Understanding the Gains from Repeated Self-Distillation
Rebuttal material (NeurIPS 2024)

10 Air Quality dataset (d=8 features) 10 Airfoil dataset (d=5 features) AEP dataset (d=24 features)

=
o

0.8 0.8 1

e
©

0.6 0.6

0.4

(65 used as proxy for 6°)
o
Y

(éA used as proxy for 8*)
(éA used as proxy for 8*)
o
o

0.4
0.2

o

o
||
—

0.2

161

Gru? A
(63, u)?
16312
(61, u)?
1621

1;-—|

.0 NN —

1 2 3

o
=)

4 5 6 1 2 3 4 5 0 5 10 15 20 25
JE{1,2,,d} JE{L,2,,d} JE{L,2,,d}
(a) Air Quality dataset (A = 0.167) (b) Airfoil dataset (A = 0.023) (c) AEP dataset (A = 0.237)

Figure 1: We observe that for the AEP dataset (Table 1 of the manuscript), self-distillation provided no gain over ridge in
terms of the test MSE. We provide an explanation for the flat performance. This figure is examining the alignment of 6* to
the bases directions {u; };l:l for the three datasets used in the experiments (Section 5.3, Table 1). Because 6* is unknown for

real-world tasks, we use the ridge solution 0 (with a small A) as a prozy for *. The sum of all bars in a single plot is one,
since {u; }?:1 are unit-norm vectors that form an orthogonal basis of R?. We infer two things. Firstly, for multi-step SD to
outperform ridge (as is the case for the Air Quality and Airfoil datasets), 6* can be well-aligned with any of the u;, j € [d];
not necessarily u;. This experimentally verifies the remark from lines 203-205 in the manuscript. Secondly, this gives insight
into why multi-step SD could not outperform ridge on the AEP task (Table 1 in the paper). Unlike the other two datasets, the
6* for the AEP dataset is not strongly aligned with any of the u;,j € [d]. The top component in AEP only explains ~ 35%
of the total #* norm, whereas that number is close to ~ 80% for the Air Quality and Airfoil datasets. Methodology of
choosing \: We considered using the OLS solution fors := (XX T)~IXY as the proxy for 6*, but (XX T)~! was numerically
unstable for these datasets, so we instead used the ridge solution 6 with a small A\. We calculated this methodically for all
datasets as a constant fraction of the sum of squared singular values. Explicitly, we (i) computed the SVD of the design

matrix X, and (#) set A :=C - Z?Zl s? using the obtained singular values. The value C := 107> was chosen arbitrarily (and

the above trend is stable across other reasonably small values of C).
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Figure 2: We empirically demonstrate that k-step SD for k£ > 2 provides a non-trivial improvement over 2-step SD. On a
synthetic problem with dimension d = 100, r = rank(X) = 10, noise variance v = 0.1, and 0* = 1/v2(u; + us); we set the
singular values of X with a power law from s; =1 to s, = s10 = 0.5 and run k-step SD for k € {0,1,2,3,4,5}. We plot the
relative improvement of optimal k-step SD over optimal ridge (i.e. O-step SD). Specifically, we plot the ratio (4/B(k) — 1)
where A := minysg ExcessRisk(é()\)) and B(k) := miny5g ¢ g ExcessRisk(é()\, ¢™))). We observe a non-trivial increase
after k = 2, showing that multi-step SD beyond 2 steps can be valuable.



