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1 NETWORK ARCHITECTURE OF GCC
Global context compensation (GCC) utilizes a dual-branch encoder
network to provide boundary compensation and semantic com-
pensation. This encoder consists boundary branch and semantic
branch. The boundary branch is responsible for encoding spatial
details, which are low-level information, necessitating substan-
tial channel capacity for encoding rich spatial details. Therefore,
we utilize a wider channel but shallower convolutional network
for the boundary branch, as shown in Table 1. Conversely, the
semantic branch is tasked with outputting high-level semantic fea-
tures that require a larger receptive field. Accordingly, we design
a deeper convolutional network with fewer channels for the se-
mantic branch, detailed in Table 1. Since the feature maps fed into
the GCC have a low resolution (160 × 120), we don’t reduce the
resolution of the feature map within the encoder network. Each
convolutional layer comprises a 2D convolution, a ReLU activation
function, and instance normalization [5]. The second last layer in
each branch outputs the feature maps serving as compensation
features (boundary-aware or class-specific features) produced by
that branch.

2 ADDITIONAL RESULTS AND ANALYSIS
2.1 Sampling Efficiency
To validate the efficiency of geometry-aware sampling, we conduct
experiments to investigate the impact of the number of sampling
points on model performance. As shown in Figure 1, even with only
four sampling points, the model’s semantic segmentation result
is close to the best outcomes. Meanwhile, although the rendering
quality decreases when using only four points, the PSNR remains
above 29.5 dB, which is much better than S-Ray [3] (26.57 dB)
and GNeSF [1] (24.44 dB), both of which used at least 128 sam-
pling points. This result further confirms the effectiveness of our
geometry-aware sampling strategy.

Moreover, increasing the number of sampling points to 16 and
32 does not enhance performance. This suggests that the model is
not sensitive to the number of sampling points. Additionally, from
Figure 1, we observe that RGB rendering is more sensitive to the
number of sampling points compared to semantic prediction.

2.2 Qualitative Results with Finetuning
Following S-Ray [3], we evaluate our model’s performance in fine-
tuning setting. Specifically, we fine-tune our generalized model for
a limited number of steps, 20k steps, on each unseen scene before
evaluation. Figure 2 displays the segmentation results of our model
compared to S-Ray[3] and GNeSF [1] under a finetuning setting.
We observe that by finetuning with limited time (20k iterations for
training), our model achieves better results compared to S-Ray [3]
and GNeSF [1] especially in object’s boundaries.

Description Layer Input Channels Output
Channels K Activation Normalization

Common Input - 32 - - - -

Semantic
Branch

Conv1 32 32 3 × 3 ReLU Instance
Conv2 32 32 3 × 3 ReLU Instance
Conv3 32 32 3 × 3 ReLU Instance
Conv4 32 32 3 × 3 ReLU Instance
Conv5 32 32 3 × 3 ReLU Instance
Conv6 32 32 3 × 3 ReLU Instance
Conv7 32 64 3 × 3 ReLU Instance
Conv8 64 64 3 × 3 ReLU Instance
Conv9 64 64 3 × 3 ReLU Instance
Conv10 64 64 3 × 3 ReLU Instance
Conv11 64 64 3 × 3 ReLU Instance
Conv12 64 64 3 × 3 - -
Output 64 num_cls 1 × 1 - -

Boundary
Branch

Conv1 32 128 3 × 3 ReLU Instance
Conv2 128 128 3 × 3 ReLU Instance
Conv3 128 128 3 × 3 ReLU Instance
Conv4 128 128 3 × 3 ReLU Instance
Conv5 128 128 3 × 3 ReLU Instance
Conv6 128 64 3 × 3 - -
Output 64 1 1 × 1 - -

Table 1: Dual-Branch Neural Network Architecture. Here,
num_cls denotes the number of predicted classes, K stands for
kernel size.
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Figure 1: Sampling Efficiency on ScanNet [2]. We conduct experi-
ments to explore the impact of the number of sampling points on
model performance.

