
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GS2-GNeSF: Geometry-Semantics Synergy for Generalizable
Neural Semantic Fields

Anonymous Authors
ABSTRACT
The remarkable success of neural radiance fields in low-level vision
tasks such as novel view synthesis has motivated its extension to
high-level semantic understanding, giving rise to the concept of
the neural semantic field (NeSF). NeSF aims to simultaneously syn-
thesize novel view images and associated semantic segmentation
maps. Generalizable NeSF, in particular, is an appealing direction as
it can generalize to unseen scenes for synthesizing images and se-
mantic maps for novel views, thereby avoiding the need for tedious
per-scene optimization. However, existing approaches to generaliz-
able NeSF fall short in fully exploiting the geometric and semantic
features as well as their mutual interactions, resulting in subopti-
mal performance in both novel-view image synthesis and semantic
segmentation. To address this limitation, we propose Geometry-
Semantics Synergy for Generalized Neural Semantic Fields (GS2-
GNeSF), a novel approach aimed at improving the performance of
generalizable NeSF through the comprehensive construction and
synergistic interaction of geometric and semantic features. In GS2-
GNeSF, we introduce a robust geometric prior generator to generate
the cost volumes and depth prior, which aid in constructing geomet-
ric features and facilitating geometric-aware sampling. Leveraging
the depth prior, we additionally construct a global semantic context
for the target view. This context provides two types of compen-
sation information to enhance geometry and semantic features,
achieved through boundary detection and semantic segmentation,
respectively. Lastly, we present an efficient dual-directional inter-
active attention mechanism to foster deep interactions between
the enhanced geometric and semantic features. Experiments con-
ducted on both synthetic and real datasets demonstrate that our
GS2-GNeSF outperforms existing methods in both novel view and
semantic map synthesis, highlighting its effectiveness in generaliz-
ing neural semantic fields for unseen scenes.

KEYWORDS
Generalizable Neural Radiance Fields, Generalizable Neural Seman-
tic Fields, Novel View Synthesis, Semantic Segmentation

1 INTRODUCTION
Recently, Neural Radiance Field (NeRF) [22] has emerged as a focal
point in the field of computer vision due to its outstanding perfor-
mance in novel view synthesis. To extend the capability of NeRF
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in understanding scene semantics, researchers have explored the
Neural Semantic Field (NeSF) [2, 10, 15, 18, 31, 40], which synthe-
sizes associated semantic segmentation maps alongside novel view
images by mapping spatial coordinates to semantic labels. This
advancement enables a deep comprehension of scene semantics,
facilitating NeSF’s application in tasks requiring detailed scene
understanding and segmentation, such as autonomous driving, aug-
mented reality, and robotic navigation.

While NeSF presents an attractive direction, many existing NeSF
methods require a labor-intensive optimization process on a per-
scene basis, as they are typically built on top of NeRF. To address this
challenge and inspired by the idea of generalizable NeRF [14, 21, 33],
several studies [4, 7, 20] have shifted their focus towards general-
izable NeSF learning. In this framework, the goal is to synthesize
novel view images and semantic maps of unknown scenes from ar-
bitrary views without per-scene optimization. To achieve this goal,
S-Ray [20] decouples the tasks of image synthesis and semantic
prediction, building upon NeuRay [21] to address the former task
while leveraging ray-level semantic context to predict semantics.
GSNeRF [7] also employs a decoupled framework but focuses on
extracting explicit geometric features for image synthesis. It addi-
tionally estimates depth maps of the target view using geometric
information for efficient sampling, thus avoiding the expensive hier-
archical sampling strategy used in S-Ray. In contrast to decoupling
the two branches, GNeSF [4] derives geometric features from an
explicit feature volume initialized via Multi-View Stereo (MVS) and
concatenates these geometric features with semantic features to
make semantic predictions. Despite their endeavors, these general-
izable NeSF approaches fail to fully exploit robust geometric and
semantic features, as well as their mutual interactions. These limi-
tations lead to suboptimal performance in both novel-view image
synthesis and semantic segmentation, as shown in Table 1.

Inspired by insights gleaned from recent studies [5, 12, 13, 17,
27, 39], we believe that the geometric understanding (e.g. volume
density) and semantic understanding (e.g. semantic labels) carry
mutually beneficial information: geometric understanding can offer
essential clues such as object shape and depth to aid in segmen-
tation, while semantic understanding provides semantic context
such as class relationships to support geometry prediction. To this
end, we introduce a novel Geometry-Semantics Synergy method
for Generalized Neural Semantic Fields, named GS2-GNeSF, which
aims to improve the performance of both novel-view image syn-
thesis and semantic segmentation for novel views in unseen scenes
by leveraging the synergy between geometry and semantics.

