

000 SF-PE: A SYNERGISTIC FUSION OF ABSOLUTE 001 AND RELATIVE POSITIONAL ENCODING FOR SPIKING 002 TRANSFORMERS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Positional signals in spiking neural networks (SNNs) suffer distortion due to
014 spike binarization and the nonlinear dynamics of Leaky Integrate-and-Fire (LIF)
015 neurons, which compromises self-attention mechanisms. We introduce **Spiking-**
016 **RoPE**, a spiking-friendly relative rotary positional encoding that applies two-
017 dimensional spatiotemporal position-dependent rotations to queries/keys prior to
018 binarization, ensuring that relative phase kernels are preserved in statistical ex-
019 pectation under LIF dynamics while maintaining content integrity. Building on
020 this core, we propose **Spiking Fused-PE (SF-PE)**, a scheme that fuses abso-
021 lute CPG-based spikes with Spiking-RoPE. The resulting attention score decom-
022 poses into complementary row/column (absolute) and diagonal (relative) struc-
023 tures, thereby expanding the representable function space. We validate our method
024 across two diverse domains (time-series forecasting and text classification) on
025 Spikformer, Spike-driven Transformer, and QKFormer backbones. SF-PE con-
026 sistently improves accuracy and enhances length extrapolation capabilities. Abla-
027 tions on rotation bases and 1D vs. 2D variants support the design. These results es-
028 tablish rotary encoding as an effective, spiking-friendly relative PE for SNNs and
029 demonstrate that fusing absolute and relative signals yields synergistic benefits
030 under spiking constraints. Code: <https://anonymous.4open.science/r/SNN-RoPE-F6DE>.
031
032

033 1 INTRODUCTION

034
035 Spiking neural networks (SNNs) transmit information via discrete spikes that emulate biological
036 firing, enabling event-driven computation with low energy and neuromorphic compatibility (Maass,
037 1997; Davies et al., 2018; Roy et al., 2019). Recent work has transplanted key Transformer com-
038 ponents to SNNs, including spike-friendly self-attention (Zhou et al., 2022; Yao et al., 2023; Song
039 et al., 2024; Zhou et al., 2024a). A persistent bottleneck, however, is positional encoding (PE). While
040 self-attention inherently lacks order awareness and therefore requires PE (Vaswani et al., 2017), PE
041 signals in SNNs suffer distortion through spike binarization and the nonlinear dynamics of Leaky
042 Integrate-and-Fire (LIF) neurons.

043 Conventional continuous PEs (e.g., sinusoidal) differentiate positions through subtle embedding
044 changes. However, thresholding operations distort this information by either nullifying these sub-
045 tle differences (when inputs remain subthreshold) or drastically amplifying them (upon crossing the
046 threshold). This fundamental incompatibility motivates the development of spiking-friendly PEs that
047 can survive both binarization and LIF dynamics.

048 Through a systematic analysis of current approaches, we identify three critical gaps in the existing
049 SNN positional encoding landscape. **Gap 1 (Theory):** Existing SNN Transformers predominantly
050 rely on implicit, weight-based position learning and lack rigorous analysis of how positional in-
051 formation is preserved through binarization. **Gap 2 (Single-paradigm limits):** Absolute PE, such
052 as CPG-PE (Lv et al., 2024), exhibits sensitivity to shifts and suffers from aliasing on long se-
053 quences, whereas relative PE (e.g., Gray/Log-PE (Lv et al., 2025)) encounters capacity constraints
and distance-resolution limitations. **Gap 3 (Spatiotemporal modeling):** SNN data are inherently

054 spatiotemporal in nature, yet most PEs treat position as one-dimensional, thereby neglecting the
 055 separable time and sequence axes.
 056

057 To systematically address these identified gaps, we propose **Spiking-RoPE**, a comprehensive solution
 058 that begins with redesigning rotary positional encoding specifically for SNNs. Spiking-RoPE
 059 applies position-dependent rotations to queries/keys prior to spike binarization, yielding relative
 060 phase kernels that are preserved in statistical expectation under LIF dynamics while maintaining
 061 content integrity. We further decouple rotations along sequence (length) and time axes to obtain
 062 2D Spiking-RoPE, which explicitly models spatiotemporal relations. Finally, we integrate absolute
 063 and relative signals in **Spiking Fused-PE (SF-PE)** by combining absolute CPG-based spikes at the
 064 input with Spiking-RoPE within blocks. This fused scheme activates complementary row/column
 065 (absolute) and diagonal (relative) structures in attention maps (See Fig. 2 in the Appendix), thereby
 066 expanding representable function space.

067 To demonstrate the effectiveness and generalizability of our approach, we conduct extensive validation
 068 across two diverse domains (i.e., time series forecasting and text classification) and three established
 069 spiking backbones (i.e., Spikformer, Spike-driven Transformer, QKFormer), supplemented by
 070 comprehensive ablations on rotation bases and 1D vs. 2D variants. Our experimental results show
 071 that SF-PE consistently improves accuracy and strengthens length extrapolation capabilities across
 072 all evaluated scenarios.

072 Contributions.

- 074 • **C1, Theoretical foundation (Gap 1):** We rigorously prove that pre-spike rotary phases pre-
 075 serve relative phase kernels in statistical expectation under LIF (See Appendix A), thereby
 076 explaining why rotation-based PEs are inherently compatible with spike dynamics.
- 077 • **C2, Fused absolute-relative PE (Gap 2):** SF-PE systematically integrates CPG-PE (abso-
 078 lute) with Spiking-RoPE (relative), jointly inducing complementary row/column and diag-
 079 onal attention structures.
- 080 • **C3, Native spatiotemporal PE (Gap 3):** Spiking-RoPE independently rotates along se-
 081 quence and time axes to capture spatiotemporal relations that are inaccessible to 1D de-
 082 signs.
- 083 • **C4, Cross-domain evidence:** Consistent gains across backbones and tasks, plus ablations,
 084 establish robustness and generality across different domains (i.e., time series forecasting,
 085 text classification).

087 2 RELATED WORK

090 2.1 SNN TRANSFORMER ARCHITECTURES

092 The adaptation of Transformers to the SNN domain has gained significant momentum in recent
 093 years. Notable contributions include Spikformer (Zhou et al., 2022; 2024b), which pioneered the
 094 integration of LIF neurons into vanilla Transformers to create spiking self-attention mechanisms.
 095 Building on this foundation, Spike-driven Transformer (Yao et al., 2023; 2024) advanced the field
 096 by proposing more computationally efficient spike-based MatMul operations. Spikingformer (Zhou
 097 et al., 2023) proposed a spike-based residual learning framework. QKFormer (Zhou et al., 2024a)
 098 improved the binarization process of queries and keys to reduce information loss. However, all
 099 of these adopt approaches where weights indirectly learn positions without explicit PE, thereby
 100 exemplifying **Gap 1**.

