics simulation and rendering for all environments in parallel, then slice data by subtask to
compute success and fail conditions. It does not support dense reward or spawn selection/rejection.

Second, we provide training environments for each subtask, {SubtaskName}SubtaskTrain,
which extend the main evaluation environment. Each training environment provides dense rewards
hand-engineered for the Fetch embodiment, supports spawning with randomization and rejection,
and incorporates any additional features needed for training specific subtask skills.

Observation Space: We include target object pose, goal position, and TCP pose relative to the base,
an indicator of whether the target object is grasped, 128x128 head and arm RGB-D images, and robot
proprioception. For our experiments, we use only depth images. As is standard for the ManiSkill
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Figure 1: Interact benchmark comparing MS-HAB (ours) with Habitat. Each data point is annotated
with the number of parallel environments used. SPS and GPU memory usage for each data point are
averaged over 10 seeds; error bars representing 95% CIs are plotted, but are too small to see. Thanks
to GPU acceleration, MS-HAB scales parallel environments to achieve over 3x the performance of
Habitat while using a fraction of the GPU memory.

suite of tasks, the simulator computes ground-truth poses. We keep a consistent observation space
across all subtasks via masking to support different subtasks running in parallel.

Action Space: We fully actuate the Fetch embodiment’s arm, torso, and head pan/tilt joints. We
support joint-based controllers and end-effector-based controllers. For our experiments, we use a
PD joint delta position controller for the arm, torso, and head joints. The agent provides linear and
angular velocity to control the base. The action space is normalized to [−1, 1].

Additional Details: Our environments load the ReplicaCAD dataset provided by Habitat 2.0. How-
ever, since Habitat 2.0 uses magical grasp, the original ReplicaCAD dataset’s collision meshes do
not include handles for the kitchen drawers and fridge. So, we alter these collision meshes to include
handles based on the provided visual meshes. We additionally provide navigable position meshes
for the Fetch embodiment with Trimesh, as ManiSkill3 does not currently support navmeshes.

4.2 BENCHMARKING

We adapt Habitat 2.0’s Interact benchmark, which originally had the Fetch robot execute a precom-
puted trajectory to collide with two dynamic objects (Szot et al., 2021). While we retain the same
precomputed trajectory, assets, and scene configuration, we modify the robot’s initial pose and dis-
able magical grasp, allowing it to interact with five objects instead. Our setup includes two mounted
128x128 RGB-D cameras, with a simulation frequency of 100Hz and a control frequency of 20Hz
(the standard for low-level control in ManiSkill3). We collect observation data from vectorized en-
vironments at each step() call. Our benchmarking is conducted on a machine equipped with a
16-core/32-thread Intel i9-12900KS processor and an Nvidia RTX 4090 GPU with 24 GB VRAM.

It is important to note that running the exact same episode in different simulators is exceedingly dif-
ficult since different simulation backends will result in interactions and collisions behaving slightly
differently. Still, the full rollout is similar in both simulators, and the measured performance increase
of MS-HAB in an interactive setting is significant.

Habitat’s Additional Optimizations: While the Habitat simulator already has best-in-class single
process simulation speed, it provides optional additional optimizations: concurrent rendering and
auto sleep. However, their experiments suggest that concurrent rendering can negatively impact
train performance (Szot et al., 2021), so we enable auto-sleep and disable concurrent rendering.

Benchmark Analysis: Per Fig. 1, while Habitat achieves stronger performance per parallel envi-
ronment, its peak performance is limited to 1397.65 ± 11.02 SPS at 22.60 GB VRAM due CPU
simulation’s parallelization limitations and a less efficient renderer. Meanwhile, by scaling up to
4096 environments, MS-HAB is able to achieve 4299.18 ± 26.36 SPS at 15.35 GB VRAM usage
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Figure 2: Renders of low-level, whole-body control policies solving Pick, Place, Open, and Close
subtasks. We render 1 512x512 image and 4 128x128 sensor images. Note the base’s moving
position relative to surroundings. Goal spheres are invisible to sensors. Full videos in supplementary.

— 3.08x faster with 32% less VRAM. Furthermore, our environments support realistic low-level
control for successful grasping, manipulation, and interaction, while the Habitat 2.0 environments
do not support such kind of low-level control.

5 METHODOLOGY

5.1 TRAINING REINFORCEMENT LEARNING POLICIES

We choose Reinforcement Learning (RL) to learn our subtask policies as RL does not require prior
demonstration data, and it can take advantage of our highly parallelized environments to solve tasks
in fast wall-clock time. We use a similar subtask formulation as M3, which trains mobile manipula-
tion skills to solve each subtask from a region of spawn points.

Pick: Without magical grasp, our Pick policies must learn grasp poses which are valid, stable, and
reachable within the kinematic constraints of the mobile Fetch robot. Furthermore, the policy must
learn action sequences which can reach these grasp poses and retrieve the target object within the
specified horizon while keeping the robot under the cumulative collision force limit.

As a result, learning successful grasping for multiple objects with different geometries — in addition
to whole body control with collision constraints — is difficult. So, we opt to train individual Pick
policies for each object, thereby overfitting to the geometry of that object. Our experiments show
these per-object Pick policies achieve improved subtask success rates compared to all-object policies
when handling many objects with varied geometries. In other words, we train a unique per-object
Pick policy for every task/subtask/object combination.

Place: We train per-object Place policies as well. Our experiments show that, in settings where
object geometry is more important (e.g. placing in a fridge with tighter tolerances), per-object Place
policies reach higher success rates than all-object policies.
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Additionally, without magical grasp, there is not a ground-truth means of spawning the robot while
grasping an object. So, we train our Pick policies before Place, then we sample grasp poses from
our Pick policies to initialize the robot in the Place subtask.

Open and Close: Following (Gu et al., 2023a), we train different Open and Close policies for the
kitchen drawer and the fridge. Furthermore, we find that opening the kitchen drawer is particularly
difficult due to its small handle. So, we perturb the initial state distribution of our Open kitchen
drawer subtask during training to accelerate learning: 10% of the time, we initialize the kitchen
drawer opened 20% of the way. During evaluation, we do not alter the initial states.

Algorithms and Hyperparameters: We stack 3 consecutive frames for image observations to han-
dle partial observability.

We train Pick and Place using SAC (Haarnoja et al., 2018; Xing, 2022) with a 1m replay buffer
size. Visual observations are encoded by D4PG’s 4-layer CNN (Barth-Maron et al., 2018) and
concatenated with state observations. Actor and critic networks are 3-layer MLPs and the critic has
LayerNorm to avoid value divergence (Ball et al., 2023). We train Pick with 50M timesteps and
Place with 25M timesteps.

We train Open and Close using PPO (Schulman et al., 2017; Huang et al., 2022). Visual observations
are encoded by a NatureCNN (Mnih et al., 2015) and concatenated with state observations. The actor
and critic networks are 2-layer MLPs. We train Open Fridge with 15M timesteps, Open Drawer with
50M timesteps, Close Fridge with 25M timesteps, and Close Drawer with 15M timesteps.

We train 3 seeds for each task/subtask/object combination, evaluating on 189 episodes every 100,000
train samples. We select the checkpoint with highest evaluation success once rate as our final policy.

Metrics: We run 1000 episodes for every evaluation run (task/subtask evaluation, ablations, etc).

We evaluate subtask policies (Pick, Place, Open, Close) by success once rate (%), which is the
percentage of trajectories that achieve success at least once in an episode with 200 timesteps. We
evaluate long-horizon task success (TidyHouse, PrepareGroceries, SetTable) by Progressive Com-
pletion Rate (%). Here, the success of each subtask requires the success of every previous subtask.
Hence, the completion rate of the final subtask is the completion rate of the entire long-horizon task.

Furthermore, since we are primarily interested in low-level control and manipulation, we replace
navigation with a simple teleport. The robot is teleported to the target location with the same arm,
base pose, and spawn location randomizations as in subtask training, described in Appendix A.1. In
long-horizon tasks, we move to the next subtask as soon as the current subtask achieves success.

5.2 AUTOMATED TRAJECTORY CATEGORIZATION AND DATASET GENERATION

Thanks to fast simulation environments, we can quickly generate 10s to 100s of thousands of demon-
strations. However, our experiments show that our Imitation Learning (IL) policies are sensitive to
demonstration behavior. To filter out “suboptimal” demonstrations, we use privileged information
from our simulator to group demonstrations into mutually exclusive, collectively exhaustive success
and failure modes without significant manual labor. Furthermore, we use this trajectory labeling
system to identify types and causes of failure in our baseline policies in Sec. 6.2 and Appendix A.6.

Example of Pick Subtask: We provide a high-level overview of trajectory labeling on the Pick
subtask. For detailed definitions of events and labels, see Appendix A.6. First, we define “events”
which occur at any timestep t: 1) Contact: nonzero robot/target pairwise force, 2) Grasped: object
not grasped at step t−1 and grasped at step t, 3) Dropped: object grasped at step t−1 and not grasped
at step t, and 4) Excessive Collisions: robot cumulative force exceeds 5000N. For Pick trajectory
τpick = (s0, a0, . . . , sn, an), we create chronologically ordered event list Epick = (e1, . . . , ek).

Next, we define success and failure modes. For example, one success mode is “straightforward
success” with Epick = (Contact, Grasp, Success), requiring success without dropping the object
or colliding too much. One failure mode is “dropped failure,” defined as (Excessive Collisions ̸∈
Epick) ∧ (Dropped ∈ Epick) ∧ (i < j for maximal i, j such that ei = Grasped, ej = Dropped).
“Dropped failure” trajectories fail because the robot irrecoverably drops the target object.

In generating our Pick subtask dataset, we apply filters to include only “straightforward success”
trajectories. These trajectories are characterized by the absence of dropping and minimal collisions.
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As the dataset generation code is publicly available, users have the flexibility to create their own
datasets with custom constraints tailored to their specific requirements.

Imitation Learning Baselines: We train IL baselines on our dataset using Behavior Cloning (BC)
(Bain & Sammut, 1995; Ross et al., 2011; Daftry et al., 2016) (implementation based on Huang
et al. (2022)). Visual observations are encoded by the 5-layer CNN from Bojarski et al. (2016), then
concatenated with state observations. The actor network is a 3-layer MLP.

Dataset Size: With fast environments and automated trajectory filtering, users can generate as many
10s or 100s of thousands of demonstrations as needed in a controlled manner. For our baselines, we
generate 1000 demonstrations per task/subtask/object combination using our per-object RL policies
on the train split. The filters used are listed in Appendix A.6.1, with definitions in Appendix A.6.2.

6 RESULTS

6.1 BASELINES

Fig. 3 shows the RL and IL policies’ progressive completion rate. We provide an optimistic upper
bound on progressive completion rate by (incorrectly) assuming that the completion of each subtask
is independent of every other subtask, thus directly multiplying subtask success once rates. Table 1
shows success once rate for individual subtasks. We find 4 major avenues for improvement.