In our GS2-GNeSF, we introduce a robust geometric prior gen-
eration (RGPG) module to generate cost volumes and depth prior
(i.e., depth map and depth hypotheses) for the target view. These
priors serve as robust geometric representations and guide our
sampling process. By employing geometry-aware sampling based
on the depth prior, we can efficiently generate our initial geomet-
ric and semantic features. Additionally, with the predicted depth

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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map, we establish a global semantic context for the target view to
model inter-ray context on a global scale. We develop a global con-
text compensation module, which includes a dual-branch encoder
network, to process this context and generate compensation infor-
mation for enhancing semantic and geometric features. Specifically,
we introduce semantic segmentation and boundary detection as
two auxiliary tasks within this encoder. These tasks guide the gen-
eration of class-specific and boundary-aware features to serve as
compensation. Lastly, we present an efficient dual-directional inter-
active attention mechanism to facilitate the deep interactive fusion
of the enhanced geometric and semantic features from different
perspectives, i.e., inter-view and intra-view.

Our geometry-semantics synergy is manifested in three aspects:
1) geometric and semantic features construction (Sec. 3.1): We con-
struct initial geometric and semantic features through geometry-
aware sampling, which is realized by depth prior generated by our
designed robust geometric prior generation module. 2) global con-
text compensation (Sec. 3.2): We enhance the geometric and seman-
tic features by leveraging two types of compensation information
learned from our global semantic context, which is constructed
through semantic information in conjunction with depth prior. 3)
GeoSem interaction (Sec. 3.3): We achieve a deep interactive fu-
sion between semantic and geometric information via our efficient
dual-directional interactive attention mechanism.

Through extensive experiments conducted on both synthetic
and real datasets, we demonstrate that our geometry-semantics
synergy method outperforms existing generalizable NeSF methods
in both image and semantic map synthesis for unseen scenes un-
der either generalization or fine-tuning settings. By ablating each
module in our GS2-GNeSF, we showcase their individual effects in
fostering synergy between geometry understanding and semantic
understanding.

2 RELATEDWORK
Neural Radiance Fields. Neural Radiance Fields (NeRF) [22] rep-
resent a novel technique to novel view synthesis based on implicit
neural representations, employing Multilayer Perceptrons (MLPs)
to learn continuous 3D scenes. By leveraging multiple images from
different viewpoints, NeRF can render unseen viewpoints with
remarkable detail fidelity. This technique has demonstrated excep-
tional capabilities in synthesizing new viewpoints, yielding im-
pressive demonstrations that have catalyzed a wave of subsequent
research efforts. Despite its strengths, NeRF is significantly ham-
pered by its reliance on computationally intensive scene-specific
optimization processes.

To address this limitation, the concept of generalizable neural
radiance fields [3, 14, 33, 36, 38] has emerged, focusing on gen-
eralization across different scenes by learning representations of
radiance fields directly from a given set of scene images. Previous
methods leverage either warped 2D [33, 36, 38] or 3D [3, 14] features
from nearby reference views as network inputs to condition NeRF
rendering, instead of directly inputting positional encoding [22].
As a result, they can synthesize novel view images of unseen scenes
without per-scene optimization.
NeRFwith Depth Priors. Several research efforts [9, 24, 26, 32, 34]
have explored the incorporation of depth priors to enhance the

capabilities of NeRF. These endeavors utilize techniques like multi-
view stereo or monocular depth estimation to produce depth priors,
which are subsequently integrated into NeRF to guide the sampling
process and refine the rendering of 3D scenes. [9, 24, 34] have
shown that leveraging depth priors can significantly improve both
the training efficiency and the inference performance of NeRF,
leading to notable reductions in the number of sampling points
required and the overall training duration.

Furthermore, recent works [14, 21, 26, 32] integrate depth priors
into generalizable NeRF models for novel view synthesis. These
methods leverage extracted depth information to navigate the sam-
pling procedure [26, 32] or to act as a criterion for evaluating for the
visibility of reference views [14, 21]. NeRF-SDP [32] and Garf [26],
which regress coarse depth maps on target views to guide sampling,
share similarities with our approach. However, unlike their method
of constructing the cost volume, which relies on 2D feature maps
from nearby reference views to construct the cost volume for the
target view, we employ 3D features extracted from these reference
views. This choice is motivated by the fact that, in contrast to 2D
features, 3D features derived from cost volumes encapsulate more
comprehensive and robust information.
Neural Semantic Fields. Neural semantic field (NeSF) [2, 4, 7,
10, 15, 18, 20, 31, 40] extends the NeRF framework to output addi-
tional semantic labels by incorporating semantics into the neural
representation. Semantic-NeRF [40], as a pioneering work in this
domain, integrates semantic labeling directly into the NeRF output
through the augmentation the vanilla NeRF architecture with an
additional branch dedicated to semantic prediction. Several subse-
quent research endeavors [2, 10, 15, 18] have built upon Semantic-
NeRF, aiming to embed semantic features to enhance its capabilities.
For instance, in [2, 15], the semantic features from CLIP [25] or
SAM [16] are explored and integrated into Semantic-NeRF archi-
tecture, enriching the semantic understanding and interpretability
of the generated scenes.

Generalizable NeSF approaches [4, 7, 20], bypass the need for
per-scene optimization, offering effective generalization to unseen
scenes. S-Ray [20] separates novel-view image synthesis and se-
mantic segmentation into two branches, utilizing IBRNet for image
synthesis and a novel cross-reprojection attention for semantic
context. However, it sometimes produces artifacts due to limited
geometric representation. To address this limitation, GSNeRF [7]
proposes a semantic geo-reasoning module to extract additional 3D
volume features and estimate depth maps from reference images.
Leveraging estimated depth information, GSNeRF samples points
along rays more effectively and employs 3D volume features as
additional conditions for volume rendering. Similarly, GNeSF [4]
constructs an explicit feature volume via MVS to serve as geometric
features. These features not only contribute to volume rendering
but also serve as inputs, concatenated with multi-view image fea-
tures, to generate soft voting weights for aggregating semantic
maps predicted for reference views.