101 2.2 ABSOLUTE PE FOR SNN

103 Among absolute PE methods designed specifically for SNNs, CPG-PE (Lv et al., 2024) represents
 104 the current state-of-the-art approach. This method leverages central pattern generator properties to
 105 assign distinct binary spike patterns to each position through frequency channel thresholding. While
 106 demonstrating spike consistency and neuromorphic compatibility, CPG-PE exhibits fundamental
 107 limitations that our work addresses: (1) **Translation sensitivity**, absolute coordinate terms in attention
 108 render it vulnerable to sequence shifts, and (2) **Long sequence aliasing**, finite period synthesis

108 causes pattern collisions that become increasingly severe in extended sequences, directly contributing
 109 to **Gap 2** identified in our analysis.
 110

111 **2.3 RELATIVE PE FOR SNN**
 112

113 In contrast to the absolute PE method, relative PE approaches for SNNs focus on encoding pos-
 114 tional relationships rather than absolute positions. Gray-PE and Log-PE (Lv et al., 2025) represent
 115 the most advanced relative PE approaches currently available for SNNs. Gray-PE approximates
 116 relative distances using Hamming distance-based discrete codes, while Log-PE employs log-scale
 117 distance buckets. However, both methods encounter critical limitations that reinforce **Gap 2**: Gray-
 118 PE suffers from (1) representation upper bounds due to bit capacity constraints 2^b , and (2) distance
 119 ordering violations where Hamming distance fails to preserve actual distance relationships. Log-PE
 120 encounters (1) coarse distance resolution due to distant interaction binning, and (2) spatiotemporal
 121 instability during 2D extension, thereby highlighting the necessity for our **Gap 3** solution.
 122

123 **3 PRELIMINARY**
 124

125 **3.1 NOTATION**

126 T denotes the number of time steps, L is the sequence length (number of tokens/patches), and D
 127 is the feature dimension. Bold uppercase letters denote tensors, and operations apply to the last
 128 dimension unless otherwise specified. $\text{BN}(\cdot)$ denotes batch normalization, and $\text{SN}(\cdot)$ denotes the
 129 spike operation induced by LIF in Eq. 1.
 130

131 **3.2 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON**
 132

133 In this study, we use LIF neurons (Maass, 1997) for spike binarization in SNNs. At discrete time t ,
 134 the membrane potential update $H(t)$, spike $S(t)$, and post-reset potential $U(t)$ for input current $I(t)$
 135 are as follows:
 136

$$\begin{aligned} H(t) &= U(t-1) + \frac{1}{\tau}(I(t) - (U(t-1) - U_{\text{reset}})), \\ S(t) &= \Theta(H(t) - U_{\text{thr}}), \\ U(t) &= (1 - S(t)) H(t) + S(t) U_{\text{reset}}, \end{aligned} \quad (1)$$

137 where τ is the leak time constant, U_{thr} is the threshold, U_{reset} is the reset potential, and $\Theta(\cdot)$ is
 138 the Heaviside step function. In this paper, $\text{SN}(z)$ refers to spike output under LIF dynamics (e.g.,
 139 $\Theta(z - U_{\text{thr}})$).
 140

141 **3.3 SPIKING SELF-ATTENTION**
 142

143 Spiking Self-Attention (SSA) is a transformation of self-attention adapted for spike representations
 144 following Spikformer (Zhou et al., 2022). For spike tensor $X \in \{0, 1\}^{T \times L \times D}$:

$$\mathbf{Q}_c = \text{BN}(X) W_Q, \quad \mathbf{K}_c = \text{BN}(X) W_K, \quad \mathbf{V}_c = \text{BN}(X) W_V, \quad (2)$$

145 where $W_{\{\cdot\}}$ are learnable linear mappings. The corresponding spike embeddings are:
 146

$$\mathbf{Q}_s = \text{SN}(\mathbf{Q}_c), \quad \mathbf{K}_s = \text{SN}(\mathbf{K}_c), \quad \mathbf{V}_s = \text{SN}(\mathbf{V}_c). \quad (3)$$

147 Time indices are omitted for notational simplicity, and attention is computed at each time step as fol-
 148 lows, where AttnMap is an integer matrix reflecting spike co-occurrence over feature dimensions:
 149

$$\text{AttnMap} = \mathbf{Q}_s \mathbf{K}_s^\top \in \mathbb{N}_0^{L \times L}, \quad \text{SSA} = \text{SN}(\text{AttnMap} \cdot \mathbf{V}_s). \quad (4)$$

150 **3.4 CPG-PE**
 151

152 CPG-PE (Lv et al., 2024) is an absolute PE that borrows the periodic firing principles of central
 153 pattern generators. For K channels with different periods, at position $i \in \{0, \dots, L-1\}$:

$$u_k(i) = \cos(\omega_k i + \phi_k), \quad k = 1, \dots, K, \quad (5)$$

$$g_k(i) = \Theta(u_k(i) - \tau_k) \in \{0, 1\}, \quad (6)$$

Figure 1: SFPE architecture. The diagram illustrates the integration of CPG-PE and RoPE with Spiking Neural Network, showing the flow from input spike trains through the fused PE to the attention computation in spiking transformers.

binary signals are synthesized to create:

$$\mathbf{p}_i^{\text{CPG}} = [g_1(i), g_2(i), \dots, g_K(i)]^\top \in \{0, 1\}^K, \quad (7)$$

where ω_k is the angular frequency ($T_k = 2\pi/\omega_k$), ϕ_k is the phase, τ_k is the threshold, and Θ is the Heaviside step function.

3.5 ROTARY POSITIONAL EMBEDDING (ROPE)

RoPE (Su et al., 2024) encodes positional information by rotating $(2i-1, 2i)$ channel pairs of embeddings at position m with position-dependent angles. For per-head dimension d (even), the frequencies are set as $\theta_i = B^{-2(i-1)/d}$ ($i = 1, \dots, d/2$), where base $B > 1$ determines the rotation frequency. The block diagonal rotation matrix at position $m \in \{0, \dots, L-1\}$ is:

$$R_m = \text{diag} \left(\begin{bmatrix} \cos(m\theta_1) & -\sin(m\theta_1) \\ \sin(m\theta_1) & \cos(m\theta_1) \end{bmatrix}, \dots, \begin{bmatrix} \cos(m\theta_{d/2}) & -\sin(m\theta_{d/2}) \\ \sin(m\theta_{d/2}) & \cos(m\theta_{d/2}) \end{bmatrix} \right) \in \mathbb{R}^{d \times d}. \quad (8)$$

For query/key $\mathbf{Q}_c, \mathbf{K}_c \in \mathbb{R}^{L \times d}$, RoPE is applied position-wise as:

$$(\tilde{\mathbf{Q}}_c)_m = R_m (\mathbf{Q}_c)_m, \quad (\tilde{\mathbf{K}}_c)_m = R_m (\mathbf{K}_c)_m, \quad (9)$$

while values remain unchanged.

4 METHODOLOGY

4.1 OVERVIEW

Positional encoding (PE) in SNN-based transformers has evolved through the development process shown in Fig. 1. Early SNN transformers (a) suffered from performance degradation by learning positional information implicitly. CPG-PE (b) was introduced as the first explicit, absolute positional encoding (PE), but it revealed new limitations, such as pattern collisions in long sequences.

Building on this, our proposed **Spiking Fused-PE** (c) is a fusion approach that combines CPG-PE for learning absolute positions with our Spiking-RoPE for injecting relative relationships. This dual-stage design leverages both types of information to expand the representation space and enhance its performance.

