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(a) Air Quality dataset (λ = 0.167) (b) Airfoil dataset (λ = 0.023) (c) AEP dataset (λ = 0.237)

Figure 1: We observe that for the AEP dataset (Table 1 of the manuscript), self-distillation provided no gain over ridge in
terms of the test MSE. We provide an explanation for the flat performance. This figure is examining the alignment of θ⋆ to
the bases directions {uj}dj=1 for the three datasets used in the experiments (Section 5.3, Table 1). Because θ⋆ is unknown for
real-world tasks, we use the ridge solution θ̂λ (with a small λ) as a proxy for θ⋆. The sum of all bars in a single plot is one,
since {uj}dj=1 are unit-norm vectors that form an orthogonal basis of Rd. We infer two things. Firstly, for multi-step SD to
outperform ridge (as is the case for the Air Quality and Airfoil datasets), θ⋆ can be well-aligned with any of the uj , j ∈ [d];
not necessarily u1. This experimentally verifies the remark from lines 203-205 in the manuscript. Secondly, this gives insight
into why multi-step SD could not outperform ridge on the AEP task (Table 1 in the paper). Unlike the other two datasets, the
θ⋆ for the AEP dataset is not strongly aligned with any of the uj , j ∈ [d]. The top component in AEP only explains ∼ 35%
of the total θ⋆ norm, whereas that number is close to ∼ 80% for the Air Quality and Airfoil datasets. Methodology of
choosing λ: We considered using the OLS solution θ̂OLS := (XX⊤)−1XY as the proxy for θ⋆, but (XX⊤)−1 was numerically
unstable for these datasets, so we instead used the ridge solution θ̂λ with a small λ. We calculated this λ methodically for all
datasets as a constant fraction of the sum of squared singular values. Explicitly, we (i) computed the SVD of the design
matrix X, and (ii) set λ := C ·

∑d
j=1 s

2
j using the obtained singular values. The value C := 10−5 was chosen arbitrarily (and

the above trend is stable across other reasonably small values of C).

Figure 2: We empirically demonstrate that k-step SD for k > 2 provides a non-trivial improvement over 2-step SD. On a
synthetic problem with dimension d = 100, r = rank(X) = 10, noise variance γ = 0.1, and θ⋆ = 1/

√
2(u1 + u2); we set the

singular values of X with a power law from s1 = 1 to sr = s10 = 0.5 and run k-step SD for k ∈ {0, 1, 2, 3, 4, 5}. We plot the
relative improvement of optimal k-step SD over optimal ridge (i.e. 0-step SD). Specifically, we plot the ratio (A/B(k) − 1)

where A := minλ>0 ExcessRisk
(
θ̂(λ)

)
and B(k) := minλ>0,ξ(k)∈Rk ExcessRisk

(
θ̂(λ, ξ(k))

)
. We observe a non-trivial increase

after k = 2, showing that multi-step SD beyond 2 steps can be valuable.
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