3 METHOD
In the task of generalizable neural semantic fields, for any unseen
scene, provided with the camera pose of a target view and a set of
nearby reference views’ RGB images and corresponding poses (i.e.,
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Figure 1: The Pipeline of Our GS2-GNeSF: Firstly, the robust geometric priors Generation (RGPG) module produces geometry priors,
which are used to sample and construct geometric and semantic features (Sec. 3.1). Concurrently, leveraging the depth map and nearby
reference views’ semantic maps, the Global Context Compensation (GCC) module produces boundary-aware and class-specific features
(Sec. 3.2). These compensation features as well as geometric and semantic features are fed into the GeoSem Interaction (GSI) module
outputting deeply fused geometric and semantic features (Sec. 3.3). Lastly, the fused geometric and semantic features are input into an
MLP-based decoder and respectively render final predicted color image and semantic map for the target view via volume rendering (Sec. 3.4).

posed images), our goal is to synthesize the RGB image and semantic
map for this novel (target) view. To achieve this goal, we propose
a novel Geometry-Semantics Synergy method for Generalizable
Neural Semantic Fields, named GS2-GNeSF.

The framework of our GS2-GNeSF is illustrated in Figure 1, which
includes three key components: 1) a Robust Geometric Priors
Generation (RGPG) module, providing target view’s geometry pri-
ors that consist of a robust 3D geometric representation in the form
of cost volume and depth prior represented by the depth map and
hypotheses. 2) a Global Context Compensation (GCC) module,
offering semantic priors in a global context to enhance the geomet-
ric and semantic features through compensation supervised by two
types of auxiliary targets, i.e., boundary detection and semantic
segmentation. 3) a GeoSem Interaction (GSI) module, fusing the
enhanced geometry and semantic features deeply and interactively
through dual-directional interactive attention.

3.1 Geometric & Semantic Feature Construction
3.1.1 Robust Geometric Prior Generation (RGPG). We design
RGPG to provide our model with two types of geometry priors for
the target view: 1) cost volume, which serves as a robust geometric
representation and is widely used in depth prediction tasks [11, 37].
2) depth prior (depth map and depth hypotheses), which enables
geometry-aware sampling on a ray and facilitates more accurate
and efficient sampling.

When employing traditional multi-view stereo (MVS) meth-
ods [11, 37] to estimate the cost volume and depth map for a view,
the color image of that view is typically required. However, in the
context of novel view synthesis, the color image of the target view
is unavailable. To address this limitation, we extract cost volumes
from nearby reference views and utilize the camera pose of the tar-
get view to construct the geometry priors cascadingly. As illustrated

ReferenceViews’Posed Images

Shared

CasMVSNet

Shared

CasMVSNet

Shared

CasMVSNet

3D Convolutions

Differentiable  
HomographyWarping

Mean & Variance  
Operation

H MV
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MV
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Hypothesis Plane 
Generation

H

H

H

MV

Tgt. Pose

ReferenceViews’Cost Vols
Tgt. View’s 
Cost Vols

Depth Maps Depth 
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Figure 2: Robust Geometric Prior Generation.We extract infor-
mation from nearby𝑉 reference views to construct multi-level cost
volumes, applying differentiable homography warping to produce
the target view’s depth, depth hypotheses, and cost volumes for
the subsequent synergy between geometry and semantics.

in Figure 2, we adopt CasMVSNet [11] to construct multi-level cost
volumes {C𝑙

𝑅𝑖
}𝐿
𝑙=1 for each reference view 𝑅𝑖 , using the remaining

(𝑉 − 1) reference views. We set 𝐿 to 3, with each level representing
different degrees of granularity. C𝑙

𝑅𝑖
∈ R𝐹𝑙×𝑆𝑙×𝐻𝑙×𝑊𝑙 denotes the 𝑙-

th cost volume for the reference view 𝑅𝑖 , where 𝐹𝑙 is the number of
channels, 𝑆𝑙 indicates the number of depth hypotheses, and𝐻𝑙 ×𝑊𝑙

represents the resolution at this level. Subsequently, we create the
multi-level cost volumes {C𝑙 }𝐿

𝑙=1 for the target view cascadingly in
a coarse-to-fine manner akin to [11], by using the depth hypothe-
ses1 from the previous level. Specifically, we first apply differential
homography [37] to warp the cost volume of 𝑉 reference views
at 𝑙-th level {C𝑙

𝑅𝑣
}𝑉
𝑣=1, resulting in 𝑉 warped cost volumes. The

1When 𝑙 = 1, we pre-define a depth range as depth hypotheses.
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(a) Semantic Feature Construction (b) Global Semantic Context
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Figure 3: (a) Semantic feature construction involves geometry-
aware sampling and the gathering of multi-view features obtained
by projecting sampled points onto reference views. (b) Global
semantic context is efficiently constructed for the target view via
using grid sampling and the estimated depth map.

mean and variance of these volumes are then concatenated and
passed through a 3D convolutional neural network to generate the
cost volume for the target view C𝑙 . Finally, a regression head is
applied to C𝑙 to produce a depth map D𝑙 ∈ R𝐻𝑙×𝑊𝑙 and depth
hypotheses H 𝑙 ∈ R𝑆𝑙×𝐻𝑙×𝑊𝑙 . Consequently, we obtain multi-level
cost volumes {C𝑙 }𝐿

𝑙=1, depth maps {D𝑙 }𝐿
𝑙=1, and depth hypotheses

{H 𝑙 }𝐿
𝑙=1 for the target view, serving as our geometry priors.