216 4.2 SPIKING-ROPE
217

218 RoPE, originally designed for continuous neural networks, decomposes attention inner products
219 into kernels that depend only on relative phase differences Δ through position-dependent rotations.
220 Building on this foundation, we propose Spiking-RoPE by adapting this rotation mechanism to the
221 pre-spike binarization stage, where relative phase kernels are maintained from a statistical expecta-
222 tion perspective even under LIF leakage and threshold conditions. (See Fig. 5 in the Appendix for
223 Spiking-RoPE transformation steps; See Appendix D for the detailed implementation).

224 **Theoretical Foundation (Gap 1 Resolution):** The critical insight enabling Spiking-RoPE is our
225 theoretical proof that phase rotation preserves relative positional information statistically even after
226 spike binarization. This addresses Gap 1 by providing the first rigorous analysis of positional infor-
227 mation preservation in SNNs. The complete theoretical analysis, including expectation preservation
228 proofs and LIF dynamics interaction, is presented in Appendix A.

229 4.2.1 1D SPIKING-ROPE
230

231 1D Spiking-RoPE encodes relative positional information along a single axis. For this purpose,
232 rotation matrices $R_{\varphi(i)}$ are applied to $(2r-1, 2r)$ channel pairs in even dimension d .
233

$$234 \tilde{q}_i = R_{\varphi(i)} q_i^{(c)}, \quad \tilde{k}_j = R_{\varphi(j)} k_j^{(c)}, \quad \Delta_{ij} = \varphi(i) - \varphi(j). \quad (10)$$

236 As a result, the relative relationship between two positions i, j depends only on the phase difference
237 Δ_{ij} .
238

239 4.2.2 2D SPIKING-ROPE
240

241 To explicitly model the spatiotemporal characteristics of SNN data, 2D Spiking-RoPE encodes po-
242 sitional information by separating it into sequence length axis l and time axis t . First, the embedding
243 is divided into two equal-dimensional blocks, and independent 1D Spiking-RoPE is applied to each
244 block. One block rotates based on sequence position (i) , while the other rotates based on time step
245 (t_i) .

$$246 \tilde{q}_i = [R_{\varphi_l(i)} q_i^{(c,l)} ; R_{\varphi_t(t_i)} q_i^{(c,t)}], \quad \tilde{k}_j = [R_{\varphi_l(j)} k_j^{(c,l)} ; R_{\varphi_t(t_j)} k_j^{(c,t)}]. \quad (11)$$

247 When computing query/key inner products, letting $\Delta_l = \varphi_l(i) - \varphi_l(j)$ and $\Delta_t = \varphi_t(t_i) - \varphi_t(t_j)$,
248 the inner product operation naturally separates into the sum of relative phase kernel Δ_l along the
249 length axis and relative phase kernel Δ_t along the time axis as shown below. This allows the model
250 to consider both spatiotemporal relative distances.
251

$$252 \langle \tilde{q}_i, \tilde{k}_j \rangle = (\langle q_i^{(c,l)}, k_j^{(c,l)} \rangle \cos \Delta_l + \langle q_i^{(c,l)}, J k_j^{(c,l)} \rangle \sin \Delta_l) \\ 253 + (\langle q_i^{(c,t)}, k_j^{(c,t)} \rangle \cos \Delta_t + \langle q_i^{(c,t)}, J k_j^{(c,t)} \rangle \sin \Delta_t). \quad (12)$$

255 4.2.3 PHASE PRESERVATION UNDER LIF
256

257 LIF performs nonlinear transformations (Eq. 1), and there is a risk of losing positional infor-
258 mation encoded as continuous values during this process. We show that PE applied at the pre-spike
259 stage through Spiking-RoPE is preserved from a statistical expectation perspective even after LIF’s
260 spiking transformation.
261

262 This proof involves approximating the firing probability function of LIF neurons as a linear function.
263 Batch Normalization in SSA (Eq. 2) stabilizes the distribution of pre-spike inputs to mean 0 and
264 variance 1. Assuming that input currents are distributed in a narrow region around the mean (0) such
265 that the firing probability function operates almost linearly, we can show that the probability of query
266 and key firing simultaneously in a specific dimension is approximately proportional to the product
267 of pre-spike values $\tilde{q}_{id}, \tilde{k}_{jd}$. Under this linear approximation, the expectation of inner products over
268 all dimensions is derived as follows.
269

$$\mathbb{E}[q_i^\top k_j] \approx \alpha \langle \tilde{q}_i, \tilde{k}_j \rangle, \quad (13)$$

270 where $\alpha > 0$ is a scaling constant depending on neuron sensitivity and input distribution, and
 271 attention scores are determined by the inner product value $\langle \tilde{q}_i, \tilde{k}_j \rangle$. When Spiking-RoPE is applied,
 272 $\langle \tilde{q}_i, \tilde{k}_j \rangle$ is expanded as a function of relative phase $\Delta_{ij} = i - j$, resulting in the final attention score
 273 having the following relationship:
 274

$$275 \mathbf{SA}(q_i, k_j) \propto \mathbb{E}[q_i^\top k_j] \propto \langle q_i^{(c)}, k_j^{(c)} \rangle \cos \Delta_{ij} + \langle q_i^{(c)}, J k_j^{(c)} \rangle \sin \Delta_{ij}. \quad (14)$$

277 In conclusion, Spiking-RoPE preserves phase kernels containing relative positional information under
 278 nonlinear LIF dynamics, enabling the utilization of positional information in SNNs.

279 4.3 FUSED PE

281 In Transformer-based models, positional encoding (PE) injects order and dependencies between
 282 tokens. Existing research has independently used either absolute or relative PE. We propose fused
 283 PE, which combines both approaches to enhance positional representation power. To simultaneously
 284 reflect absolute PE p_i^{abs} and relative PE $R_{\varphi(\cdot)}$ in input x , query/key are defined as follows:
 285

$$286 q_i = R_{\varphi(i)} W_Q(x_i + p_i^{\text{abs}}), \quad k_j = R_{\varphi(j)} W_K(x_j + p_j^{\text{abs}}), \quad (15)$$

287 where p_i^{abs} is the absolute PE, and $R_{\varphi(i)} \in \mathbb{R}^{d \times d}$ is the RoPE-style block rotation at position i .
 288 This configuration organically fuses two information sources within a single vector by projecting
 289 content+absolute information through linear mapping, then injecting relative information through
 290 phase rotation. The row/column structure created by absolute PE and the diagonal structure created
 291 by relative PE are simultaneously activated, providing richer representation power compared
 292 to single PE (See Fig. 2 in the Appendix). Subsequently, in continuous (pre-spike) space, letting
 293 $q_i^{(c)} = W_Q(x_i + p_i^{\text{abs}})$ and $k_j^{(c)} = W_K(x_j + p_j^{\text{abs}})$,

$$294 \tilde{q}_i = R_{\varphi(i)} q_i^{(c)}, \quad \tilde{k}_j = R_{\varphi(j)} k_j^{(c)}, \quad \Delta_{ij} = \varphi(i) - \varphi(j).$$

296 With the 90° block rotation operator J for even channel pairs, the inner product is as follows.

$$298 \langle \tilde{q}_i, \tilde{k}_j \rangle = \langle q_i^{(c)}, k_j^{(c)} \rangle \cos \Delta_{ij} + \langle q_i^{(c)}, J k_j^{(c)} \rangle \sin \Delta_{ij}. \quad (16)$$

300 According to Appendix A, this inner product approximately preserves the relative phase kernel form
 301 of the above equation in the expectation $\mathbb{E}[q_i^\top k_j]$ even after spike binarization.