First, our optimistic upper bound shows low expected success rate on the long-horizon tasks. Even
with per-object RL policies, our low-level mobile manipulation subtasks are difficult to train on
dense reward, and improving subtask success rate is the most direct way to improve overall task
completion rate. Second, TidyHouse and SetTable RL baselines have some gap between upper
bound and real completion rate, indicating potential handoff issues or disturbance to prior target ob-
jects in success states. Meanwhile, the PrepareGroceries RL baseline has a large drop in completion
rate during the second PickFr subtask, indicating that the first PickFr causes too much disturbance to
objects in the fridge. So, improving policy performance in cluttered spaces is important. Third, our
IL policies perform notably worse in Pick and Place, indicating a need for methods and architectures
which can handle multimodalities in the data. Finally, while most RL policies generalize well to the
validation split, the Close Fridge policy completely fails on validation scenes because the fridge door
opens into a wall, preventing the arm from reaching the handle. This is not an issue with magical
grasping (Gu et al., 2023a), indicating that low-level control may need more scene diversity.
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Figure 3: Long-horizon task progressive completion rates (%) on train and validation splits averaged
over 1000 episodes. Futhermore, we provide an ‘upper bound’ on performance based on the success
rates of each subtask policy. Best viewed zoomed.
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Table 1: Subtask success once rates for RL and IL baselines. The RL-Per vs All column shows
the difference in per-object RL policy performance and its all-object counterpart. We do not train
all-object policies for Open or Close subtasks.

TASK SUBTASK SPLIT RL-PER RL-ALL IL RL-PER vs ALL

TidyHouse
Pick Train 81.75 71.63 61.11 +10.12

Val 77.48 68.15 59.03 +9.33

Place Train 65.77 63.69 61.81 +2.08
Val 65.97 66.07 63.79 -0.10

Prepare
Groceries

Pick Train 66.57 51.88 44.64 +14.69
Val 72.32 62.10 52.78 +10.22

Place Train 60.22 53.37 50.00 +6.85
Val 65.67 58.63 56.75 +7.04

SetTable

Pick Train 80.85 75.69 60.71 +5.16
Val 88.49 79.86 72.62 +4.63

Place Train 73.31 72.82 71.23 +0.49
Val 67.06 68.25 62.20 -1.19

OpenFr
Train 83.43 - 74.01 -
Val 88.10 - 53.67 -

OpenDr
Train 84.92 - 79.86 -
Val 84.52 - 78.57 -

CloseFr
Train 86.81 - 86.90 -
Val 0.00 - 0.00 -

CloseDr
Train 88.79 - 88.39 -
Val 89.29 - 87.60 -

6.2 ABLATIONS

6.2.1 RL POLICIES: ALL-OBJECT VS PER-OBJECT POLICIES

The goal of training per-object RL policies for Pick and Place is to improve subtask success rate
since policies with higher success rates allow us to generate successful demonstrations under more
initialization conditions. To verify this, we run two ablations.

Does training per-object Pick and Place policies improve subtask success rate compared to all-
object policies? Per Table 1, per-object policies perform notably better in TidyHouse and Prepare
Groceries Pick, which involve 9 objects, with more modest improvement in SetTable Pick, which
has only 2 objects. Per-object policies perform significantly better in PrepareGroceries Place, which
involves placing with tight tolerances on a cluttered fridge shelf, while performance differences are
negligible in TidyHouse and SetTable Place, which only involve open receptacles. So, per-object
Pick and Place policies learn improved manipulation when grasping a greater variety of objects, or
when manipulating objects in areas with tighter constraints.

Are per-object policies necessary to learn grasping for certain objects in the Pick subtask? In
Table 2, we run our automated trajectory labeling system on Pick YCB object #003, the Cracker
Box (Çalli et al., 2015). The Fetch robot’s parallel gripper can only grasp the Cracker Box along its
shortest dimension, so the set of valid grasp poses are highly dependent on the object’s pose relative
to the robot. The all-object policy is 1.88-2.42x more likely to fail to excessive collisions and 1.87-
12.37x more likely to fail to grasp the object, indicating that overfitting to a specific geometry is
important for our RL policies to learn grasping on difficult geometries. For more detailed trajectory
labeling definitions and statistics, please see Appendix A.6.

6.2.2 IL POLICIES: LABELING AND FILTERING DATASET TRAJECTORIES

IL Policies: Can we control the behavior of our IL policies by filtering for specific demonstra-
tions? Our PrepareGroceries Place RL policies have two similarly frequent success modes: place
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Table 2: Trajectory labeling on Pick Cracker Box with all and per-object RL policies. We group
the trajectories into four categories: success once (S-Once), excessive collision failure (F-Col),
cannot grasp failure (F-Grasp), and other failure modes (F-Other). We provide the percentage of
trajectories which fall into each category, and each row sums to 100% (barring any rounding errors).

TASK SPLIT TYPE S-ONCE F-COL F-GRASP F-OTHER

TidyHouse
Train RL-All 29.46 34.52 28.17 7.85

RL-Per 71.63 17.26 2.48 8.63

Val RL-All 33.73 33.13 24.50 8.64
RL-Per 73.41 16.67 1.98 7.94

Prepare
Groceries

Train RL-All 11.51 60.62 16.17 11.70
RL-Per 51.98 25.10 8.63 14.29

Val RL-All 14.19 57.24 26.88 1.69
RL-Per 56.15 30.46 9.72 3.67

in goal (release the object within 15cm of gpos) and drop to goal (release beyond 15cm). Although
MS-HAB does not simulate state transitions like breaking, placing objects without dropping is a
desirable, safe robot behavior to avoid excessive damage.

We generate 3 datasets with 500 demonstrations per object: 1) place in goal only, 2) drop in goal
only, and 3) 50/50 split (“place”, “drop”, and “split”). We fit IL policies to each dataset and run
trajectory labeling to determine policy behavior, shown in Table 3. The place and drop policies
show bias towards executing place and drop trajectories respectively, but still perform the opposite
behavior somewhat frequently. The split policy is somewhat biased towards dropping, likely because
the 1-dim gripper action to drop is easier to learn under MSE loss than a 7-dim arm action to place.

Table 3: Success once rate (S-Once, %) and ratio of “place in goal” to “drop to goal” trajectories
(Place : Drop). Note that some success trajectories are not labeled place in goal or drop to goal, as
there are other possible success modes described in Appendix A.6.

FILTERS SPLIT S-ONCE PLACE : DROP

Place in goal Train 45.73 3.17 : 1
Val 54.46 2.55 : 1

Drop to goal Train 49.21 1 : 2.22
Val 51.19 1 : 2.86

50/50 Split Train 50.30 1 : 1.71
Val 55.56 1 : 1.41

Thus, data filtering can generally influence IL policy behavior, but additional methods are needed to
fully control behavior (e.g. online finetuning, reward relabeling, more advanced IL methods, etc).

7 CONCLUSION AND LIMITATIONS

We present MS-HAB, a holistic home-scale rearrangement benchmark including a GPU-accelerated
implementation of the HAB which supports realistic low-level control, extensive RL and IL base-
lines, systematic evaluation using our trajectory labeling system, and demonstration filtering for
efficient, controlled data generation at scale. However, there is significant room for improvement
on our baselines, and we do not claim transfer to real robots; both of these we leave to future work.
Whole-body low-level control under constraints in cluttered environments, long-horizon skill chain-
ing, and scene-level rearrangement are challenging for current robot learning methods; we hope our
benchmark and dataset aid the community in advancing these research areas.
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A APPENDIX

A.1 SUBTASK DEFINITIONS AND INITIALIZATION

A.1.1 GENERAL INITIALIZATION

We refer to the robot end-effector as ee, and its rest position as rpos. The end-effector resting
position is (0.5m, 0m, 1.25m) relative to the base1. Let qarm be the arm joint positions, rarm be
the arm resting joint positions, and q̇arm be the arm joint velocities. Similarly, for the torso define
qtor, rtor, and q̇tor. Let vbase be the base linear velocity in ms−1, and vbase,x, vbase,y its x and y
components respectively. Let ωbase be the base angular velocity in rad s−1.

We initialize the robot to rpos, rarm, rtor with q̇arm = (0 . . . 0), q̇tor = 0, vbase = 0, ωbase =
0. Then, qarm is perturbed by clipped Gaussian noise clip(N (0, 0.1),−0.2, 0.2), the base
position is perturbed by clip(N (0, 0.1),−0.2, 0.2), and the base rotation is perturbed by
clip(N (0, 0.25),−0.5, 0.5).

A.2 SUBTASK DEFINITIONS

Let dab = ∥apos− bpos∥22, units in m. For example, dree is the distance in m between the end-effector
and its rest position. Next, let jk = max1≤i≤|qk||qk,i − rk,i|. For example, jarm is the maximum
absolute difference in the arm joint positions and corresponding resting positions. Let C[0:t] be
the cumulative robot collisions in N until step t. Finally, we define two commonly-used success
conditions for the Fetch robot:

1grasped(x) = 1 {x is grasped (computed by simulator)}

1is static = 1

{(
max

1≤i≤|q̇arm|
q̇arm,i ≤ 0.2

)
∧ vbase,x ≤ 0.05 ∧ vbase,y ≤ 0.05 ∧ ωbase ≤ 0.05

}
Pick[a, optional](xpose): Pick object x (from articulation a, if provided).

• Initialization: Spawn robot facing x, within 2m of x, with noise, and without collisions.
• Success:

1grasped(x) ∧ dree ≤ 0.05 ∧ jarm ≤ 0.6 ∧ 1is static ∧ C[0:t] ≤ 5000

• Failure: C[0:t] > 5000N

Place[a, optional](xpose , gpos): Place object x at goal g (in articulation a, if provided).

• Initialization: Spawn with grasp pose sampled from Pick(xpose) policy, robot facing g,
within 2m of g, with noise, and without collisions.

• Success:

¬1grasped(x)∧dgx ≤ 0.15∧dree ≤ 0.05∧jarm ≤ 0.2∧jtor ≤ 0.01∧1is static∧C[0:t] ≤ 7500

• Failure: C[0:t] > 7500N

Open[a](apos): Open articulation a with handle at apos.

• Initialization: Spawn facing a. If a is a fridge, spawn within [0.933,−0.6] × [1.833, 0.6]
region in front of a, otherwise within [0.3,−0.6]×[1.5, 0.6]. With noise, without collisions.

• Success: Let aq, aqmax, aqmin be the current, max, and min joint positions for the target
articulation (drawer or fridge). Then, let aofrac = {0.75 if a is a fridge else 0.9}. We
define

1open(a) = 1 {aq ≥ aofrac · (aqmax − aqmin) + aqmin}
Hence, we have success condition

1open(a) ∧ dree ≤ 0.05 ∧ jarm ≤ 0.2 ∧ jtor ≤ 0.01 ∧ 1is static ∧ C[0:t] ≤ 10000

1The z-axis is ‘up’ in ManiSkill3.
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• Failure2: C[0:t] > 10 000N

Close[a](apos): Close articulation a with handle at apos.

• Initialization: Spawn facing a. If a is a fridge, spawn within [0.933,−0.6] × [1.833, 0.6]
region in front of a, otherwise within [0.3,−0.6]×[1.5, 0.6]. With noise, without collisions.

• Success: Let aq, aqmax, aqmin be the current, max, and min joint positions for the target
articulation (drawer or fridge). We define

1close(a) = 1 {aq ≤ 0.01 · (aqmax − aqmin) + aqmin}

Hence, we have success condition

1close(a) ∧ dree ≤ 0.05 ∧ jarm ≤ 0.2 ∧ jtor ≤ 0.01 ∧ 1is static ∧ C[0:t] ≤ 10000

• Failure2: C[0:t] > 10 000N

A.3 RL SUBTASK EVALUATION CURVES
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Figure 4: Per-object vs all-object RL success once rate (%) evaluation curves for Pick and Place
policies across tasks. We run 3 seeds for each per-object policy and 3 seeds for the all-object policy.
TidyHouse and PrepareGroceries involve 9 objects, while SetTable involves 2 objects. Since we
group runs for different per-object policies into one curve, we use minimum and maximum for the
shaded region. Best viewed zoomed.