3.1.2 Geometry-Aware Sampling. Sampling plays a crucial role
in neural rendering [7, 32], influencing both rendering quality and
computational efficiency. Aggregating features from noisy points
along the entire ray can lead to subpar rendering results. More-
over, traditional sampling methods in NeRF often necessitate sam-
pling a large number of points along a ray [4, 20, 22], which is
time-consuming and computationally expensive. To address these
challenges and achieve more accurate and efficient sampling, we in-
troduce a geometry-aware sampling strategy utilizing our generated
depth prior. Upon obtaining the depth maps and depth hypothe-
ses for the target view, as shown in Figure 3 (a), we can apply our
geometry-aware sampling strategy to skip empty space in the scene.
Specifically, for each ray emitted from a pixel, we uniformly sample
within the range of the depth hypotheses at the finest level, i.e.,
H𝐿 , to acquire 𝑀 sample points. Each pixel’s depth range spans
from the nearest to the farthest plausible depths. In this paper, we
only sample 8 points for each ray, which is significantly fewer than
128, the number of points sampled by S-Ray [20] and GNeSF [4].

3.1.3 Geometric Features Construction. For the 𝑀 sampled
points along a ray, we construct their geometric features by in-
corporating both view-dependent and view-independent informa-
tion, representing geometric details from both reference views and
the target view. The view-dependent features Tdep ∈ R𝑀×𝑉 ×𝐹0

are derived by interpolating intermediate feature maps of 𝑉 refer-
ence images from the final output of the Feature Pyramid Network
(FPN) [19] in CasMVSNet. Conversely, the view-independent fea-
tures Tindep ∈ R𝑀×(𝐹1+𝐹2+𝐹3 ) are obtained by interpolating the
cost volume at each level C𝑙 for the corresponding 𝑀 points, fol-
lowed by concatenating over three levels. After obtaining Tdep and
Tindep, they are concatenated2 and passed through a Multi-Layer
Perceptron (MLP) to generate our geometric feature G ∈ R𝑀×𝑉 ×𝐶 .

2To concatenate, Tindep is tiled for𝑉 times to match the shape of Tdep .
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Figure 4: Global Context Compensation. The global context
compensation employs a dual-branch 2D model on global semantic
context, with each branch equipped with a dedicated output head
for its respective task, generating corresponding feature maps tai-
lored to those tasks.

3.1.4 Semantic Features Construction. We construct our se-
mantic features S ∈ R𝑀×𝑉 ×𝐶 similarly to S-Ray [20]. Firstly, we use
a sophisticated feature extractor, i.e., Mask2Former [6], to obtain
𝐶-dimensional feature maps F𝑖 ∈ R𝐶×𝐻×𝑊 for each reference view.
Unlike S-Ray, we employ geometry-aware sampling for each target
pixel, allowing us to sample points closer to object surfaces. This
results in a more compact sampling set compared to S-Ray, with
fewer noise features introduced. Subsequently, our sampled points
{𝑝 𝑗 }𝑀𝑗=1 are projected onto the reference views using the camera
calibration matrix 𝐾 , rotation matrix 𝑅, and translation vector 𝑡 ,
yielding 𝑝∗

𝑗
= 𝐾 · 𝜋 · (𝑅 · 𝑝 𝑗 + 𝑡), where 𝜋 denotes the projection

function. Finally, the features at the projected points {F𝑖 (𝑝∗𝑗 )} are
gathered as our semantic features S.

3.2 Global Context Compensation (GCC)
Based on predicted depth map of the target view D𝐿 and semantic
information extracted from reference views {F𝑖 }𝑉𝑖=1, we design a
Global Context Compensation (GCC) module to compensate both
semantic and geometric features via a global semantic context. This
context serves as a semantic prior capturing essential inter-ray
relationships within the target view, as illustrated in Figure 3 (b).
Employing this global semantic context, we utilize a dedicated
encoder network designed to generate two types of compensation
information: one aims at enhancing geometric features and the
other at enriching semantic features. This is achieved through the
utilization of two auxiliary tasks: boundary detection and semantic
segmentation, respectively, as illustrated in Figure 4.
Global Semantic Context Construction. Unlike the semantic
features constructed in Sec. 3.1.4, which gather information from
reference views for a single ray, our global semantic context aims
to encompass all rays within the target view. As such, it can serve
as a semantic prior, providing valuable information for the entire
target view. To efficiently construct the global semantic context
while minimizing computational costs, we utilize a combination
of grid sampling and our generated depth prior. As illustrated in
Figure 3 (b), we perform grid sampling on the target view, yielding
rays at a resolution of 𝐻/2 ×𝑊 /2. We then sample a single point
for each ray based on the depth map and collect the corresponding
features from the reference views using point projections. This
process allows us to construct a global semantic context denoted
as A ∈ R(𝐻/2×𝑊 /2)×𝑉 ×𝐶 .
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Figure 5: GeoSem Interaction. We first construct semantic and geometric inputs. Subsequently, the Dual-Directional Interactive Attention
deeply integrates semantic and geometric information through sequential inter-view and intra-view interactions.