302 4.4 FINAL INCORPORATION

304 Following fused PE, we propose Spiking Fused-PE (SF-PE), a fused method that combines CPG-PE
 305 for absolute PE and Spiking-RoPE for relative PE. First, after injecting CPG-PE from Eq. 7 into the
 306 embedding,

$$307 q_i^{(c)} = W_Q(x_i + E \mathbf{p}_i^{\text{CPG}}), \quad k_j^{(c)} = W_K(x_j + E \mathbf{p}_j^{\text{CPG}}), \quad E \in \mathbb{R}^{d \times K}, \quad (17)$$

309 which is rotated with 2D Spiking-RoPE. Then, the continuous inner product is decomposed with
 310 respect to the relative phases of the two axes as follows:

$$311 \langle \tilde{q}_i, \tilde{k}_j \rangle = \sum_{r=1}^{d_l/2} \left(A_{ij,r}^{(l)} \cos \Delta_r^{(l)} + B_{ij,r}^{(l)} \sin \Delta_r^{(l)} \right) + \sum_{r=1}^{d_t/2} \left(A_{ij,r}^{(t)} \cos \Delta_r^{(t)} + B_{ij,r}^{(t)} \sin \Delta_r^{(t)} \right), \quad (18)$$

314 where d_l and d_t denote per-axis even dimensions, and the amplitude terms are

$$315 A_{ij}^{(l)} = \langle q_i^{(c,l)}, k_j^{(c,l)} \rangle, \quad B_{ij}^{(l)} = \langle q_i^{(c,l)}, J k_j^{(c,l)} \rangle,$$

317 and similarly $A_{ij}^{(t)}, B_{ij}^{(t)}$ are defined for the time axis. Consequently, the attention score of SF-PE
 318 is structured as a sum of contributions from the length l and time t axes, each of which is itself a
 319 sum over individual rotational frequency channel pairs. This decomposition shows how two types of
 320 positional information are complementarily combined for each channel pair: absolute information
 321 (amplitudes A, B) and relative information (trigonometric kernels, Δ_l, Δ_t), allowing the model to
 322 capture richer and more granular positional details. This structure is preserved from a statistical
 323 expectation perspective even after the spike binarization process, enabling SNNs to effectively learn
 324 complex spatiotemporal patterns.

324 Table 1: Performance comparison on time series forecasting on 4 benchmarks with various prediction
 325 lengths 6, 24, 48, 96. The best results are shown in **bold**. PE types: A = absolute, F = Fused
 326 (absolute + relative). Metrics: higher R^2 and lower RSE indicate better performance. All results are
 327 averaged across 3 random seeds.

Models	PE Type	Metric	Metr-la (L = 12)				Pems-bay (L = 12)				Solar (L = 168)				Electricity (L = 168)				Avg.
			6	24	48	96	6	24	48	96	6	24	48	96	6	24	48	96	
Transformer w/Sin-PE (Upper bound)	A	$R^2 \uparrow$.727	.554	.413	.284	.785	.734	.688	.673	.953	.858	.759	.718	.978	.975	.972	.964	.733
		RSE \downarrow	.551	.704	.808	.895	.502	.558	.610	.618	.223	.377	.504	.545	.260	.277	.347	.425	.512
Spikformer w/Conv-PE Zhou et al. (2022)	A	$R^2 \uparrow$.713	.527	.399	.267	.773	.697	.686	.667	.929	.828	.744	.674	.959	.955	.955	.954	.733
		RSE \downarrow	.565	.725	.818	.903	.514	.594	.600	.621	.272	.426	.519	.586	.373	.371	.379	.382	.541
Spikformer w/CPG-PE Lv et al. (2024)	A	$R^2 \uparrow$.726	.526	.418	.287	.780	.712	.690	.666	.937	.833	.757	.707	.972	.970	.966	.960	.744
		RSE \downarrow	.553	.720	.806	.890	.508	.580	.602	.622	.257	.420	.506	.555	.299	.310	.314	.355	.519
Spikformer w/SF-PE (Ours)	F	$R^2 \uparrow$.739	.561	.432	.317	.783	.713	.698	.670	.939	.877	.782	.752	.981	.975	.972	.965	.760
		RSE \downarrow	.538	.698	.795	.871	.499	.576	.593	.618	.251	.362	.479	.511	.240	.280	.300	.336	.497
SDT-V1 w/Conv-PE Yao et al. (2023)	A	$R^2 \uparrow$.588	.364	.236	.121	.674	.668	.658	.639	.922	.837	.732	.685	.958	.951	.946	.939	.682
		RSE \downarrow	.692	.841	.935	.984	.599	.600	.616	.637	.281	.405	.533	.584	.367	.389	.412	.430	.582
SDT-V1 w/CPG-PE Lv et al. (2024)	A	$R^2 \uparrow$.601	.387	.257	.152	.693	.695	.680	.664	.935	.860	.748	.710	.966	.955	.959	.945	.700
		RSE \downarrow	.667	.827	.910	.972	.580	.578	.592	.607	.260	.383	.515	.553	.329	.378	.362	.417	.558
SDT-V1 w/SF-PE (Ours)	F	$R^2 \uparrow$.703	.470	.296	.187	.741	.700	.686	.679	.945	.871	.794	.766	.979	.971	.971	.969	.733
		RSE \downarrow	.576	.769	.886	.952	.533	.573	.587	.593	.242	.369	.466	.496	.259	.299	.302	.310	.513
QKFormer w/Conv-PE Zhou et al. (2024a)	A	$R^2 \uparrow$.706	.509	.411	.275	.735	.671	.667	.663	.927	.841	.737	.689	.966	.961	.958	.955	.729
		RSE \downarrow	.577	.743	.816	.901	.557	.621	.625	.626	.275	.402	.527	.569	.302	.324	.340	.358	.535
QKFormer w/CPG-PE Lv et al. (2024)	A	$R^2 \uparrow$.711	.522	.423	.286	.743	.684	.681	.666	.930	.856	.755	.732	.977	.968	.966	.959	.734
		RSE \downarrow	.567	.729	.801	.890	.548	.608	.611	.623	.271	.389	.508	.531	.264	.289	.307	.361	.533
QKFormer w/SF-PE (Ours)	F	$R^2 \uparrow$.717	.520	.419	.292	.749	.702	.698	.668	.934	.868	.793	.737	.981	.972	.968	.954	.748
		RSE \downarrow	.561	.730	.804	.887	.542	.590	.594	.623	.264	.372	.468	.526	.244	.299	.318	.383	.513

5 EXPERIMENTS

We evaluate on two diverse domains, time series forecasting and text classification, to test the modality-agnostic nature of SF-PE. The choice follows directly from the method’s characteristics: (1) pre-spike rotary phases preserve relative kernels under LIF (C1; Sec. 4.2, Sec. 4.2.3); (2) the fused absolute–relative scheme induces complementary row/column vs. diagonal attention structure that any ordered data exhibits (C2; Eq. 16); and (3) the 2D variant decouples length and time to model spatiotemporal relations while remaining compatible with 1D sequences (C3; Sec. 4.2.2, Eq. 12). We therefore assess robustness across (a) modalities (continuous signals vs. discrete tokens) and (b) SNN backbones (Spikformer, SDT-V1, QKFormer), and we include length extrapolation to specifically probe relative-position generalization.