During training, we evaluate our policies every 10000 steps on 189 episodes. The per vs all-object
training curves in Fig. 4 demonstrate a similar trend as seen in Sec. 6.2.1: per-object policies show
the most significant improvements when grasping many objects with different geometries (Tidy-
House Pick and PrepareGroceries Pick) or when manipulating objects in tight constraints where
object geometry is important (PrepareGroceries Place).

Per Tables 10-13, the performance limitations for Open and Close seen in Fig. 5 are caused primarily
by the 10 000N cumulative robot force limit we set, which is not used in the original implementation
of the HAB (Szot et al., 2021).

See Appendix A.4.4 for more analysis on performance under lower collision thresholds.

2Originally, the HAB does not specify collision limits for Open or Close, but we add them to enforce safety.
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Figure 5: Open and Close training success once rate (%) curves for Drawer and Fridge. Since
success once rate jumps very quickly once the policy learns to solve the task, we use minimum and
maximum for the shaded region.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 DATASET SIZE

Table 4: Success once rate (SoR) with 95% CIs
depending on demos per object (Demos).

DEMOS SoR

1 0.00± 0.00
10 0.02± 0.03
100 0.27± 0.19
500 0.53± 0.13
1000 0.62± 0.09

To highlight the importance of generat-
ing scalable datasets, we train IL poli-
cies for TidyHouse/PrepareGroceroes/SetTable
Pick/Place subtasks at 1, 10, 100, 500, and 1000
demonstrations per object. In Table 4, we run
1000 evaluation episodes per policy, and group
results by demonstrations per object. We then
report average success once rate and 95% CIs
for each demonstrations per object value.

We find that 1000 demonstrations per object
leads to the most performant policies. Further-
more there are large jumps in success rate as
demonstrations per object increases from 10 to
100 to 500.

A.4.2 PERFORMANCE WITH TASK SIMPLIFICATIONS

In Sec. 6.1, we find that improving subtask success rate is the most effective way to increase long-
horizon task success rate. In Fig. 6, we simplify the long-horizon tasks by (1) removing all collision
requirements, and (2) marking Place subtasks successful if the object remains anywhere on the
target receptacle surface. We find that progressive completion rate increases for both our RL and IL
policies, but we achieve no higher than 20% overall task success on any task or split. Hence, the
largest challenge in training subtask policies is low-level whole-body control. Meanwhile, collision
requirements and subtask success conditions pose some difficulty, but not as much.

A.4.3 SAC VS PPO FOR RL TRAINING

To justify our choices of RL algorithm for each policy, we compare SAC and PPO performance
across tasks and subtasks. For Pick and Place, we compare all-object SAC and PPO subtask success
once rate (%) on the train split. As described in Sec. 5.1, we train SAC with 25 million samples.
Since PPO trains faster wall-time, we provide it 50 millions samples for a fair comparison.

Furthermore, for Open and Close, we compare per-object success once rate (%). We provide PPO
with the same total samples as listed in Sec. 5.1, and we train SAC with 20 million samples per run.

For Pick and Place, despite training on double the total samples, PPO policies achieve notably lower
performance compared to the SAC policies. We hypothesize this is because our large replay buffer
can store a greater diversity of examples across objects, spawn locations, and obstructions, allowing
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Figure 6: Progressive completion rate (%) on simplified long-horizon tasks with RL and IL policies.
We remove all collision requirements, and allow placing on the full target receptacle surface. Best
viewed zoomed.

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

20

40

60

80

100

Su
cc

es
s O

nc
e 

Ra
te

 (%
)

TidyHouse

Pi
ck

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

20

40

60

80

100

PrepareGroceries

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

20

40

60

80

100

SetTable

0 1 2 3 4 5
Environment Samples 1e7

0

20

40

60

80

100

Su
cc

es
s O

nc
e 

Ra
te

 (%
)

Pl
ac

e

0 1 2 3 4 5
Environment Samples 1e7

0

20

40

60

80

100

0 1 2 3 4 5
Environment Samples 1e7

0

20

40

60

80

100

0 1 2 3 4 5
1e7

0

20

40

60

80

100

SetTable Open Drawer

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0

20

40

60

80

100

SetTable Open Fridge

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

0

20

40

60

80

100

SetTable Close Drawer

0.0 0.5 1.0 1.5 2.0 2.5
1e7

0

20

40

60

80

100

SetTable Close Fridge

SAC PPO

Figure 7: SAC vs PPO subtask success once rate (%) curves on the train split. Lines are averaged
across 3 seeds; since success rate can jump rapidly, shaded regions represent min/max values. For
Pick and Place, we compare all-object SAC and PPO policies, and for Open and Close, we compare
per-object policies. Note that for PrepareGroceries and SetTable Place, lines are drawn but near-
zero. Best viewed zoomed.
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Figure 8: Success once rates (%) for RL-Per, RL-All, and IL policies in Pick and Place subtasks
under varying cumulative collision thresholds. Best viewed zoomed.

SAC policies to better learn manipulation in diverse settings (Haarnoja et al., 2018). Hence, we use
SAC for RL Pick and Place baselines.

Meanwhile, in Open Fridge and Close Drawer PPO policies perform better than SAC policies, in
Close Fridge PPO policies perform marginally worse than SAC polices, and in Open Drawer PPO
policies perform better only with many more samples. Since performance between PPO and SAC is
generally comparable in Open and Close, we choose PPO for our baselines since it has faster wall-
time training. For consistency, we use the same RL algorithm across all Open and Close variants.

A.4.4 PERFORMANCE UNDER LOW COLLISION THRESHOLDS

To evaluate the safety of our policies in a real-world setting, we compare performance for RL-Per,
RL-All, and IL policies on Pick and Place subtasks under low cumulative collision thresholds. Per
industry safety standards, we use 1400N for as the measure for safe execution (Mewes & Mauser,
2003).

As seen in Fig. 8, we observe a 5-20% drop in performance depending on subtask when using a cu-
mulative collision threshold of 1400N. Additionally, the per-object RL policies notably outperform
all-object RL policies under lower collision thresholds.

A.4.5 PER VS ALL-OBJECT POLICY LONG-HORIZON PERFORMANCE

In addition to superior subtask success rates, as seen in Fig. 9, per-object RL policies outperform
their all-object counterparts on full long horizon tasks in both train and validation splits.

A.4.6 DIFFUSION POLICY BASELINES

To explore more complicated methods, we train diffusion policy (DP) baselines. We use a setup
similar to the original DP paper, with a UNet backbone and a DDPM scheduler (Chi et al., 2023;
2024). For our visual encoders, we use a simpler 4-layer CNN rather than a ResNet. For consistency,
we use the same architecture and hyperparmeters for all subtasks.

As seen in Table 5, our DP baselines surprisingly perform generally worse than our BC baselines.
Performance is closer in Place subtasks, but worse in Pick, potentially due to the increased potential
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Figure 9: Success once rates (%) for RL-Per and RL-All policies on long-horizon tasks in train and
validation split. Best viewed zoomed.

Table 5: Subtask success once rates for BC and DP baselines.

TASK SUBTASK SPLIT BC DP

TidyHouse
Pick Train 61.11 28.37

Val 59.03 27.18

Place Train 61.81 58.63
Val 63.79 59.92

Prepare
Groceries

Pick Train 44.64 19.35
Val 52.78 19.74

Place Train 50.00 39.09
Val 56.75 50.40

SetTable

Pick Train 60.71 23.71
Val 72.62 24.40

Place Train 71.23 64.19
Val 62.20 55.36

OpenFr
Train 74.01 62.10
Val 53.67 63.79

OpenDr
Train 79.86 16.17
Val 78.57 15.18

CloseFr
Train 86.90 64.09
Val 0.00 0.10

CloseDr
Train 88.39 89.29
Val 87.60 85.81

20



Published as a conference paper at ICLR 2025

for collisions when picking objects. Interestingly, DP is the only baseline which achieves non-zero
success on Open Fridge on the validation split, despite the fridge being against a wall (unseen in the
train split).

Our results suggest that, while smaller backbones or limited tuning can solve simpler tasks like
Push-T or those in the ManiSkill3 standard task suite, the ManiSkill-HAB tasks might require
larger/different backbones (e.g. diffusion transformer), tuning hyperparemeters per subtask, or in-
cluding newer methods like online finetuning (e.g. DPPO) (Dasari et al., 2024; Ren et al., 2024).

A.5 RAY TRACING AND VISUAL FIDELITY

Figure 10: Left: ManiSkill-HAB with ray tracing on. Right: Behavior-1k with ray tracing on.
Both images are live-rendered. The right image is taken from the Behavior-1k Google Colab demo
notebook (Li et al., 2022).

For visual realism, we provide live-rendered ray-tracing with tuned lighting, which can be selected
with only one line in the code. We compare rendering performance and quality with Behavior-1k, a
platform known for its visual realism (Li et al., 2022).

To compare performance, we run an altered version of Behavior-1k’s rendering benchmark. We
use a single Nvidia RTX 4090, render 1 128x128 RGB-D image, and simulate dynamics with a
simulation frequency of 120Hz and control frequency of 30Hz. Each evaluation run consists of 300
steps of random actions clipped to [-0.3, 0.3]. We report mean and 95% CIs over 10 evaluation runs.

While live-rendering with ray tracing, ManiSkill-HAB achieves 69.90 ± 0.25 samples per second
(SPS) while using 6.26 ± 0.00 GB of GPU memory, while Behavior-1k is limited to 19.92 ± 0.04
SPS while using 7.62± 0.04 GB of GPU memory.

Hence, ManiSkill-HAB is 3.51x faster than Behavior-1k while using 17.85% less GPU memory,
while also retaining similar ray-tracing render quality as seen in Fig. 10.

A.6 TRAJECTORY CATEGORIZATION AND DATASET FILTERING

In this section, we provide definitions for our event labeling and trajectory categorization system. We
additionally provide statistics on policy success and failure modes using our trajectory categorization
system. Some example videos for Pick and Place failure modes are provided in the supplementary
and project website.

A.6.1 DATASET FILTERING AND GENERATION

We generate 1000 demonstrations per object/articulation for each subtask using per-object RL poli-
cies on the train split. We use our trajectory labeling system to filter demonstrations (full definitions
in Appendix A.6.2). For Pick, we require “straightforward success” demonstrations, where the
agent successfully picks the object without dropping it while remaining within the cumulative col-
lision threshold. For Place, we require “placed in goal success” demonstrations, where the agent
releases the object within 15cm of the goal, the object stays in the goal without rolling or falling out,
and the agent remains within the cumulative collision threshold. For Open and Close, we require
“open success” and “closed success” demonstrations, where the agent opens/closes the articulation
without excessive collisions, and the articulation remains within the open/close state.
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A.6.2 DEFINITIONS

For each success and failure mode definition, we provide a plain text description in addition to the
boolean definitions. We heavily rely on notation used in Appendix A.1, in addition to those defined
below.

Using the criteria defined below, for each trajectory τsubtask = (s0, a0, . . . , sn, an), we create a
chronologically ordered event list Esubtask = (e1, . . . , ek). Using Esubtask, we categorize τsubtask
into a success/failure mode.