Compensation Information Generation.We believe that this
global semantic context, serving as a semantic prior, has the poten-
tial to offer not only the semantic context of the target view but
also to capture critical high-frequency information at boundaries
within the target view. The incorporation of this boundary-aware
information could enhance our geometric features, which can be
considered as a synergistic interplay between geometry and seman-
tics. As a result, we introduce the GCC module, as illustrated in
Figure 4, which comprises a dual-branch encoder and two auxiliary
headers. The encoder’s semantic branch is dedicated to capturing
high-level semantics and producing class-specific features. On the
other hand, the boundary branch of the encoder focuses on captur-
ing high-frequency information at class boundaries and generating
boundary-aware features. By adding an auxiliary header for each
branch with the corresponding supervision, the GCC module can
effectively generate compensation information in terms of semantic
context and boundary details.

Specifically, given the global semantic contextA, we first perform
mean pooling over 𝑉 views, resulting in A′ ∈ R𝐻/2×𝑊 /2×𝐶 . A′ is
then fed into both the semantic and boundary branch of the encoder,
yielding class-specific features Fcls ∈ R𝐻/2×𝑊 /2×𝐶 and boundary-
aware features Fbon ∈ R𝐻/2×𝑊 /2×𝐶 , respectively. A semantic head
(S-Head) is applied to the semantic branch to predict semantic labels
of the target view, which are supervised using a cross entropy loss
(CE-Loss). Simultaneously, a boundary head (B-Head) is employed
to the boundary branch to perform boundary detection, whose pre-
dictions are supervised using a boundary-awareness cross entropy
loss [35] (BCE-Loss). A detailed description of the encoder network
architecture is provided in the supplementary material.

3.3 GeoSem Interaction (GSI)
We introduce a GeoSem Interaction (GSI) module to enhance and
deeply fuse the geometric and semantic features, thereby improving
the model’s ability to reconstruct and understand complex unseen
scenes. The details of our GSI module is illustrated in Figure 5.
Within our GSI module, we first enhance the geometric features G
and semantic features S using compensation information generated

by the GCC module, as expressed by:

G′ = [G; Fbon]; S′ = [S; Fcls], (1)

where [★;★] denotes concatenation after shape broadcasting. Sub-
sequently, a dual-directional interactive attention mechanism is
designed to process G′ and S′ and sequentially perform interactive
deep fusion of semantic and geometric information from inter-view
and intra-view perspectives.
Dual-Directional Interactive Attention. A straightforward way
to fuse G′ and S′ involves directly applying cross attention to them.
However, this method of fusion can be computational expensive,
since each ray’s feature is a rank-3 tensor (e.g., G′ or S′ in Figure 5).
Inspired by S-Ray [20], we design a dual-directional interactive
attention mechanism that applies multi-head cross-attention along
𝑉 and𝑀 dimension sequentially. Dual-directional interactive atten-
tion not only maintains the lightweight computational and memory
efficiencies characteristic of S-Ray’s design but also facilitates the
integration of geometric and semantic features, a capability not
present in S-Ray.

Specifically, our dual-directional interactive attention consists of
two consecutive phases: inter-view phase and intra-view phase, as
shown in Figure 5. In inter-view phase, the input features with the
shape [𝑀,𝑉 , 2𝐶] is reorganized to a set of𝑉×2𝐶 slicewith batch size
=𝑀 . Each slice corresponds to the multi-view features of specific
point. For instance, S′ is reorganized as {S′

𝑖
}𝑀
𝑖=1, wehre S

′
𝑖
denotes

𝑖-th slice of S′. Subsequently, a multi-head cross attention [30] block
is applied on slices to perform 1D attentionwith one type of features
as query and the other type of features as key and value. Taking
slice S′

𝑖
as query and G′

𝑖
as key and value. Formally, the multi-head

cross attention block’s output S′′
𝑖
is formulated as:

𝑄 (ℎ) = S′𝑖𝑊
(ℎ)
𝑞 , 𝐾 (ℎ) = G′

𝑖𝑊
(ℎ)
𝑘

, 𝑉 (ℎ) = G′
𝑖𝑊

(ℎ)
𝑣 , (2)

𝐴(ℎ) = 𝜎

(
𝑄 (ℎ)𝐾 (ℎ)𝑇√︁

𝑑𝑘

)
𝑉 (ℎ) , ℎ = 1, . . . , 𝐻, (3)

𝑥 = [𝐴(1) ; . . . ;𝐴(𝐻 ) ]𝑊𝑜 , (4)
𝑦 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(S′𝑖 + 𝑥), (5)