Our experimental validation systematically demonstrates how our gap-targeted solutions (C1-C3) translate to performance improvements across diverse domains. For our primary comparisons, we evaluate against two baselines: Conv-PE (Zhou et al., 2022; Yao et al., 2023; Zhou et al., 2024a), where positional information is learned implicitly, and CPG-PE (Lv et al., 2024), the state-of-the-art absolute PE for SNNs. However, there has been no research effort for applying relative PE to SNNs, making a direct comparison with a pre-existing method challenging (See the alternative comparison in Appendix E). Additionally, we utilize our Spiking-RoPE as a relative-only baseline and provide a detailed comparison in the ablation studies. Detailed experimental settings, including datasets, metrics, and hyperparameters, are provided in Appendix C.

5.1 TIME SERIES FORECASTING

Table 1 shows the performance of SF-PE on four time series forecasting datasets. The results reveal several notable patterns:

Consistent superiority of SF-PE: SF-PE consistently outperforms absolute PE approaches across all backbone models (Spikformer, SDT-V1, and QKFormer). In particular, the average R^2 score improved from 0.744 to 0.760 on Spikformer and showed a substantial improvement from 0.700 to 0.733 on SDT-V1. Similarly, SF-PE achieved a leading average R^2 score of 0.748 on QKFormer.

Robustness in long-term prediction: While the performance degradation occurs as prediction length increases (6 to 96 hours), SF-PE maintains relatively stable performance compared to other methods. Specifically, in the 96-hour prediction on the Metr-la dataset, SF-PE achieves $R^2 = 0.317$, showing a 10.5% improvement over CPG-PE’s 0.287. This suggests that our SF-PE is more effective at capturing long-term dependencies.

Dataset-specific characteristic analysis:

- **Solar dataset:** The strong periodic patterns in this dataset appear well-suited for spatiotemporal PE, as all models achieved their highest performance on this task.

Table 2: Performance comparison on six text classification tasks using the Spikformer backbone. The best results are shown in **bold**. PE types: A = absolute, F = Fused (absolute + relative). Metrics: F1 score for MRPC, Pearson Correlation for STS-B and accuracy for all other tasks. All results are averaged across 3 random seeds.

Model	PE Type	Param(M)	Sentiment Analysis				Similarity		Inference	Avg.
			MR	SST-2	Subj	SST-5	MRPC	STS-B	RTE	
Fine-tuned BERT (Upper bound)	A	109.8	86.39	92.01	95.43	49.87	89.75	86.47	69.42	81.33
Conv-PE Zhou et al. (2022)	A	109.8	71.84	80.17	88.35	38.69	68.38	18.71	52.71	59.84
CPG-PE Lv et al. (2024)	A	110.4	72.73	81.77	88.97	39.15	70.10	18.71	52.71	60.59
SF-PE (Ours)	F	110.4	73.57	81.83	89.70	40.05	70.59	19.24	52.71	61.10

- **Electricity dataset:** Despite high dimensionality (321 customers), SF-PE shows particularly strong results, indicating that our fused PE approach can effectively capture complex multivariate relationships.
- **Traffic data (Metr-la, Pems-bay):** SF-PE consistently maintains its performance advantage on the more volatile and inherently challenging traffic datasets, even with lower absolute scores.

Comparison with upper bound: Vanilla transformer used in SNNs is considered the performance upper bound, as the binarization process in spiking models can cause information loss compared to the continuous values used in standard transformers. Notably, in some instances, the addition of SF-PE enables spiking models to outperform the upper bound.

5.2 TEXT CLASSIFICATION

Table 2 presents the performance on six text classification tasks.

Improvement in sentiment analysis: Our SF-PE consistently surpasses both the CPG-PE baseline and the model without PE across all sentiment analysis tasks. Specifically, it achieves 73.57% accuracy on the MR task, an improvement of 0.84% over CPG-PE 72.73%. It also attains the highest performance of 40.05% in the fine-grained sentiment classification of SST-5.

Improvement in other tasks: On the MRPC, SF-PE improves the F1 score by 0.49% to 70.59%, compared to CPG-PE. However, for the RTE, neither CPG-PE nor SF-PE provides a performance benefit over the Spikformer baseline. This phenomenon arises because the subtle differences between sentence pairs in NLP tasks often cause the model to fall into local minima or, in the worst case, fail to converge (Lv et al., 2023). Nevertheless, while CPG-PE showed no performance improvement on the STS-B task where similar issues have been reported, SF-PE achieved a 0.53% performance gain.

Comparison with upper bound: While the BERT model provides upper bounds, SF-PE demonstrates substantial performance. Particularly, on the Subj (subjectivity classification) task, our method achieves 89.70%, narrowing the performance gap to BERT’s 95.43%.

5.3 LENGTH EXTRAPOLATION ANALYSIS

Table 3: Length extrapolation evaluation on four time series forecasting tasks. Models were trained on short sequences (i.e., $L = 12$) and tested on significantly longer sequences (i.e., $L = 168$). Metrics: a higher R^2 indicates better performance. All results are averaged across 3 random seeds.

Models	PE Type	Metric	Metr-la (L = 12 ->168)				Pems-bay (L = 12 ->168)				Solar (L = 12 ->168)				Electricity (L = 12 ->168)				Avg.
			6	24	48	96	6	24	48	96	6	24	48	96	6	24	48	96	
Spikformer w/CPG-PE	A	$R^2 \uparrow$.551	.339	.307	.149	.677	.631	.594	.529	.748	.747	.513	.342	.979	.975	.967	.961	.637
		RSE \downarrow	.708	.859	.879	.974	.595	.636	.675	.739	.273	.512	.741	.918	.266	.284	.321	.344	.608
Spikformer w/SF-PE (Ours)	F	$R^2 \uparrow$.601	.387	.257	.187	.694	.679	.653	.647	.936	.764	.528	.371	.980	.977	.971	.966	.662
		RSE \downarrow	.667	.827	.910	.592	.579	.593	.617	.622	.256	.493	.756	.889	.263	.279	.302	.324	.583

We evaluate the sensitivity of our proposed method to sequence length variations by training models on short sequences ($L = 12$) and testing them on long sequences ($L = 168$). This test assesses how well the models maintain performance under extremely extrapolated conditions.

432 The results in Table 3 show that our SF-PE consistently achieves higher performance than CPG-
 433 PE in all cases, with an average R^2 of 0.662 compared to CPG-PE’s 0.637. This indicates that the
 434 relative positional information within SF-PE enables the model to effectively generalize positional
 435 relationships and maintain stable prediction performance, even when the sequence length changes
 436 dramatically.

438 5.4 ABLATION STUDY

440 5.4.1 1D VS. 2D IN SPIKING-ROPE

442 We proposed Spiking-RoPE, which independently encodes positional information along the
 443 temporal t and spatial l axes. Tab. 4 validates this design by comparing the performance of
 444 1D and 2D in Spiking-RoPE on the Electricity dataset.