Let isubtask,event = {index of eevent in Esubtask if eevent ∈ Esubtask else − 1}. Also, let Fa,b,t be
the pairwise force between a and b in N at timestep t.

Pick[a, optional](xpose): Pick object x (from articulation a, if provided).

• Events: We define time-conditioned events at timestep t:

econtact = |Fee,x,t−1| = 0 ∧ |Fee,x,t| ≥ 0

egrasped = ¬1grasped(x),t−1 ∧ 1grasped(x),t

edropped = 1grasped(x),t−1 ∧ ¬1grasped(x),t

esuccess = ¬1success,t−1 ∧ 1success,t

eexcessive collisions = C[0:t−1] ≤ 5000 ∧ C[0:t] > 5000

For t ∈ {1, . . . n} (in increasing order), we evaluate each eevent in the order shown above.
If eevent = 1, we add it to Epick.

• Success Modes: if esuccess ∈ Epick, then categorize using the following success modes:

i Straightforward success: Agent successfully grasps x and returns to rest without drop-
ping or excessive collisions.
Epick = (econtact, egrasped, esuccess)

ii Winding success: Agent (eventually) successfully grasps x (but drops x along the
way) and returns to rest without excessive collisions.
Epick = (econtact, egrasped, . . . , esuccess) ∧ |Epick| > 3 ∧ eexcessive collisions ̸∈ Epick

iii Success then drop: Agent successfully picks x and returns to rest without excessive
collisions, but irrecoverably drops x after.
edropped ∈ Epick ∧ isubtask,dropped > isubtask,grasped ∧ eexcessive collisions ̸∈ Epick

iv Success then excessive collisions: Agent picks x and returns to rest, but exceeds col-
lision threshold afterwards.
eexcessive collisions ∈ Epick

• Failure Modes: if esuccess ̸∈ Epick, then categorize using the following failure modes:

v Excessive collision failure: Agent exceeds collision threshold.
eexcessive collisions ∈ Epick

vi Mobility failure: Agent cannot reach x.
Epick = ()

vii Can’t grasp failure: Agent reaches x, but cannot grasp it.
Epick = (econtact)

viii Drop failure: Agent grasps x, but drops it before returning to rest.
edropped ∈ Epick ∧ isubtask,dropped > isubtask,grasped ∧ eexcessive collisions ̸∈ Epick

ix Too slow failure: Agent (eventually) grasps x, but the episode truncates before it can
reach success.
egrasped ∈ Epick ∧ isubtask,grasped > isubtask,dropped ∧ eexcessive collisions ̸∈ Epick

Place[a, optional](xpose , gpos): Place object x at goal g (in articulation a, if provided).
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• Events: We define time-conditioned events at timestep t:

egrasped = ¬1grasped(x),t−1 ∧ 1grasped(x),t

eobj at goal = dgx,t−1 > 0.15 ∧ dgx,t ≤ 0.15

ereleased at goal = dgx ≤ 0.15 ∧ 1grasped(x),t−1 ∧ ¬1grasped(x),t

ereleased outside goal = dgx > 0.15 ∧ 1grasped(x),t−1 ∧ ¬1grasped(x),t

eobj left goal = dgx,t−1 ≤ 0.15 ∧ dgx,t > 0.15

esuccess = ¬1success,t−1 ∧ 1success,t

eexcessive collisions = C[0:t−1] ≤ 7500 ∧ C[0:t] > 7500

For t ∈ {1, . . . n} (in increasing order), we evaluate each eevent in the order shown above.
If eevent = 1, we add it to Eplace.

• Success Modes: if esuccess ∈ Eplace, then categorize using the following success modes:
i Place in goal success: Agent releases and successfully places x to within 15cm of
gpos, then returns to rest.
|Eplace| ≤ 4 ∧ (ereleased at goal ∈ Eplace ∨ dgx,0 ≤ 0.15) ∧ iplace,obj left goal ≤
iplace,obj at goal ∧ eexcessive collisions ̸∈ Eplace

ii Dropped to goal success: Agent releases x beyond 15cm of gpos, x drops into the
region within 15cm of gpos, and the agent returns to rest.
|Eplace| ≤ 4 ∧ (ereleased outside goal ∈ Eplace ∨ dgx,0 > 0.15) ∧ iplace,obj left goal ≤
iplace,obj at goal ∧ eexcessive collisions ̸∈ Eplace

iii Dubious success: x is manipulated to within 15cm of gpos, and the robot returns to
rest, but x leaves g before truncation.
iplace,obj at goal < iplace,obj left goal ∧ eexcessive collisions ̸∈ Eplace

iv Winding success: x leaves the goal at least once, but the agent (eventually) success-
fully places/drops x to within 15cm of gpos, where it remains as the agent returns to
rest.
|Eplace| > 4 ∧ iplace,obj at goal > iplace,obj left goal ∧ eexcessive collisions ̸∈ Eplace

v Success then excessive collisions: The agent successfully places/drops x to within
15cm of gpos and returns to rest, but exceeds collision threshold after.
eexcessive collisions ∈ Eplace

• Failure Modes: if esuccess ̸∈ Eplace, then categorize using the following failure modes:
vi Excessive collision failure: Agent exceeds collision threshold.

eexcessive collisions ∈ Eplace

vii Didn’t grasp failure: Agent fails to grasp x at initialization.
Eplace = () ∧ eexcessive collisions ̸∈ Eplace

viii Didn’t reach goal failure: Agent grasps x, but cannot manipulate x to within 15cm of
gpos.
|Eplace| > 0 ∧ eobj at goal ̸∈ Eplace ∧ eexcessive collisions ̸∈ Eplace

ix Place in goal failure: Agent places x to within 15cm of gpos, but x leaves this region
(i.e., rolls or falls out) before the agent returns to rest.
First, we define
1placed is latest sequence = (|Eplace| ≤ 2 ∧ dgx,0 ≤ 0.15) ∨ (iplace,released at goal >

iplace,released outside goal ∧ iplace,released at goal > iplace,grasped)
Hence, we have failure mode definition
eobj at goal ∈ Eplace ∧1placed is latest sequence ∧ iplace,obj left goal > iplace,obj at goal ∧
eexcessive collisions ̸∈ Eplace

x Dropped to goal failure: Agent drops x beyond 15cm away from gpos, and x drops
into the region within 15cm of gpos, but leaves this region (i.e., rolls or falls out) before
the agent returns to rest. First, we define
1dropped is latest sequence = (|Eplace| ≤ 2∧dgx,0 > 0.15)∨(iplace,released outside goal >

iplace,released at goal ∧ iplace,released outside goal > iplace,grasped)
Hence, we have failure mode definition
eobj at goal ∈ Eplace∧1dropped is latest sequence∧iplace,obj left goal > iplace,obj at goal∧
eexcessive collisions ̸∈ Eplace
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xi Won’t let go failure: The agent is able to manipulate x to within 15cm of gpos, but
does not release x.
eobj at goal ∈ Eplace ∧ iplace,grasped > iplace,released at goal ∧ iplace,grasped >
iplace,released outside goal ∧ eexcessive collisions ̸∈ Eplace

xii Too slow failure: The agent is able to manipulate x to within 15cm of the goal, releases
x, but is unable to return to rest before truncation.
The condition is no other failure mode is applicable. This also implies
iplace,obj at goal > iplace,obj left goal ∧ eexcessive collisions ̸∈ Eplace

Open[a](apos): Open articulation a with handle at apos.

• Events: First, define indicator

1slightly opened(a),t = 1 {aq,t ≥ 0.1 · (aqmax − aqmin) + aqmin}

Now, we define time-conditioned events at timestep t:

econtact = |Fee,a,t−1| = 0 ∧ |Fee,a,t| ≥ 0

eopened = ¬1open(a),t−1 ∧ 1open(a),t

eslightly opened = ¬1slightly opened(a),t−1 ∧ 1slightly opened(a),t

eclosed = 1open(a),t−1 ∧ ¬1open(a),t

esuccess = ¬1success,t−1 ∧ 1success,t

eexcessive collisions = C[0:t−1] ≤ 10000 ∧ C[0:t] > 10000

For t ∈ {1, . . . n} (in increasing order), we evaluate each eevent in the order shown above.
If eevent = 1, we add it to Eopen.

• Success Modes: if esuccess ∈ Eopen, then categorize using the following success modes:

i Open success: Agent successfully opens a and returns to rest without excessive colli-
sions.
eexcessive collisions ̸∈ Eopen ∧ iopen,opened > iopen,closed

ii Dubious success: Agent successfully opens a and returns to rest without excessive
collisions, but accidentally closes a after
eexcessive collisions ̸∈ Eopen ∧ iopen,opened < iopen,closed

iii Success then excessive collisions: Agent successfully opens a and returns to rest, but
exceeds collision threshold after.
eexcessive collisions ̸∈ Eopen

• Failure Modes: if esuccess ̸∈ Eopen, then categorize using the following failure modes:

iv Excessive collision failure: Agent exceeds collision threshold.
eexcessive collisions ∈ Eopen

v Can’t reach articulation failure: Agent cannot reach a.
econtact ̸∈ Eopen ∧ eexcessive collisions ̸∈ Eopen

vi Closed after open failure: Agent opens a, but closes it before returning to rest.
eclosed ∈ Eopen ∧ iopen,closed > iopen,opened ∧ iopen,closed > iopen,slightly opened ∧
eexcessive collisions ̸∈ Eopen

vii Slightly opened failure: Agent at least slightly opens a, but cannot fully open it.
Previous failure modes are not applicable, and iopen,slightly opened > iopen,opened ∧
iopen,slightly opened > iopen,closed ∧ eexcessive collisions ̸∈ Eopen

viii Too slow failure: Agent is able to open a, but cannot return to rest in time.
Previous failure modes are not applicable, and eopened ∈ Eopen

ix Can’t open failure: Agent reaches a, but cannot open it.
The condition is no other failure mode is applicable. This also implies econtact ∈
Eopen ∧ eopened ̸∈ Eopen

Close[a](apos): Close articulation a with handle at apos.

24



Published as a conference paper at ICLR 2025

• Events: First, define indicator

1slightly closed(a),t = 1 {aq,t < aq,0 − 0.05 · (aqmax − qqmin)}

Now, we define time-conditioned events at timestep t:

econtact = |Fee,a,t−1| = 0 ∧ |Fee,a,t| ≥ 0

eclosed = ¬1closed(a),t−1 ∧ 1closed(a),t

eslightly closed = ¬1slightly closed(a),t−1 ∧ 1slightly closed(a),t

eopen = 1closed(a),t−1 ∧ ¬1closed(a),t

esuccess = ¬1success,t−1 ∧ 1success,t

eexcessive collisions = C[0:t−1] ≤ 10000 ∧ C[0:t] > 10000

For t ∈ {1, . . . n} (in increasing order), we evaluate each eevent in the order shown above.
If eevent = 1, we add it to Eclose.