S′′𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑦 + 𝐹𝐹𝑁 (𝑦)), (6)
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Method Settings Synthetic Data (Replica) Real Data (ScanNet)

PSNR↑ SSIM↑ mIoU↑ Total Acc↑ mAcc↑ PSNR↑ SSIM↑ mIoU↑ Total Acc↑ mAcc↑

S-Ray [20] 30.12 0.932 41.59 70.51 47.19 26.57 0.832 57.15 78.24 62.55
GSNeRF [7] Generalization 31.16 0.924 51.52 83.41 61.29 31.33 0.907 58.30 79.79 65.93
GNeSF [4] 31.90 0.948 55.21 77.64 61.48 24.44 0.858 71.60 87.60 82.30
Ours 34.49 0.962 61.75 80.45 66.30 32.22 0.931 74.97 90.40 83.64

S-Ray ft [20] 32.21 0.966 75.96 96.38 80.81 29.27 0.865 91.06 98.20 93.97
GSNeRF ft [7] Finetuning - - - - - 31.70 - 93.20 99.10 98.40
GNeSF ft [4] 32.13 0.963 76.71 96.59 83.57 29.22 0.871 93.32 96.33 98.51
Ours ft 34.56 0.974 87.17 97.77 86.20 34.13 0.962 93.33 99.21 98.53

Table 1: Comparisons with baseline methods for generalizable NeSF under both generalization and fine-tuning settings.

where H is the number of heads, 𝜎 (·) denotes the softmax function,
and 𝑑𝑘 = 𝐶/𝐻 is the dimension of each head. The term 𝐴(ℎ) indi-
cates the output from the ℎ-th attention head, 𝑄 (ℎ) , 𝐾 (ℎ) ,𝑉 (ℎ) ∈
R𝑑𝑘 denote query, key, and value correspondent to ℎ-th attention
head.𝑊 (ℎ)

𝑞 ,𝑊
(ℎ)
𝑘

,𝑊
(ℎ)
𝑣 ∈ R𝐶×𝑑𝑘 , and𝑊 (ℎ)

𝑜 ∈ R𝐶×𝐶 are the pro-
jection matrices. FFN stands for feed-forward network [30], Layer-
Norm denotes layer normalization [1]. With this process, semantic
and geometric features exchange information from the inter-view
perspective. Stepping into intra-view phase, the output feature of
previous phase is reorganized to a set of𝑀×2𝐶 slice with batch size
=𝑉 , where each slice represents target ray’s features correspondent
to specific reference view. After applyingmulti-head cross-attention
over semantic and geometric features, the intra-view semantic and
geometric information can be fused within each view, outputting
final semantic features S∗ and geometric features G∗.

3.4 Final Predictions and Optimization
Final Predictions. Both G∗ and S∗ are fed into an MLP-based
decoder for subsequent predictions. Within the decoder, we first
predict a view weighting vector 𝑤 based on G∗, following IBR-
Net [33]. This𝑤 indicates the importance of reference views and
is subsequently employed for weighted pooling on S∗ and G∗ to
reduce the 𝑉 dimension. Following this, we predict the semantic
labels and density estimates of sampled points along a ray using
the pooled S∗ and G∗. Additionally, the predicted color of each
sampled point can be computed as a weighted average of the image
colors from the reference views, with𝑤 serving as the weighting
factor. Finally, the volume rendering is employed to derive predic-
tions for the target pixel by blending all sampled points along the
corresponding ray:

𝑂 (𝑟 ) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (𝑥 (𝑡))𝑜 (𝑥 (𝑡)) 𝑑𝑡, (7)

where 𝑜 ∈ {𝑠, 𝑐} represents the output type, with 𝑠 denoting the se-
mantic label and 𝑐 denoting color. Here,𝑂 (𝑟 ) is the final prediction
for ray 𝑟 , and 𝑜 (𝑥 (𝑡)) is the prediction for each sampled point. The
accumulated transmittance 𝑇 (𝑡) from the near plane 𝑡𝑛 to a point 𝑡
along the ray is given by:

𝑇 (𝑡) = exp
(
−

∫ 𝑡

𝑡𝑛

𝜎 (𝑥 (𝑠)) 𝑑𝑠
)
. (8)

Here, [𝑡𝑛, 𝑡𝑓 ] defines the bounds of integration for the ray segment.
Optimization. Our GS2-GNeSF is optimized through a compos-
ite loss function, which integrates contributions from RGB, depth,
semantic, and boundary losses. The RGB loss employs the mean
squared error to ensure accurate color reproduction, by quantify-
ing the discrepancies between predicted and actual colors. Depth
accuracy is supervised using a smooth L1 loss that targets both pre-
dicted depth maps {D𝑙 }𝐿

𝑙=1 and the rendered depth. For semantic
segmentation, the loss L𝑠𝑒𝑚 applies cross-entropy to guide both
the final semantic prediction and the predictions of the global con-
text compensation’s semantic branch, thus encapsulating a holistic
understanding of scene semantics. Furthermore, to counteract the
imbalance in boundary detection, a weighted binary cross-entropy
loss [35] L𝑏𝑜𝑛 is utilized, which is commonly used to improve the
model’s boundary delineation capabilities.