448 The results show a clear progression in performance. While both 1D Spiking-RoPE variants
 449 show strong performance, 2D Spiking-RoPE further improves the average R^2 score to 0.971.
 450 The complete SF-PE model ultimately attains the highest score of 0.973. This demonstrates a clear synergy between separating spatiotemporal
 451 features and fusing absolute with relative positional information.

455 5.5 RESULTS DISCUSSION AND ANALYSIS

457 The experimental results demonstrate the effective design of SF-PE from multiple angles:

459 **Empirical validation of theoretical predictions:** The phase preservation theory presented in Section 4.2.3 has been confirmed in actual experiments. Despite nonlinear transformations of LIF neurons, the consistently improved performance of models with Spiking-RoPE suggests that phase kernel preservation under linear approximation is indeed effective.

463 **Synergistic effect of Fused PE:** The combination of absolute PE (CPG-PE) and relative PE
 464 (Spiking-RoPE) creates synergy beyond simple performance summation. As shown in Eq. 16, this
 465 is because absolute information (amplitudes A, B) and relative information (trigonometric kernels
 466 $\cos \Delta, \sin \Delta$) work complementarily to expand the representation space.

467 Task-specific adaptability:

- 469 • **Time series forecasting:** The spatiotemporal separation approach of Spiking-RoPE is par-
 470 ticularly effective for tasks where periodic patterns and long-term dependencies are impor-
 471 tant.
- 472 • **Text classification:** Relative positional information contributes to performance improve-
 473 ment even in natural language tasks where contextual understanding is crucial.
- 474 • **Length extrapolation:** Shows stable performance even on inputs longer than training se-
 475 quences, confirming generalization ability.

478 6 CONCLUSION

480 We presented **Spiking Fused-PE (SF-PE)**, a spiking-friendly positional encoding that fuses ab-
 481 solute CPG codes with pre-spoke rotary phases. Built on Spiking-RoPE and its 2D extension, our
 482 design preserves relative phase kernels under LIF dynamics while injecting complementary absolute
 483 information. Across time series and text tasks on Spikformer, SDT-V1, and QKFormer backbones,
 484 SF-PE delivers consistent accuracy gains and stronger length extrapolation without an increase in
 485 model parameters. These results validate that absolute and relative encodings are synergistic in spik-
 ing transformers and provide a principled approach for spatiotemporal PE under spiking constraints.

437 Table 4: 1D vs. 2D SNN RoPE performance on
 438 Electricity dataset using Spikformer backbone.
 439 The best results are shown in **bold** and the second
 440 highest results are underlined. Metrics: a higher
 441 R^2 indicates better performance.

Models	PE Type	Electricity				Avg.
		6	24	48	96	
Conv-PE	A	.959	.955	.955	.954	.956
CPG-PE	A	<u>.972</u>	.970	.966	.960	.967
1D-Spatial RoPE	R	.975	.972	.966	.960	.968
1D-Temporal RoPE	R	.976	.973	.968	.962	.970
2D-RoPE	R	<u>.978</u>	.973	.969	.963	.971
Spiking Fused-PE	F	.981	<u>.975</u>	<u>.972</u>	<u>.965</u>	.973

486 REFERENCES
487

488 Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
489 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. *arXiv preprint*
490 *arXiv:1708.00055*, 2017.

491 Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence represen-
492 tations. *arXiv preprint arXiv:1803.05449*, 2018.

493 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
494 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
495 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

496 Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
497 *Third international workshop on paraphrasing (IWP2005)*, 2005.

498 R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
499 Szpektor. The second pascal recognising textual entailment challenge. In *Proceedings of the*
500 *Second PASCAL Challenges Workshop on Recognising Textual Entailment*, volume 7, pp. 785–
501 794, 2006.

502 Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jig-
503 nesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges.
504 *Communications of the ACM*, 57(7):86–94, 2014.

505 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
506 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference*
507 *on research & development in information retrieval*, pp. 95–104, 2018.

508 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
509 work: Data-driven traffic forecasting. In *International Conference on Learning Representations*,
510 2018.

511 Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
512 and Xuanjing Huang. Spikebert: A language spikformer trained with two-stage knowledge distil-
513 lation from bert. 2023.

514 Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
515 Advancing spiking neural networks for sequential modeling with central pattern generators. *Ad-
516 vances in Neural Information Processing Systems*, 37:26915–26940, 2024.

517 Changze Lv, Yansen Wang, Dongqi Han, Yifei Shen, Xiaoqing Zheng, Xuanjing Huang, and
518 Dongsheng Li. Toward relative positional encoding in spiking transformers. *arXiv preprint*
519 *arXiv:2501.16745*, 2025.

520 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
521 *Neural networks*, 10(9):1659–1671, 1997.

522 Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
523 with respect to rating scales. In Kevin Knight, Hwee Tou Ng, and Kemal Oflazer (eds.), *Pro-
524 ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)*,
525 pp. 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi:
526 10.3115/1219840.1219855. URL <https://aclanthology.org/P05-1015/>.

527 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
528 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

529 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
530 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
531 treebank. In *Proceedings of the 2013 conference on empirical methods in natural language pro-
532 cessing*, pp. 1631–1642, 2013.

533 Xiaotian Song, Andy Song, Rong Xiao, and Yanan Sun. One-step spiking transformer with a lin-
534 ear complexity. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
535 Intelligence*, pp. 3142–3150, 2024.

540 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 541 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

542

543 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 544 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 545 *processing systems*, 30, 2017.

546 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 547 transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023.

548

549 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi
 550 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of
 551 next-generation neuromorphic chips. *arXiv preprint arXiv:2404.03663*, 2024.

552 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
 553 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
 554 work. *arXiv preprint arXiv:2304.11954*, 2023.

555

556 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
 557 Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer
 558 using qk attention. *Advances in Neural Information Processing Systems*, 37:13074–13098, 2024a.

559 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
 560 Li Yuan. Spikformer: When spiking neural network meets transformer. *arXiv preprint*
 561 *arXiv:2209.15425*, 2022.

562 Zhaokun Zhou, Kaiwei Che, Wei Fang, Keyu Tian, Yuesheng Zhu, Shuicheng Yan, Yonghong Tian,
 563 and Li Yuan. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. *arXiv*
 564 *preprint arXiv:2401.02020*, 2024b.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Figure 2: Attention map activation differences between Absolute/Relative/Fused PE approaches. Green regions indicate higher activation, while red regions show lower activation. The fused PE approach demonstrates more balanced and distributed attention patterns, combining the structured patterns of absolute PE with the relative position awareness.

A PROOF OF RELATIVE PHASE KERNEL PRESERVATION UNDER LIF DYNAMICS

This appendix provides the detailed mathematical proof for **Gap 1 Resolution (C1)** - our theoretical foundation for spiking-friendly positional encoding introduced in Section 4. These proofs establish why Spiking-RoPE succeeds where previous approaches fail, directly addressing the theoretical void identified in our gap analysis (Section 1). The results presented here underpin the practical performance gains demonstrated in Section 5.