• Success Modes: if esuccess ∈ Eclose, then categorize using the following success modes:
i Close success: Agent successfully closes a and returns to rest without excessive colli-

sions.
eexcessive collisions ̸∈ Eclose ∧ iclose,closed > iclose,opened

ii Dubious success: Agent successfully closes a and returns to rest without excessive
collisions, but accidentally opens a after.
eexcessive collisions ̸∈ Eclose ∧ iclose,closed < iclose,opened

iii Success then excessive collisions: Agent successfully closes a and returns to rest, but
exceeds collision threshold after.
eexcessive collisions ̸∈ Eclose

• Failure Modes: if esuccess ̸∈ Eclose, then categorize using the following failure modes:
iv Excessive collision failure: Agent exceeds collision threshold.

eexcessive collisions ∈ Eclose

v Can’t reach articulation failure: Agent cannot reach a.
econtact ̸∈ Eclose ∧ eexcessive collisions ̸∈ Eclose

vi Opened after closed failure: Agent closes a, but opens it before returning to rest.
eclosed ∈ Eclose ∧ iclose,opened > iclose,closed ∧ iclose,opened > iclose,slightly closed ∧
eexcessive collisions ̸∈ Eclose

vii Slightly closed failure: Agent at least slightly closes a, but cannot fully close it.
Previous failure modes are not applicable, and iclose,slightly closed > iclose,closed ∧
iclose,slightly closed > iclose,opened ∧ eexcessive collisions ̸∈ Eclose

viii Too slow failure: Agent is able to close a, but cannot return to rest in time.
Previous failure modes are not applicable, and eclosed ∈ Eclose

ix Can’t close failure: Agent reaches a, but cannot close it.
The condition is no other failure mode is applicable. This also implies econtact ∈
Eclose ∧ eclosed ̸∈ Eclose

A.6.3 TRAJECTORY CATEGORIZATION STATISTICS

In Tables 6-13, we categorize trajectories with our automated event labeling method. We run 1000
episodes for every task/subtask/target combination using all relevant policies (RL-Per, RL-All, IL)
for each object/articulation. We provide success once rate (SoR), success at end rate (SaeR), failure
rate (FR), and proportions for each success and failure mode as percentages (labeled with roman
numerals corresponding to those use in Appendix A.6.2).
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Table 6: Train split Pick policy trajectory labeling on 1000 episodes per target object. All numbers
are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) (iv) FR (v) (vi) (vii) (viii) (ix)

TH

002
RL-Per 82.34 72.52 70.63 1.88 0.00 9.82 17.66 13.79 3.37 0.40 0.10 0.00
RL-All 78.97 60.81 58.43 2.38 0.00 18.15 21.03 13.69 5.65 0.89 0.50 0.30

IL 72.62 70.63 67.76 2.88 0.20 1.79 27.38 21.03 0.69 1.79 1.29 2.58

003
RL-Per 71.63 62.80 60.91 1.88 0.10 8.73 28.37 17.26 7.64 2.48 0.89 0.10
RL-All 29.46 23.41 23.02 0.40 0.00 6.05 70.54 34.52 6.25 28.17 1.19 0.40

IL 17.96 17.16 16.87 0.30 0.00 0.79 82.04 49.01 0.20 31.25 0.89 0.69

004
RL-Per 78.47 68.15 65.48 2.68 0.00 10.32 21.53 13.29 6.25 1.19 0.60 0.20
RL-All 74.60 57.64 55.16 2.48 0.00 16.96 25.40 16.27 6.25 1.88 0.40 0.60

IL 60.81 57.44 54.27 3.17 0.00 3.37 39.19 27.18 0.50 6.05 1.59 3.87

005
RL-Per 81.05 78.27 75.10 3.17 0.00 2.78 18.95 15.67 2.58 0.40 0.10 0.20
RL-All 76.69 62.30 59.13 3.17 0.20 14.19 23.31 17.06 5.16 0.30 0.40 0.40

IL 74.01 70.73 66.37 4.37 0.10 3.17 25.99 21.13 0.40 0.79 0.89 2.78

007
RL-Per 83.23 80.36 78.57 1.79 0.20 2.68 16.77 10.52 5.95 0.20 0.10 0.00
RL-All 77.98 70.44 69.44 0.99 0.00 7.54 22.02 15.97 5.56 0.10 0.10 0.30

IL 76.59 75.20 72.42 2.78 0.10 1.29 23.41 18.95 1.59 1.69 0.20 0.99

008
RL-Per 75.99 72.22 63.19 9.03 0.50 3.27 24.01 17.36 3.08 2.18 0.79 0.60
RL-All 73.91 62.80 55.95 6.85 0.60 10.52 26.09 18.25 5.36 1.69 0.69 0.10

IL 65.18 62.50 54.07 8.43 0.50 2.18 34.82 26.39 0.40 3.77 2.18 2.08

009
RL-Per 81.25 76.69 71.63 5.06 0.40 4.17 18.75 12.40 5.46 0.50 0.30 0.10
RL-All 71.43 60.42 50.10 10.32 0.40 10.62 28.57 20.54 4.86 2.28 0.60 0.30

IL 67.16 64.29 55.85 8.43 0.79 2.08 32.84 25.00 0.79 3.08 2.38 1.59

010
RL-Per 81.65 52.78 48.61 4.17 0.10 28.77 18.35 12.40 4.86 0.79 0.20 0.10
RL-All 75.50 61.90 55.16 6.75 0.00 13.59 24.50 18.95 4.27 0.99 0.20 0.10

IL 58.33 54.17 48.02 6.15 0.50 3.67 41.67 26.98 0.79 8.43 1.19 4.27

024
RL-Per 82.74 78.47 68.35 10.12 0.20 4.07 17.26 12.90 3.67 0.30 0.20 0.20
RL-All 73.91 65.08 56.15 8.93 0.00 8.83 26.09 19.05 6.15 0.69 0.10 0.10

IL 62.20 58.63 50.40 8.23 0.69 2.88 37.80 25.20 0.20 7.74 2.18 2.48

all
RL-Per 81.75 73.41 67.26 6.15 0.20 8.13 18.25 12.40 4.17 1.19 0.30 0.20
RL-All 71.63 59.13 54.17 4.96 0.30 12.20 28.37 19.74 4.96 3.17 0.30 0.20

IL 61.11 59.42 54.56 4.86 0.20 1.49 38.89 26.39 0.69 7.64 0.89 3.27

PG

002
RL-Per 69.05 55.16 50.89 4.27 0.40 13.49 30.95 14.58 16.17 0.10 0.00 0.10
RL-All 62.70 49.40 38.10 11.31 1.49 11.81 37.30 24.60 11.31 0.89 0.50 0.00

IL 63.10 59.82 55.16 4.66 0.20 3.08 36.90 31.55 2.38 1.09 0.99 0.89

003
RL-Per 51.98 43.15 40.67 2.48 2.08 6.75 48.02 25.10 12.30 8.63 1.79 0.20
RL-All 11.51 8.13 7.64 0.50 0.60 2.78 88.49 60.62 11.21 16.17 0.20 0.30

IL 16.27 14.38 13.79 0.60 1.29 0.60 83.73 67.06 2.28 12.10 1.98 0.30

004
RL-Per 64.48 52.88 50.20 2.68 0.20 11.41 35.52 19.44 13.99 0.69 0.10 1.29
RL-All 59.82 46.03 37.10 8.93 1.39 12.40 40.18 26.98 11.41 0.99 0.40 0.40

IL 51.09 47.32 44.84 2.48 0.50 3.27 48.91 39.98 2.38 2.88 1.98 1.69

005
RL-Per 61.21 48.51 44.74 3.77 0.30 12.40 38.79 25.79 11.51 0.10 0.20 1.19
RL-All 63.29 51.29 39.58 11.71 0.69 11.31 36.71 25.89 10.42 0.10 0.30 0.00

IL 61.01 56.25 54.07 2.18 0.20 4.56 38.99 34.33 2.28 0.50 0.89 0.99

007
RL-Per 66.57 52.58 47.02 5.56 0.10 13.89 33.43 18.55 13.29 1.19 0.30 0.10
RL-All 64.38 45.63 34.42 11.21 0.89 17.86 35.62 23.71 10.81 0.99 0.10 0.00

IL 61.61 59.82 57.04 2.78 0.00 1.79 38.39 32.14 3.08 1.59 0.89 0.69

008
RL-Per 62.90 45.73 37.00 8.73 0.89 16.27 37.10 21.33 14.38 0.79 0.50 0.10
RL-All 45.93 34.03 21.63 12.40 2.58 9.33 54.07 36.81 12.40 3.17 1.49 0.20

IL 40.38 35.71 32.24 3.47 1.19 3.47 59.62 49.80 2.78 3.97 2.58 0.50

009
RL-Per 63.59 46.73 41.67 5.06 1.09 15.77 36.41 18.75 16.47 0.30 0.50 0.40
RL-All 49.01 38.49 26.19 12.30 1.69 8.83 50.99 32.14 13.00 3.67 1.69 0.50

IL 43.25 39.78 36.01 3.77 1.19 2.28 56.75 45.73 3.77 4.56 2.18 0.50

010
RL-Per 65.18 51.49 44.64 6.85 0.30 13.39 34.82 20.93 13.29 0.20 0.30 0.10
RL-All 54.76 42.06 27.58 14.48 1.49 11.21 45.24 30.26 12.10 2.18 0.30 0.40

IL 50.99 48.61 41.77 6.85 0.10 2.28 49.01 41.27 2.68 2.38 1.69 0.99

024
RL-Per 74.60 56.45 39.58 16.87 0.30 17.86 25.40 15.87 8.73 0.30 0.20 0.30
RL-All 51.09 35.02 22.92 12.10 0.79 15.28 48.91 37.00 10.12 1.09 0.60 0.10

IL 20.73 18.25 14.68 3.57 0.60 1.88 79.27 66.37 1.88 7.54 1.49 1.98

all
RL-Per 66.57 52.78 46.63 6.15 0.40 13.39 33.43 19.54 11.81 1.09 0.60 0.40
RL-All 51.88 37.70 28.17 9.52 1.79 12.40 48.12 33.93 10.12 2.48 1.29 0.30

IL 44.64 42.36 39.38 2.98 0.40 1.88 55.36 47.22 1.49 4.27 1.49 0.89

ST

013
RL-Per 65.87 54.07 47.82 6.25 0.30 11.51 34.13 11.11 21.73 0.00 0.40 0.89
RL-All 59.03 35.71 33.04 2.68 0.10 23.21 40.97 16.57 24.01 0.10 0.00 0.30

IL 53.67 39.48 35.62 3.87 0.89 13.29 46.33 43.45 1.39 0.69 0.50 0.30

024
RL-Per 94.35 85.81 75.30 10.52 0.20 8.33 5.65 4.86 0.50 0.10 0.20 0.00
RL-All 93.95 79.37 64.68 14.68 0.20 14.38 6.05 5.06 0.30 0.00 0.50 0.20

IL 65.58 58.63 51.88 6.75 0.20 6.75 34.42 24.21 1.29 5.26 2.68 0.99

all
RL-Per 80.85 69.64 60.62 9.03 0.20 11.01 19.15 8.04 10.12 0.00 0.30 0.69
RL-All 75.69 56.55 47.52 9.03 0.10 19.05 24.31 11.01 12.40 0.30 0.50 0.10

IL 60.71 50.40 44.74 5.65 1.09 9.23 39.29 31.25 1.88 3.87 1.29 0.99
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Table 7: Val split Pick policy trajectory labeling on 1000 episodes per target object. All numbers are
percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) (iv) FR (v) (vi) (vii) (viii) (ix)

TH

002
RL-Per 80.06 70.63 68.95 1.69 0.30 9.13 19.94 15.77 3.67 0.30 0.00 0.20
RL-All 78.57 61.71 59.82 1.88 0.00 16.87 21.43 15.18 5.36 0.69 0.10 0.10