The overall loss function integrates these individual components,
weighted appropriately to balance their contributions:

L = 𝜆𝑟𝑔𝑏L𝑟𝑔𝑏 + 𝜆𝑑𝑒𝑝𝑡ℎL𝑑𝑒𝑝𝑡ℎ + 𝜆𝑠𝑒𝑚L𝑠𝑒𝑚 + 𝜆𝑏𝑜𝑛L𝑏𝑜𝑛 . (9)

Empirically, we set the parameters for the training loss of GS2-
GNeSF as 𝜆𝑟𝑔𝑏 = 0.75, 𝜆𝑑𝑒𝑝𝑡ℎ = 0.8, 𝜆𝑠𝑒𝑚 = 0.25, and 𝜆𝑏𝑜𝑛 = 5.

4 EXPERIMENTS
4.1 Experiment Setup
Datasets and Implementation Details. To comprehensively as-
sess our proposed method’s effectiveness, we conduct experiments
utilizing both synthetic and real datasets. Synthetic data exper-
iments are carried out using the Replica dataset [28]. From this
dataset, 12 scenes are selected for training, with the remaining un-
seen scenes designated for testing. For real-world data, we utilize
the ScanNet dataset [8], a large labeled RGB-D dataset encom-
passing 2.5M views across 1513 scenes, annotated with 3D camera
poses, surface reconstructions, and semantic segmentation. We
train GS2-GNeSF on training splits commonly used in previous
works [4, 23, 29], using novel scenes from validation splits to eval-
uate our model’s generalization capabilities.

Following GNeSF [4], we pretrain Mask2Former as our feature
extractor on the corresponding training set when training on Scan-
Net [8] or Replica [28]. After that, our GS2-GNeSF is trained end-
to-end on a single A40 GPU for 500k steps, employing the Adam
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Figure 6: Qualitative comparison with SOTA methods on ScanNet [8] in generalization setting. (a) The first three columns display
the semantic segmentation results, where both S-Ray and GNeSF exhibit poor segmentation performance at object edges and interiors
(indicated by the red dashed boxes). (b) The fourth column presents the rendered depth map, showing that neither S-Ray nor GNeSF
successfully reconstructs the scene’s accurate geometric structure. (c) The final column illustrates the Novel View Synthesis (NVS), with
S-Ray showing noticeable artifacts and GNeSF appearing relatively blurry.

optimizer with an initial learning rate of 3𝑒 − 4, decaying to 1𝑒 − 5.
The batch size of rays is set to 1024. In all our experiments, we sam-
ple 8 points for each ray, select 𝑉 = 8 images as reference views,
and render outputs at a resolution of 320 × 240.

Evaluation Metrics. Following previous works [4, 20], our eval-
uation framework employ mean Intersection-over-Union (mIoU),
average accuracy (mAcc), and total accuracy metrics for segmen-
tation quality assessment. Additionally, to evaluate the quality of
novel view synthesis, we adopt peak signal-to-noise ratio (PSNR),
and the structural similarity index measure (SSIM), following the
established practices in the field.

In the experiments, to align with previous works, we evaluate
our method under two settings: 1) assessing the generalizability of
our pretrained model on unseen scenes without any fine-tuning,
and 2) fine-tuning the model on unseen scenes before evaluating
its performance on novel views.

4.2 Comparison with Baselines
To evaluate the effectiveness of our proposed GS2-GNeSF, we com-
pare our model with three existing generalizable NeSF methods:
S-Ray [20], GSNeRF [7], and GNeSF [4], under both generalization
and finetuning setting. We assess the models through both quanti-
tative and qualitative comparison, focusing on novel view synthesis
and semantic segmentation. The results are detailed in Table 1 for
quantitative analysis and Figure 6 for qualitative evaluation.

No. RGPG GCC GSI PSNR SSIM mIoU Total Acc mAcc

1 × × × 29.70 0.923 71.01 88.33 82.21
2 ✓ × × 30.33 0.921 72.12 89.14 82.64
3 ✓ ✓ × 31.34 0.912 73.40 88.92 83.23
4 ✓ × ✓ 31.62 0.937 73.21 89.13 83.33

5 ✓ ✓ ✓ 32.40 0.935 74.97 90.40 83.65

Table 2: Ablation Studies of our design choices on ScanNet [8].

As shown in Table 1, our model exhibits significant improve-
ments in semantic segmentation (mIoU, Total Acc, andmAcc) across
both synthetic and real datasets compared to baseline models. Ad-
ditionally, the quality of our model’s novel view images (PSNR
and SSIM) also surpasses that of the baseline models. These sig-
nificant improvements across all evaluation metrics indicate that
our approach promotes a symbiotic relationship between recon-
struction and semantic segmentation tasks, resulting in mutual
reinforcement.

As depicted in Figure 6 (a), while S-Ray and GNeSF struggle with
poor predictions at object boundaries or within objects, our model
maintains superior segmentation quality in these challenging areas.
The geometric representation offered by RGPG provides robust geo-
metric information, evident from the improved depth map results
showcased in Figure 6 (b). The quality of the reconstruction results
in Figure 6 (c) further reveals that our novel view is crisper and
exhibits fewer artifacts than S-Ray and GNeSF.
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Figure 7:Ablation study of Tindep and Tdep in Sec. 3.1.3 on ScanNet.