Theorem 1 (Relative Phase Kernel Preservation). *Let $\sigma : \mathbb{R} \rightarrow [0, 1]$ be the spike probability function of a LIF neuron, and assume that batch normalization ensures $\mathbb{E}[\tilde{q}_{id}] = \mathbb{E}[\tilde{k}_{jd}] = 0$ for all dimensions d . Under the assumption that σ is continuously differentiable in a neighborhood of 0 and the pre-spike activations are concentrated near zero, the expected attention score between spiked query and key vectors preserves the relative phase kernel structure:*

$$\mathbb{E}[q_i^\top k_j] = C + \alpha \langle \tilde{q}_i, \tilde{k}_j \rangle + \mathcal{O}(\epsilon^2),$$

where $C = D \cdot \sigma(0)^2$ is a position-independent constant, $\alpha = \sigma'(0)^2 > 0$ is the sensitivity-dependent scaling factor, and ϵ quantifies the deviation from the linearization point.

Proof. We proceed through several lemmas to establish the main result.

Lemma 1 (Query/Key Setup). *According to Section 3.2 and Section 4.2, the pre-spike query and key vectors with injected positional information are given by:*

$$\tilde{q}_i = R_i q_i^{(c)}, \quad \tilde{k}_j = R_j k_j^{(c)}, \quad (19)$$

where R_i, R_j are position-dependent rotation matrices and $q_i^{(c)}, k_j^{(c)}$ are the continuous embeddings before spiking.

Lemma 2 (Expected Inner Product Decomposition). *Let q_i and k_j denote the spiked query and key vectors, where each component $q_{id}, k_{jd} \in \{0, 1\}$ is a binary random variable. Then by linearity of expectation:*

$$\mathbb{E}[q_i^\top k_j] = \mathbb{E} \left[\sum_{d=1}^D q_{id} k_{jd} \right] = \sum_{d=1}^D \mathbb{E}[q_{id} k_{jd}] \quad (20)$$

Proof of Lemma 2. This follows directly from the linearity of expectation operator over finite sums. \square

Lemma 3 (Binary Variable Product Expectation). *For binary random variables $q_{id}, k_{jd} \in \{0, 1\}$, the expectation of their product equals the joint probability:*

$$\mathbb{E}[q_{id} k_{jd}] = P(q_{id} = 1, k_{jd} = 1) \quad (21)$$

648 *Proof of Lemma 3.*

649

$$\mathbb{E}[q_{id}k_{jd}] = \sum_{q_{id}, k_{jd} \in \{0,1\}} q_{id}k_{jd}P(q_{id}, k_{jd}) \quad (22)$$

650

$$= 1 \cdot 1 \cdot P(q_{id} = 1, k_{jd} = 1) + (\text{other terms are zero}) \quad (23)$$

651

$$= P(q_{id} = 1, k_{jd} = 1) \quad (24)$$

652

653 **Lemma 4** (Taylor Approximation of Spike Probability). *Let $\sigma(u) = P(s = 1|u)$ be the spike probability function for input current u , which is monotonically increasing and continuously differentiable. Given that the SSA block applies batch normalization to ensure zero mean and unit variance (excluding bias), and assuming that the input distribution is concentrated in a neighborhood of zero, we have:*

654

$$\sigma(u) = \sigma(0) + \sigma'(0)u + \mathcal{O}(u^2), \quad (25)$$

655 where $\sigma(0)$ represents the baseline firing probability and $\sigma'(0) > 0$ represents the sensitivity at the linearization point.

656 **Lemma 5** (Taylor Approximation of Spike Probability with Remainder Bound). *Let $\sigma(u) = \Pr(s = 1 | u)$ be continuously differentiable in a neighborhood of 0 and suppose $\mathbb{E}[\tilde{q}_{id}] = \mathbb{E}[\tilde{k}_{jd}] = 0$ (post-BN centering; zero-bias linear maps). Assume moreover that σ has bounded second derivative on $[-\varepsilon, \varepsilon]: \sup_{|u| \leq \varepsilon} |\sigma''(u)| \leq M_2$. Then for $|u|, |v| \leq \varepsilon$,*

657

$$\sigma(u)\sigma(v) = \sigma(0)^2 + \sigma'(0)^2 uv + \sigma(0)\sigma'(0)(u + v) + \frac{1}{2}\sigma(0)\sigma''(0)(u^2 + v^2) + R_3,$$

658 and with $\mathbb{E}[u] = \mathbb{E}[v] = 0$,

659

$$\left| \mathbb{E}[\sigma(u)\sigma(v)] - (\sigma(0)^2 + \sigma'(0)^2 \mathbb{E}[uv]) \right| \leq \frac{1}{2}|\sigma(0)\sigma''(0)|(\mathbb{E}[u^2] + \mathbb{E}[v^2]) + \mathbb{E}[|R_3|].$$

660 *Proof of Lemma 4.* By Taylor's theorem, for a continuously differentiable function σ in a neighborhood of $u = 0$:

661

$$\sigma(u) = \sigma(0) + \sigma'(\xi)u$$

662 for some ξ between 0 and u . Under the assumption that σ has a bounded second derivative and the 663 inputs are concentrated near zero, we can approximate $\sigma'(\xi) \approx \sigma'(0)$ with error $\mathcal{O}(u)$, yielding the 664 stated result.

665

666 **Lemma 6** (Query/Key Joint Firing Probability Approximation). *Let the joint firing probability of 667 query and key be $P(q_{id} = 1, k_{jd} = 1)$. Given inputs \tilde{q}_{id} and \tilde{k}_{jd} , instead of assuming conditional 668 independence of spiking events, we approximate the expected joint firing rate by considering the 669 statistical properties of the inputs.*

670

$$P(q_{id} = 1, k_{jd} = 1) = \mathbb{E}[\sigma(\tilde{q}_{id})\sigma(\tilde{k}_{jd})] \quad (26)$$

671

$$\approx \mathbb{E}[(\sigma(0) + \sigma'(0)\tilde{q}_{id})(\sigma(0) + \sigma'(0)\tilde{k}_{jd})] \quad (\text{by Eq. 25}) \quad (27)$$

672

$$= \mathbb{E}[\sigma(0)^2 + \sigma(0)\sigma'(0)(\tilde{q}_{id} + \tilde{k}_{jd}) + \sigma'(0)^2\tilde{q}_{id}\tilde{k}_{jd}] \quad (28)$$

673

$$= \sigma(0)^2 + \sigma(0)\sigma'(0)(\mathbb{E}[\tilde{q}_{id}] + \mathbb{E}[\tilde{k}_{jd}]) + \sigma'(0)^2\mathbb{E}[\tilde{q}_{id}\tilde{k}_{jd}]. \quad (29)$$

674 Since BN ensures $\mathbb{E}[\tilde{q}_{id}] \approx 0$ and $\mathbb{E}[\tilde{k}_{jd}] \approx 0$, the middle term vanishes. For a given token pair, the 675 pre-spiking values \tilde{q}_{id} and \tilde{k}_{jd} are deterministic. The expectation is taken over the stochastic spiking 676 events, which are functions of these pre-spiking values.

677

$$P(q_{id} = 1, k_{jd} = 1) \approx \sigma(0)^2 + \sigma'(0)^2\tilde{q}_{id}\tilde{k}_{jd}. \quad (30)$$

678

679 *Proof of Lemma 6.* This follows from the derivation above using Taylor expansion and the zero- 680 mean property ensured by batch normalization.