IL 73.61 72.22 69.64 2.58 0.20 1.19 26.39 21.03 0.20 1.69 1.09 2.38

003
RL-Per 73.41 64.38 61.61 2.78 0.10 8.93 26.59 16.67 6.94 1.98 0.99 0.00
RL-All 33.73 26.29 25.79 0.50 0.10 7.34 66.27 33.13 7.34 24.50 1.09 0.20

IL 16.67 16.17 15.58 0.60 0.10 0.40 83.33 47.52 0.10 33.93 0.69 1.09

004
RL-Per 77.28 69.44 66.96 2.48 0.00 7.84 22.72 13.39 6.85 1.29 0.79 0.40
RL-All 75.20 57.44 54.07 3.37 0.00 17.76 24.80 15.97 6.35 1.88 0.20 0.40

IL 59.62 57.34 54.76 2.58 0.20 2.08 40.38 27.78 0.40 7.24 1.19 3.77

005
RL-Per 81.15 78.08 75.79 2.28 0.10 2.98 18.85 15.87 2.78 0.20 0.00 0.00
RL-All 75.50 61.90 58.43 3.47 0.10 13.49 24.50 18.55 5.06 0.20 0.40 0.30

IL 71.03 69.44 65.77 3.67 0.20 1.39 28.97 21.92 0.99 2.28 0.79 2.98

007
RL-Per 82.74 77.98 76.69 1.29 0.00 4.76 17.26 11.61 5.46 0.20 0.00 0.00
RL-All 77.78 69.44 68.75 0.69 0.00 8.33 22.22 15.18 6.55 0.40 0.00 0.10

IL 72.72 71.23 67.66 3.57 0.10 1.39 27.28 22.22 1.29 1.79 0.10 1.88

008
RL-Per 75.40 70.34 60.62 9.72 0.69 4.37 24.60 18.45 2.58 2.48 0.79 0.30
RL-All 72.02 63.19 55.95 7.24 0.40 8.43 27.98 19.54 5.26 2.38 0.79 0.00

IL 61.61 60.32 54.76 5.56 0.50 0.79 38.39 29.37 0.89 3.87 2.58 1.69

009
RL-Per 78.57 74.70 69.15 5.56 0.30 3.57 21.43 14.98 5.26 0.89 0.20 0.10
RL-All 71.63 60.62 52.78 7.84 0.30 10.71 28.37 20.34 6.35 0.60 0.99 0.10

IL 64.48 62.20 54.96 7.24 1.09 1.19 35.52 28.57 1.09 2.78 1.88 1.19

010
RL-Per 82.24 53.37 50.00 3.37 0.00 28.87 17.76 13.19 4.07 0.50 0.00 0.00
RL-All 74.90 63.99 56.94 7.04 0.10 10.81 25.10 19.25 4.46 0.79 0.30 0.30

IL 55.75 52.68 46.83 5.85 0.10 2.98 44.25 27.88 0.30 9.42 1.69 4.96

024
RL-Per 79.56 74.31 63.79 10.52 0.50 4.76 20.44 15.58 4.46 0.20 0.20 0.00
RL-All 69.74 62.90 53.37 9.52 0.00 6.85 30.26 22.32 7.14 0.50 0.20 0.10

IL 58.04 54.76 44.94 9.82 0.40 2.88 41.96 29.96 0.30 7.04 1.39 3.27

all
RL-Per 77.48 69.44 65.77 3.67 0.30 7.74 22.52 16.57 4.86 0.89 0.00 0.20
RL-All 68.15 57.34 53.97 3.37 0.00 10.81 31.85 21.73 5.36 4.27 0.10 0.40

IL 59.03 57.04 53.87 3.17 0.20 1.79 40.97 28.47 0.30 8.43 1.39 2.38

PG

002
RL-Per 84.62 67.56 63.69 3.87 0.89 16.17 15.38 12.10 2.88 0.10 0.10 0.20
RL-All 76.98 54.27 41.47 12.80 2.68 20.04 23.02 20.34 0.99 1.29 0.30 0.10

IL 74.11 68.45 64.58 3.87 1.19 4.46 25.89 20.93 0.50 1.29 2.18 0.99

003
RL-Per 56.15 42.56 39.68 2.88 2.38 11.21 43.85 30.46 2.08 9.72 1.39 0.20
RL-All 14.19 11.41 10.02 1.39 0.60 2.18 85.81 57.24 0.69 26.88 0.99 0.00

IL 18.25 16.77 16.37 0.40 0.69 0.79 81.75 61.90 0.20 16.67 2.58 0.40

004
RL-Per 69.74 60.52 57.24 3.27 0.30 8.93 30.26 25.00 2.08 1.29 0.40 1.49
RL-All 71.23 47.82 38.99 8.83 4.17 19.25 28.77 23.61 1.29 2.78 0.89 0.20

IL 58.43 53.57 51.19 2.38 0.40 4.46 41.57 34.33 0.30 4.17 1.49 1.29

005
RL-Per 76.69 64.88 60.12 4.76 0.20 11.61 23.31 21.43 0.69 0.60 0.30 0.30
RL-All 75.60 53.97 40.87 13.10 1.19 20.44 24.40 21.03 1.09 1.79 0.30 0.20

IL 75.00 68.35 65.67 2.68 0.30 6.35 25.00 20.54 0.79 1.19 1.29 1.19

007
RL-Per 76.98 56.25 50.69 5.56 0.30 20.44 23.02 19.35 2.58 0.60 0.40 0.10
RL-All 76.98 56.15 41.96 14.19 0.40 20.44 23.02 19.64 1.59 1.79 0.00 0.00

IL 72.02 69.84 65.48 4.37 0.10 2.08 27.98 21.83 1.69 2.78 0.79 0.89

008
RL-Per 73.21 48.91 37.60 11.31 0.69 23.61 26.79 22.52 1.59 1.98 0.30 0.40
RL-All 58.93 42.86 24.70 18.15 3.67 12.40 41.07 29.07 2.38 6.65 2.98 0.00

IL 44.35 37.40 32.04 5.36 1.88 5.06 55.65 44.15 1.59 5.65 3.47 0.79

009
RL-Per 70.73 38.00 32.24 5.75 1.88 30.85 29.27 26.19 1.69 0.99 0.20 0.20
RL-All 62.90 46.92 29.37 17.56 2.88 13.10 37.10 26.09 2.38 5.36 2.98 0.30

IL 44.54 38.79 33.73 5.06 1.79 3.97 55.46 42.56 1.19 7.64 3.67 0.40

010
RL-Per 74.50 55.26 48.61 6.65 0.60 18.65 25.50 23.91 0.50 0.79 0.30 0.00
RL-All 70.04 49.40 34.42 14.98 2.88 17.76 29.96 23.41 2.38 3.57 0.60 0.00

IL 59.23 57.04 52.18 4.86 0.50 1.69 40.77 33.93 0.69 2.98 2.18 0.99

024
RL-Per 78.17 55.65 39.09 16.57 0.10 22.42 21.83 15.08 5.75 0.50 0.10 0.40
RL-All 61.21 37.00 25.79 11.21 1.19 23.02 38.79 35.81 0.69 1.49 0.79 0.00

IL 22.82 20.14 16.27 3.87 0.30 2.38 77.18 65.28 0.79 7.64 0.89 2.58

all
RL-Per 72.32 53.47 45.93 7.54 0.50 18.35 27.68 23.02 1.39 2.38 0.79 0.10
RL-All 62.10 43.75 31.25 12.50 1.79 16.57 37.90 28.47 0.89 7.54 0.89 0.10

IL 52.78 47.52 43.75 3.77 0.50 4.76 47.22 36.90 0.69 6.55 1.79 1.29

ST

013
RL-Per 80.36 58.43 48.02 10.42 0.20 21.73 19.64 17.96 0.30 0.00 0.20 1.19
RL-All 66.67 26.29 19.74 6.55 0.10 40.28 33.33 31.94 0.89 0.30 0.20 0.00

IL 78.08 55.56 51.09 4.46 1.49 21.03 21.92 18.06 1.49 0.30 0.69 1.39

024
RL-Per 93.65 83.33 71.83 11.51 0.20 10.12 6.35 5.85 0.10 0.20 0.20 0.00
RL-All 89.98 77.38 62.00 15.38 0.40 12.20 10.02 9.33 0.30 0.20 0.20 0.00

IL 62.20 54.86 48.61 6.25 0.20 7.14 37.80 26.59 2.28 5.95 1.39 1.59

all
RL-Per 88.49 70.04 61.61 8.43 0.00 18.45 11.51 10.42 0.00 0.00 0.40 0.69
RL-All 79.86 52.58 40.58 12.00 0.20 27.08 20.14 19.44 0.30 0.10 0.20 0.10

IL 72.62 58.63 52.98 5.65 0.20 13.79 27.38 21.03 1.88 2.68 1.09 0.69
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Table 8: Train split Place policy trajectory labeling on 1000 episodes per target object. All numbers
are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) (iv) (v) FR (vi) (vii) (viii) (ix) (x) (xi) (xii)

TH

002
RL-Per 69.44 65.38 44.35 19.05 1.39 1.98 2.68 30.56 20.14 0.00 2.88 2.28 3.67 1.59 0.00
RL-All 67.76 58.04 26.69 29.37 0.79 1.98 8.93 32.24 19.15 0.00 1.19 4.27 6.85 0.79 0.00

IL 70.44 61.11 51.59 7.84 0.69 1.69 8.63 29.56 18.25 0.00 3.47 4.66 2.38 0.40 0.40

003
RL-Per 54.07 40.48 27.38 1.79 2.38 11.31 11.21 45.93 31.94 0.00 0.50 4.17 0.99 7.64 0.69
RL-All 52.58 42.86 22.92 18.25 0.99 1.69 8.73 47.42 31.05 0.00 0.79 8.43 5.95 0.89 0.30

IL 47.32 35.71 20.54 4.86 4.37 10.32 7.24 52.68 32.74 0.20 4.66 5.06 5.06 4.27 0.69

004
RL-Per 54.76 46.23 6.25 34.92 0.50 5.06 8.04 45.24 24.60 0.00 5.16 1.29 6.85 6.85 0.50
RL-All 55.06 47.22 21.13 24.40 0.50 1.69 7.34 44.94 24.21 0.00 1.59 5.16 7.94 5.95 0.10

IL 51.59 45.44 15.97 27.08 0.89 2.38 5.26 48.41 22.32 0.10 5.16 4.66 6.65 9.03 0.50

005
RL-Per 65.97 56.05 43.06 8.13 0.30 4.86 9.62 34.03 24.01 0.10 1.49 4.37 1.39 2.48 0.20
RL-All 65.77 59.23 21.53 35.42 0.69 2.28 5.85 34.23 22.62 0.10 2.18 2.48 6.55 0.20 0.10

IL 62.90 55.95 41.27 12.00 0.69 2.68 6.25 37.10 21.92 0.60 7.04 3.97 3.08 0.40 0.10

007
RL-Per 73.61 66.37 29.96 33.93 0.10 2.48 7.14 26.39 17.96 0.00 0.69 1.39 6.05 0.00 0.30
RL-All 70.54 63.19 23.12 39.09 0.20 0.99 7.14 29.46 18.95 0.00 2.38 3.47 4.17 0.30 0.20

IL 70.93 63.10 33.93 27.48 0.30 1.69 7.54 29.07 17.76 0.40 4.86 1.59 3.77 0.10 0.60

008
RL-Per 75.40 69.74 30.36 35.71 0.10 3.67 5.56 24.60 19.05 0.00 0.79 0.69 1.79 2.08 0.20
RL-All 68.06 61.51 20.93 38.79 0.00 1.79 6.55 31.94 23.51 0.00 3.27 2.08 1.88 1.19 0.00