4.3 Ablation Studies and Component Analysis
To validate the effectiveness of each component in our GS2-GNeSF
model, we systematically remove individual modules3 from our
model and present the results of ablation studies in Table 2.
Robust Geometric Prior Generation (RGPG). As shown in Ta-
ble 2 (Row 1 & 2), the RGPG enhances performance in both image
synthesis and semantic segmentation. This indicates the efficacy of
RGPG in providing robust geometric features, as well as the impact
of geometric-aware sampling in constructing semantic features.

Furthermore, we conduct an ablation study to analyze the impact
of view-dependent features Tdep and view-independent features
Tindep on constructing geometric features. The results, depicted in
Figure 7, show that combining both (G) outperforms using only
Tdep or Tindep. Interestingly, Tindep exhibits superior performance
in both novel view synthesis and semantic segmentation, likely
due to the robust geometric priors it introduces. Additionally, we
observe that Tdep effectively complements Tindep, enabling the
model G to achieve the best performance in both tasks.
Global Context Compensation (GCC). It is noteworthy that
when GCC is removed (c.f. Rows 1-3 in Table 2), we adopt a soft
voting mechanism for label prediction, following the approach
outlined in GNeSF [4], which yields better results compared to
direct inference from features [7, 20]. As shown in Table 2, even
against such as strong baseline (Row 2), the addition of the GCC
module (Row 3) can still effectively enhance the model’s semantic
segmentation quality (mIoU). Additionally, we observe that GCC
contributes to improvements in both novel view synthesis quality
(PSNR) and semantic segmentation result (mIoU), as evidenced by
comparisons between Rows 2 and 3, and Rows 4 and 5.

To further evaluate the individual and combined contributions of
the semantic and boundary branches in GCC’s dual-branch encoder,
we conduct an ablation study with three setups: a) both branches
active, b) only semantic, and c) only boundary operational. The
results presented in the upper section of Table 3 indicate that the
semantic branch contributes to the segmentation results, while the
boundary branch notably enhances the rendering quality (PSNR &
SSIM). Finally, the joint activation of both branches (Row 8) yields
the best results, improving both segmentation and rendering, which
can also be observed by the segmentation visualizations in Figure 8,
particularly at object edges. Interestingly, when only having the
3When either the GCC or GSI module is employed, the RGPG is not removed. This is
due to the GCC’s dependence on the depth prior from the RGPG for building the global
semantic context, and the GSI’s use of geometric features derived from the RGPG’s
cost volume as inputs.

No. Description PSNR SSIM mIoU Total Acc mAcc

1 w/o GCC 31.62 0.937 73.21 89.13 83.33
2 only semantic branch 31.22 0.944 74.26 89.24 83.55
3 only boundary branch 32.35 0.962 73.81 88.78 83.02

4 w/o GSI 31.34 0.912 73.40 88.92 83.23
5 only inter-view phase 32.10 0.912 73.86 89.51 83.51
6 only intra-view phase 31.58 0.922 73.55 89.30 83.52
7 intra-view → inter-view 32.37 0.941 74.49 90.19 83.32

8 GS2-GNeSF 32.40 0.935 74.97 90.40 83.65

Table 3: Ablation Studies of GCC and GSI on ScanNet.

GT Ours w/o BD Ours with BD

Figure 8: Impact of Boundary Detection (BD) on semantic segmen-
tation.
boundary branch, the model achieves the best performance on the
SSIM metric, reaching the second highest value on PSNR among
all results in Table 3. This suggests that the primary contribution
of the GCC to novel view synthesis lies in the boundary-aware
features, highlighting the significance of our geometry-semantics
synergy in the GCC module.
GeoSem Interaction (GSI). By comparing Rows 2 and 4, and
Rows 3 and 5 in Table 2, we can observe that the GSI facilitates
simultaneous enhancements in both semantic segmentation and
novel view synthesis tasks. This mutual enhancement demonstrates
the effective integration of geometric and semantic features by the
GSI. With the assistance of GSI, geometric and semantic features
are able to acquire mutually beneficial information from each other,
ultimately improving the quality of both novel view synthesis and
semantic segmentation.

Additionally, to validate the design choice of our dual-directional
interactive attention in the GSI, we conduct an ablation study with
three alternatives: a) solely inter-view attention, b) solely intra-
view attention, and c) reversed phase order: applying intra-view
attention first, followed by inter-view attention. The results in
the lower section of Table 3 demonstrate that individual attention
phases yield slight improvements in rendering and segmentation,
while their combined use maximizes performance. The sequence
of phases has minimal impact on the outcome, confirming the
robustness of their integration.

5 CONCLUSION
In this paper, we propose a novel approach, GS2-GNeSF, that signif-
icantly advances the integration of geometric and semantic under-
standing in 3D scene perception. By developing innovative com-
ponents such as the robust geometric prior generation, global con-
text compensation, and geosem interaction, our method not only
enhances the visual rendering capabilities but also significantly im-
proves the performance of semantic segmentation. Our experimen-
tal results, conducted on both synthetic and real datasets, confirm
the superior performance of our approach over sota methods.
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