2.3 Additional Ablation Study on Robust
Geometric Prior Generation

To investigate the effectiveness of using 3D features over 2D fea-
tures in constructing the cost volume for the target view, we con-
duct an ablation study comparing our approach with methods like
NeRF-SDP [6] and Garf [4]. These methods regress coarse depth
maps on target views to guide sampling, similar to our approach.
However, unlike their reliance on 2D feature maps from nearby ref-
erence views to build the cost volume for the target view, our robust
geometric prior generation module utilizes 3D features extracted
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Figure 2: Segmentation results of finetuning on unseen scenes.

from these reference views. As shown in Figure 3, cost volumes
built with 3D features provides the model a more robust geometric
prior, as evidenced by improved depth maps, superior quality RGB
renderings, and enhanced semantic segmentation outcomes.

2.4 Analysis of Loss Weights
Each component of the loss function, including RGB loss, depth
loss, semantic loss, and boundary loss as described in Eq. 9 of the
main paper, contributes to the model’s training process. Therefore,
we experiment with varying the weighting coefficients 𝜆𝑟𝑔𝑏 , 𝜆𝑑𝑒𝑝𝑡ℎ ,
𝜆𝑠𝑒𝑚 , and 𝜆𝑏𝑜𝑛 on ScanNet dataset, to assess their individual and
combined effects on model performance. We vary one coefficient
at a time while keeping the others fixed at their default values and
present the results in Table 2. The default values are 𝜆𝑟𝑔𝑏 = 0.75,
𝜆𝑑𝑒𝑝𝑡ℎ = 0.8, 𝜆𝑠𝑒𝑚 = 0.25, and 𝜆𝑏𝑜𝑛 = 5.

It is noteworthy that 𝜆𝑟𝑔𝑏 exhibits higher sensitivity than other
loss weights. Reducing it to 0.25 significantly lowers both PSNR and
mIoU compared to adjustments on other weights. This highlights
RGB loss’s key role in maintaining image quality and semantic
accuracy. Conversely, increasing 𝜆𝑟𝑔𝑏 to 1.00 slightly improves
PSNR but does not significantly affect mIoU.

Moreover, variations in 𝜆𝑑𝑒𝑝𝑡ℎ show that reducing the depth
weight to 0.40 or 0.60 degrades the performance in mIoU, emphasiz-
ing the importance of depth information in achieving higher scene
understanding accuracy. Meanwhile, increasing 𝜆𝑑𝑒𝑝𝑡ℎ from 0.8 to
1.0 results in a slight improvement in rendering quality, however,
the quality of segmentation experience a minor decline.

From the results presented in Table 2, increasing the semantic
loss weight 𝜆𝑠𝑒𝑚 from the default value of 0.25 to 0.75 and 1.00
results in mIoU changes from 74.97 to 74.05 and 74.55, respectively.
The minimal impact and slight downward trend in semantic seg-
mentation accuracy suggest that the model performance is quite
robust to changes in the semantic loss.

Regarding 𝜆𝑏𝑜𝑛 , when it increases from 1 to 5, both rendering
and segmentation outcomes improve, demonstrating the effective-
ness of the boundary detection introduced in the global context
compensation module. However, when increased to 10, the model
performance remains stable with minimal changes.

In the experiments, we determine the best combination of loss
weights by conducting grid search on the ScanNet validation set
with the goal of maximizing the semantic segmentation perfor-
mance (mIoU). This process yields the optimal values: 𝜆𝑟𝑔𝑏 = 0.75,
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Figure 3: Quality comparison between different methods of constructing cost volumes.

𝜆𝑟𝑔𝑏 𝜆𝑑𝑒𝑝𝑡ℎ 𝜆𝑠𝑒𝑚 𝜆𝑏𝑜𝑛 PSNR mIoU
0.75 0.8 0.25 5 32.22 74.97
0.25 0.8 0.25 5 29.85 73.50
1.00 0.8 0.25 5 33.10 74.20
0.75 0.40 0.25 5 31.98 73.71
0.75 0.60 0.25 5 32.08 74.30
0.75 1.00 0.25 5 32.28 74.45
0.75 0.8 0.75 5 31.77 74.05
0.75 0.8 1.00 5 32.22 74.55
0.75 0.8 0.25 1 31.25 73.88
0.75 0.8 0.25 10 32.33 74.55

Table 2: Ablation Study on Loss Weightings for GS2-GNeSF on
ScanNet [2].

𝜆𝑑𝑒𝑝𝑡ℎ = 0.8, 𝜆𝑠𝑒𝑚 = 0.25, and 𝜆𝑏𝑜𝑛 = 5 on ScanNet dataset. We
apply these optimal values to the Replica dataset as well.
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