IL 68.65 60.12 38.49 19.84 0.20 1.79 8.33 31.35 21.43 0.50 2.98 1.49 1.88 2.98 0.10

009
RL-Per 68.35 53.67 13.69 38.79 0.10 1.19 14.58 31.65 24.11 0.40 2.08 1.49 2.98 0.40 0.20
RL-All 65.67 59.62 19.54 38.49 0.00 1.59 6.05 34.33 25.99 0.00 3.27 1.09 3.47 0.50 0.00

IL 59.62 51.09 35.81 13.29 0.00 1.98 8.53 40.38 27.48 0.69 4.56 2.98 1.19 2.68 0.79

010
RL-Per 71.43 57.84 24.90 30.16 0.10 2.78 13.49 28.57 22.62 0.00 2.08 0.89 1.29 1.69 0.00
RL-All 73.31 64.98 24.01 39.48 0.10 1.49 8.23 26.69 17.46 0.00 1.98 2.28 4.07 0.89 0.00

IL 69.35 60.71 39.38 18.85 0.00 2.48 8.63 30.65 21.03 0.00 2.98 3.27 1.39 1.09 0.89

024
RL-Per 70.73 60.62 45.24 7.64 0.00 7.74 10.12 29.27 21.53 0.00 0.40 5.36 0.79 0.79 0.40
RL-All 64.38 58.23 26.79 23.81 0.10 7.64 6.05 35.62 27.38 0.00 1.88 2.48 3.67 0.00 0.20

IL 64.78 57.54 43.06 9.62 0.10 4.86 7.14 35.22 20.83 0.10 5.36 6.45 2.18 0.00 0.30

all
RL-Per 65.77 55.65 26.79 25.30 0.30 3.57 9.82 34.23 22.82 0.00 1.79 2.68 3.17 3.57 0.20
RL-All 63.69 56.65 23.12 31.75 0.50 1.79 6.55 36.31 24.50 0.10 2.38 2.58 4.76 1.79 0.20

IL 61.81 54.56 35.32 15.97 0.30 3.27 6.94 38.19 23.02 0.40 5.06 3.27 3.17 2.68 0.60

PG

002
RL-Per 62.50 52.48 14.88 33.93 1.29 3.67 8.73 37.50 26.69 0.10 6.05 0.60 1.79 1.98 0.30
RL-All 56.35 32.64 21.23 9.13 2.18 2.28 21.53 43.65 27.88 0.69 8.23 2.78 2.58 1.09 0.40

IL 56.65 50.40 19.84 29.17 2.78 1.39 3.47 43.35 23.41 0.40 11.21 3.77 4.17 0.00 0.40

003
RL-Per 52.28 49.21 22.92 24.31 0.99 1.98 2.08 47.72 30.85 0.10 5.56 4.17 2.08 4.86 0.10
RL-All 47.82 28.57 20.93 4.76 3.57 2.88 15.67 52.18 34.52 0.10 6.94 8.13 1.49 0.50 0.50

IL 41.57 33.53 17.76 15.28 2.78 0.50 5.26 58.43 27.38 0.10 13.79 8.83 4.56 0.60 3.17

004
RL-Per 55.95 46.92 22.52 20.54 0.10 3.87 8.93 44.05 32.34 0.00 3.57 2.68 2.68 2.58 0.20
RL-All 52.08 32.84 23.12 6.94 0.20 2.78 19.05 47.92 29.96 0.00 6.15 5.36 2.08 3.87 0.50

IL 49.11 44.35 30.16 12.70 0.40 1.49 4.37 50.89 30.06 0.30 8.83 6.75 3.47 1.09 0.40

005
RL-Per 62.60 50.89 39.58 7.44 0.50 3.87 11.21 37.40 25.20 0.10 4.46 5.16 2.38 0.10 0.00
RL-All 56.15 37.20 26.39 8.53 0.20 2.28 18.75 43.85 29.96 0.30 7.04 1.19 3.47 1.29 0.60

IL 56.94 51.98 41.17 8.53 0.89 2.28 4.07 43.06 27.08 0.30 6.45 4.76 3.37 0.00 1.09

007
RL-Per 63.79 55.95 28.17 22.52 0.20 5.26 7.64 36.21 27.08 0.00 5.65 1.49 1.88 0.00 0.10
RL-All 56.35 35.91 23.12 11.61 0.00 1.19 20.44 43.65 28.57 0.30 8.33 1.29 1.49 3.57 0.10

IL 55.95 51.49 29.17 21.23 0.60 1.09 3.87 44.05 28.17 0.30 8.13 3.27 3.17 0.10 0.89

008
RL-Per 62.30 52.08 16.96 32.14 0.20 2.98 10.02 37.70 23.12 0.10 7.24 2.48 3.47 1.09 0.20
RL-All 55.46 38.19 23.02 13.49 0.00 1.69 17.26 44.54 30.95 1.09 7.94 1.19 1.39 1.59 0.40

IL 54.27 50.69 27.18 19.64 0.10 3.87 3.47 45.73 23.21 0.99 9.23 4.07 4.46 1.79 1.98

009
RL-Per 63.39 54.56 24.31 28.77 0.10 1.49 8.73 36.61 25.89 0.10 6.35 1.88 2.38 0.00 0.00
RL-All 52.88 33.13 18.75 12.20 0.00 2.18 19.74 47.12 35.42 0.50 5.95 2.38 0.99 1.59 0.30

IL 56.65 53.77 35.62 15.77 0.10 2.38 2.78 43.35 24.90 0.79 8.83 4.07 1.98 0.89 1.88

010
RL-Per 63.10 41.77 18.15 19.35 0.30 4.27 21.03 36.90 31.75 0.10 3.57 0.60 0.60 0.20 0.10
RL-All 57.74 38.39 22.22 13.29 0.10 2.88 19.25 42.26 27.98 0.60 6.94 1.98 2.58 1.98 0.20

IL 55.56 44.94 27.78 15.08 0.10 2.08 10.52 44.44 30.85 0.40 6.55 3.17 0.99 0.10 2.38

024
RL-Per 62.30 46.43 13.89 22.82 0.00 9.72 15.87 37.70 27.78 0.00 2.88 0.89 6.05 0.00 0.10
RL-All 51.98 29.56 12.00 9.72 0.00 7.84 22.42 48.02 38.79 0.00 4.37 1.88 2.58 0.20 0.20

IL 50.30 46.73 21.33 19.15 0.30 6.25 3.27 49.70 31.55 0.10 12.20 2.28 3.37 0.00 0.20

all
RL-Per 60.22 48.61 22.32 22.72 0.30 3.57 11.31 39.78 27.38 0.20 5.75 2.48 2.68 0.99 0.30
RL-All 53.37 33.13 18.85 10.12 0.89 4.17 19.35 46.63 33.13 0.60 7.34 2.18 1.69 1.59 0.10

IL 50.00 45.63 25.99 17.26 1.09 2.38 3.27 50.00 28.67 0.50 11.01 4.96 3.37 0.40 1.09

ST

013
RL-Per 68.95 61.71 18.45 39.38 1.59 3.87 5.65 31.05 22.02 0.00 0.60 1.69 1.98 4.76 0.00
RL-All 74.80 67.36 39.29 24.11 0.99 3.97 6.45 25.20 18.95 0.30 0.60 2.28 2.38 0.40 0.30

IL 65.58 62.50 11.31 46.33 1.29 4.86 1.79 34.42 21.03 0.89 5.95 1.49 4.66 0.00 0.40

024
RL-Per 78.67 76.39 33.33 29.46 0.50 13.59 1.79 21.33 16.07 0.00 0.40 1.88 2.28 0.40 0.30
RL-All 71.33 62.90 30.65 12.00 0.20 20.24 8.23 28.67 21.23 0.00 1.98 3.27 1.88 0.20 0.10

IL 73.51 72.72 23.41 39.68 0.60 9.62 0.20 26.49 10.52 0.00 6.75 4.17 4.96 0.00 0.10

all
RL-Per 73.31 68.35 25.20 34.23 0.69 8.93 4.27 26.69 17.56 0.20 0.79 2.58 2.88 2.38 0.30
RL-All 72.82 65.08 35.02 17.36 0.89 12.70 6.85 27.18 20.14 0.20 1.29 2.18 2.88 0.20 0.30

IL 71.23 69.15 19.05 43.55 0.89 6.55 1.19 28.77 14.19 0.50 6.05 3.17 4.56 0.00 0.30
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Table 9: Val split Place policy trajectory labeling on 1000 episodes per target object. All numbers
are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) (iv) (v) FR (vi) (vii) (viii) (ix) (x) (xi) (xii)

TH

002
RL-Per 62.70 58.23 37.40 18.65 1.79 2.18 2.68 37.30 25.10 0.10 3.27 3.17 3.17 2.28 0.20
RL-All 66.37 58.04 26.88 29.17 0.60 1.98 7.74 33.63 22.02 0.00 1.39 3.27 4.96 1.79 0.20

IL 69.44 60.71 50.00 9.03 1.59 1.69 7.14 30.56 20.73 0.10 3.17 3.87 1.49 0.79 0.40

003
RL-Per 56.65 40.87 27.98 1.98 3.27 10.91 12.50 43.35 28.17 0.00 0.40 4.37 1.39 8.43 0.60
RL-All 53.57 44.15 26.09 15.28 1.39 2.78 8.04 46.43 30.95 0.00 1.09 10.42 3.67 0.30 0.00

IL 46.23 36.21 19.84 4.86 4.86 11.51 5.16 53.77 34.82 0.00 2.98 5.85 4.76 3.97 1.39

004
RL-Per 52.88 44.54 6.05 32.14 0.79 6.35 7.54 47.12 24.90 0.00 4.56 2.28 9.13 5.56 0.69
RL-All 52.88 45.73 21.92 22.22 0.50 1.59 6.65 47.12 26.79 0.00 1.88 5.46 7.24 5.36 0.40

IL 53.77 48.12 18.25 26.79 0.40 3.08 5.26 46.23 23.41 0.10 5.85 3.37 6.05 7.04 0.40

005
RL-Per 65.97 58.83 48.02 6.15 0.40 4.66 6.75 34.03 22.62 0.00 1.69 5.26 0.89 2.88 0.69
RL-All 67.06 59.23 25.89 31.45 0.50 1.88 7.34 32.94 21.23 0.00 1.39 3.27 6.65 0.40 0.00

IL 65.08 59.82 47.92 9.92 0.60 1.98 4.66 34.92 21.43 0.40 4.66 3.77 3.87 0.20 0.60

007
RL-Per 72.22 64.98 30.36 32.24 0.00 2.38 7.24 27.78 19.44 0.00 0.89 1.88 5.16 0.00 0.40
RL-All 69.74 64.19 25.00 38.10 0.20 1.09 5.36 30.26 20.93 0.10 1.69 2.28 4.66 0.50 0.10

IL 71.63 64.98 35.12 27.58 0.30 2.28 6.35 28.37 19.35 0.00 2.78 2.78 3.17 0.00 0.30

008
RL-Per 75.30 69.44 28.37 39.48 0.00 1.59 5.85 24.70 18.65 0.00 0.99 0.69 1.79 2.28 0.30
RL-All 71.13 62.80 22.52 38.89 0.00 1.39 8.33 28.87 21.63 0.00 1.69 1.09 2.98 1.39 0.10

IL 73.41 65.87 44.54 19.74 0.00 1.59 7.54 26.59 18.75 0.20 1.88 0.79 0.99 3.57 0.40

009
RL-Per 68.55 54.27 17.96 34.33 0.00 1.98 14.29 31.45 24.70 0.20 1.49 0.99 3.37 0.60 0.10
RL-All 63.49 57.24 20.54 34.82 0.00 1.88 6.25 36.51 28.27 0.00 3.57 1.29 2.68 0.69 0.00

IL 58.23 50.20 35.12 12.00 0.10 3.08 7.94 41.77 29.07 0.50 5.06 1.29 2.18 2.78 0.89

010
RL-Per 68.75 54.56 23.41 27.18 0.10 3.97 14.09 31.25 25.20 0.00 1.98 0.89 1.49 1.59 0.10
RL-All 68.15 59.33 21.13 37.20 0.10 0.99 8.73 31.85 20.73 0.00 2.68 2.28 5.36 0.69 0.10

IL 66.37 61.41 40.28 18.15 0.00 2.98 4.96 33.63 24.70 0.00 3.57 2.28 1.09 1.29 0.69

024
RL-Per 74.50 63.69 49.50 6.65 0.00 7.54 10.81 25.50 20.83 0.00 0.50 2.78 0.79 0.50 0.10
RL-All 67.66 58.73 27.88 22.32 0.00 8.53 8.93 32.34 24.40 0.10 1.19 2.08 4.37 0.10 0.10

IL 68.45 59.82 46.73 9.33 0.00 3.77 8.63 31.55 18.45 0.00 4.96 5.85 1.98 0.00 0.30

all
RL-Per 65.97 56.45 32.04 20.24 0.20 4.17 9.33 34.03 24.31 0.00 1.09 2.08 3.67 2.68 0.20
RL-All 66.07 58.23 24.90 31.25 0.20 2.08 7.64 33.93 21.23 0.00 1.88 3.37 5.36 1.88 0.20

IL 63.79 56.94 37.30 15.38 0.89 4.27 5.95 36.21 21.83 0.20 3.97 3.37 3.77 2.68 0.40

PG

002
RL-Per 69.15 56.15 17.36 33.83 1.39 4.96 11.61 30.85 22.52 0.00 2.58 0.79 2.38 2.38 0.20
RL-All 58.83 29.96 21.92 6.45 1.98 1.59 26.88 41.17 29.27 1.39 3.67 3.08 2.48 1.19 0.10

IL 58.93 50.79 22.42 27.08 2.98 1.29 5.16 41.07 17.16 0.99 13.69 3.77 4.76 0.00 0.69

003
RL-Per 58.33 53.37 24.50 25.50 1.69 3.37 3.27 41.67 27.18 0.00 3.08 4.46 3.47 2.98 0.50
RL-All 50.20 27.58 21.03 3.87 1.79 2.68 20.83 49.80 36.81 0.00 3.97 7.64 0.79 0.50 0.10

IL 44.15 39.58 20.73 17.56 2.48 1.29 2.08 55.85 20.63 0.00 17.36 8.13 5.75 0.30 3.67

004
RL-Per 60.71 48.71 27.98 17.16 0.30 3.57 11.71 39.29 28.08 0.00 0.89 3.57 3.17 3.17 0.40
RL-All 59.52 30.56 20.73 5.85 0.00 3.97 28.97 40.48 27.98 0.00 2.28 4.37 1.09 4.46 0.30

IL 53.77 49.21 33.23 14.98 0.99 0.99 3.57 46.23 23.12 0.10 6.65 8.73 4.66 2.08 0.89

005
RL-Per 67.36 47.72 38.99 5.36 1.39 3.37 18.25 32.64 23.02 0.10 1.69 5.85 1.49 0.40 0.10
RL-All 62.10 37.00 26.09 8.83 0.30 2.08 24.80 37.90 28.67 0.30 2.38 2.48 2.98 0.99 0.10

IL 62.20 55.56 44.25 8.23 1.59 3.08 5.06 37.80 19.64 0.30 11.11 3.77 1.88 0.00 1.09

007
RL-Per 75.79 59.92 27.88 26.29 0.10 5.75 15.77 24.21 19.25 0.00 0.99 1.69 1.88 0.00 0.40
RL-All 62.70 35.02 22.72 10.32 0.10 1.98 27.58 37.30 28.97 0.40 2.78 0.79 1.88 2.28 0.20

IL 65.77 59.62 29.76 27.88 0.69 1.98 5.46 34.23 16.07 0.20 9.62 3.17 2.98 0.00 2.18

008
RL-Per 71.53 58.33 17.46 36.90 0.00 3.97 13.19 28.47 18.45 0.10 2.28 2.28 4.17 0.89 0.30
RL-All 54.46 31.35 16.47 13.10 0.00 1.79 23.12 45.54 34.42 0.79 5.06 1.79 1.19 2.18 0.10

IL 59.42 55.56 28.87 23.51 0.30 3.17 3.57 40.58 17.46 0.69 9.82 3.37 4.37 2.78 2.08

009
RL-Per 66.87 57.44 25.89 28.77 0.00 2.78 9.42 33.13 22.62 0.50 5.56 1.88 2.38 0.10 0.10
RL-All 54.86 33.04 20.24 11.31 0.00 1.49 21.83 45.14 32.24 0.79 6.25 1.98 1.49 1.88 0.50

IL 59.13 55.85 34.42 18.06 0.20 3.37 3.08 40.87 15.28 1.09 15.67 3.87 1.79 1.88 1.29

010
RL-Per 68.06 39.38 17.86 19.64 0.10 1.88 28.57 31.94 27.98 0.00 1.39 0.79 1.39 0.40 0.00
RL-All 64.48 37.10 21.92 12.80 0.00 2.38 27.38 35.52 27.38 0.79 2.78 1.29 1.69 1.49 0.10

IL 62.30 49.31 29.76 17.66 0.50 1.88 12.50 37.70 21.63 0.50 8.13 3.37 1.69 0.10 2.28

024
RL-Per 67.06 49.31 12.20 23.31 0.00 13.79 17.76 32.94 23.21 0.00 1.19 1.39 6.94 0.00 0.20
RL-All 56.75 28.37 12.50 9.72 0.00 6.15 28.37 43.25 37.00 0.00 1.69 1.69 2.58 0.30 0.00

IL 54.07 48.02 24.90 17.96 0.10 5.16 5.95 45.93 23.71 0.00 14.09 3.77 3.97 0.00 0.40

all
RL-Per 65.67 52.38 24.31 22.72 0.79 5.36 12.50 34.33 25.10 0.00 2.28 2.58 3.37 0.99 0.00
RL-All 58.63 33.04 18.95 11.31 0.89 2.78 24.70 41.37 31.65 0.40 3.57 2.48 1.59 1.69 0.00

IL 56.75 52.08 30.16 19.15 0.60 2.78 4.07 43.25 21.33 0.40 12.00 3.97 2.98 0.69 1.88

ST

013
RL-Per 64.38 59.03 19.35 36.11 0.79 3.57 4.56 35.62 25.00 0.00 0.30 1.59 2.28 6.45 0.00
RL-All 67.96 60.91 40.08 16.27 1.09 4.56 5.95 32.04 25.60 0.10 1.19 2.78 1.69 0.60 0.10

IL 61.71 59.62 10.22 45.24 0.89 4.17 1.19 38.29 25.50 0.30 6.65 1.29 4.37 0.00 0.20

024
RL-Per 69.44 66.47 30.95 24.21 0.30 11.31 2.68 30.56 25.10 0.00 0.40 1.88 2.68 0.20 0.30
RL-All 67.26 60.12 29.96 10.81 0.10 19.35 7.04 32.74 25.10 0.00 2.28 3.08 1.98 0.00 0.30

IL 65.67 64.68 21.03 37.10 0.40 6.55 0.60 34.33 18.65 0.10 8.83 2.68 3.97 0.00 0.10

all
RL-Per 67.06 63.19 25.89 30.06 0.00 7.24 3.87 32.94 24.80 0.00 0.69 2.18 1.98 3.17 0.10
RL-All 68.25 61.31 33.73 16.07 0.40 11.51 6.55 31.75 24.90 0.00 1.19 3.08 2.58 0.00 0.00

IL 62.20 59.92 16.57 38.10 1.49 5.26 0.79 37.80 22.32 0.40 7.84 3.08 3.57 0.10 0.50
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Table 10: Train split Open policy trajectory labeling on 1000 episodes per target articulation. All
numbers are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) FR (iv) (v) (vi) (vii) (viii) (ix)

ST
drawer RL-Per 84.92 84.92 84.92 0.00 0.00 15.08 11.41 1.69 0.00 1.49 0.20 0.30

IL 79.86 79.86 79.86 0.00 0.00 20.14 13.59 0.89 1.09 3.67 0.10 0.79

fridge RL-Per 83.43 82.24 82.24 0.00 1.19 16.57 14.58 0.20 0.00 1.49 0.20 0.10
IL 74.01 68.85 68.85 0.00 5.16 25.99 22.12 0.99 0.10 1.69 0.40 0.69

Table 11: Val split Open policy trajectory labeling on 1000 episodes per target articulation. All
numbers are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) FR (iv) (v) (vi) (vii) (viii) (ix)

ST
drawer RL-Per 84.52 84.52 84.52 0.00 0.00 15.48 11.41 1.88 0.00 1.88 0.00 0.30

IL 78.57 78.37 78.37 0.00 0.20 21.43 13.69 1.29 0.20 4.17 1.19 0.89

fridge RL-Per 88.10 37.30 37.30 0.00 50.79 11.90 6.94 0.00 0.00 4.07 0.89 0.00
IL 53.67 1.49 1.49 0.00 52.18 46.33 43.85 0.00 0.00 1.29 0.89 0.30

Table 12: Train split Close policy trajectory labeling on 1000 episodes per target articulation. All
numbers are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) FR (iv) (v) (vi) (vii) (viii) (ix)

ST
drawer RL-Per 88.79 88.79 88.79 0.00 0.00 11.21 3.17 2.68 0.30 0.89 4.17 0.00

IL 88.39 88.39 88.39 0.00 0.00 11.61 3.27 3.08 0.00 0.79 4.46 0.00

fridge RL-Per 86.81 25.00 25.00 0.00 61.81 13.19 13.19 0.00 0.00 0.00 0.00 0.00
IL 86.90 29.96 29.96 0.00 56.94 13.10 12.90 0.00 0.00 0.20 0.00 0.00

Table 13: Val split Close policy trajectory labeling on 1000 episodes per target articulation. All
numbers are percentages. Best viewed zoomed.

TASK OBJ TYPE SoR SaeR (i) (ii) (iii) FR (iv) (v) (vi) (vii) (viii) (ix)

ST
drawer RL-Per 89.29 89.29 89.29 0.00 0.00 10.71 4.56 2.18 0.20 0.20 3.37 0.20

IL 87.60 87.60 87.60 0.00 0.00 12.40 4.66 2.18 0.00 0.30 5.16 0.10

fridge RL-Per 0.00 0.00 0.00 0.00 0.00 100.00 81.15 18.85 0.00 0.00 0.00 0.00
IL 0.00 0.00 0.00 0.00 0.00 100.00 95.93 4.07 0.00 0.00 0.00 0.00
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