681

702 Now we combine all lemmas to complete the proof of Theorem 1.
 703

704 Substituting the result from Lemma 6 into the expectation formula from Lemma 2:
 705

706

$$\mathbb{E}[q_i^\top k_j] = \sum_{d=1}^D P(q_{id} = 1, k_{jd} = 1) \quad (\text{Lemma 2}) \quad (31)$$

707

708

$$= \sum_{d=1}^D (\sigma(0)^2 + \sigma'(0)^2 \tilde{q}_{id} \tilde{k}_{jd}) \quad (\text{Lemma 6}) \quad (32)$$

709

710

$$= D \cdot \sigma(0)^2 + \sigma'(0)^2 \sum_{d=1}^D \tilde{q}_{id} \tilde{k}_{jd} \quad (33)$$

711

712

$$= C + \alpha \langle \tilde{q}_i, \tilde{k}_j \rangle + \mathcal{O}(\epsilon^2) \quad (34)$$

713

714 where $C = D \cdot \sigma(0)^2$ is a position-independent constant representing the baseline co-firing expectation determined solely by the neuron’s intrinsic firing rate, and $\alpha = \sigma'(0)^2 > 0$ is a positive scaling constant depending on the neuron’s sensitivity.
 715

716 The constant C adds a uniform positive offset to the attention score expectations for all position pairs (i, j) . After normalizing out this constant bias effect, the attention score expectation becomes proportional to the pre-spike inner product:
 717

718

$$\mathbb{E}[q_i^\top k_j] - C = \alpha \langle \tilde{q}_i, \tilde{k}_j \rangle + \mathcal{O}(\epsilon^2) \quad (35)$$

719

720 This establishes that the expected attention scores preserve the relative phase kernel structure encoded in the pre-spike embeddings, completing the proof. \square
 721

722 **Theorem 2** (RoPE Kernel Preservation). *When Spiking-RoPE is applied to the pre-spike embeddings such that $\tilde{q}_i = R_{\varphi(i)} q_i^{(c)}$ and $\tilde{k}_j = R_{\varphi(j)} k_j^{(c)}$, the expected attention score preserves the relative phase dependence:*
 723

724

$$\mathbb{E}[q_i^\top k_j] \approx C + \alpha [\langle q_i^{(c)}, k_j^{(c)} \rangle \cos(\Delta_{ij}) + \langle q_i^{(c)}, J k_j^{(c)} \rangle \sin(\Delta_{ij})]$$

725

726 where $\Delta_{ij} = \varphi(i) - \varphi(j)$ is the relative phase difference and J is the 90 rotation operator.
 727

728 *Proof of Theorem 2.* This follows directly from Theorem 1 and the trigonometric expansion of the RoPE inner product $\langle \tilde{q}_i, \tilde{k}_j \rangle$ as shown in the main text. \square
 729

730 B FORMAL ANALYSIS OF APPROXIMATION ERROR BOUND

731

732 To rigorously validate the linear approximation assumption of the LIF firing function used in Theorem 1, we conduct a formal analysis of the expected approximation error. We define the total expected error \mathcal{E} as the integral of the pointwise error weighted by the input probability density
 733

734

$$\mathcal{E} = \mathbb{E}_{u \sim p(u)} [|\sigma(u) - \hat{\sigma}(u)|] = \int_{-\infty}^{\infty} e(u) p(u) du, \quad (36)$$

735

736 where u is the pre-spike membrane potential, $\sigma(u)$ is the actual surrogate gradient function (ATan),
 737 $\hat{\sigma}(u)$ is the linear approximation, and $p(u)$ is the probability density function of u . Based on the empirical observations in Figure 3 and Figure 4, we decompose this integral into a **Core Linear Region** ($|u| \leq 1$) and a **Tail Region** ($|u| > 1$)
 738

756
 757
 758

$$\mathcal{E} = \underbrace{\int_{|u| \leq 1} e(u)p(u) du}_{\text{Term 1: Core Linear Region}} + \underbrace{\int_{|u| > 1} e(u)p(u) du}_{\text{Term 2: Tail Region}}. \quad (37)$$

 759
 760
 761
 762

763 B.1 EMPIRICAL VALIDATION OF INPUT DISTRIBUTION

764
 765 We analyze the distribution of pre-spike membrane potentials $p(u)$ in the trained model. As shown
 766 in Figure 3, the use of batch normalization effectively stabilizes the distribution of Query (Q) and
 767 Key (K) potentials.

768
 769

- **Zero-Centered & Narrow:** The distributions are consistently centered near zero ($\mu \approx 0$)
 with a standard deviation of $\sigma \approx 1.1$ across all training epochs.
- **RoPE Invariance:** The distributions before and after applying RoPE (blue vs. red his-
 tograms in Figure 3) overlap almost perfectly, indicating that the rotation operation does
 not distort the statistical properties of the input, preserving the validity of the approximation
 throughout the network depth.

774
 775
 776
 777

B.2 ERROR BOUND DECOMPOSITION

778 Combining the distribution analysis with the linearity analysis in Figure 4, we evaluate the two terms
 779 of the expected error.

780
 781 1) **Term 1: Core Linear Region ($|u| \leq 1$)**

782 Figure 4 demonstrates that the interval $[-1, 1]$ corresponds to the inflection point of the
 783 ATan surrogate function. In this region, the linear approximation (green dashed line) and
 784 the actual function (red solid line) are nearly indistinguishable.

785
 786

- **Observation:** The pointwise error $e(u)$ in this region is essentially negligible (≈ 0).
- **Density:** Empirically, approximately **73%** of the total probability mass lies within this
 high-precision core.
- **Result:** The contribution of Term 1 to the total error is minimal due to the vanishing
 $e(u)$.

787
 788 2) **Term 2: Tail Region ($|u| > 1$)**

789 Outside the unit interval, the pointwise error $e(u)$ begins to increase as the surrogate func-
 790 tion saturates. However, the contribution of this error is suppressed by the vanishing prob-
 791 ability density.

792
 793

- **Observation:** As shown in Figure 3, the input density $p(u)$ decays rapidly (sub-
 Gaussian tail) for $|u| > 1$.
- **Density:** Over **95%** of the data falls within the $[-2, 2]$ range. The probability mass
 in the extreme saturation region ($|u| > 2$), where the linear assumption would fail
 significantly, is statistically insignificant ($< 5\%$).
- **Result:** The exponential decay of $p(u)$ dominates the linear growth of $e(u)$, ensuring
 that the integral of Term 2 remains tightly bounded.

800
 801 The quantitative analysis in Figure 4 confirms a consistently high correlation (> 0.96) between the
 802 ATan function and its linear approximation within the effective data range. Consequently, the total
 803 expected error \mathcal{E} is bounded by a small constant

804
 805

$$\mathcal{E} \approx \epsilon_{core} \cdot P(|u| \leq 1) + C_{tail} \cdot P(|u| > 2) \approx 0. \quad (38)$$

 806
 807

808 This provides a strong empirical justification that the phase preservation properties derived in The-
 809 orem 1 hold in expectation under the actual operating conditions of the SNN.

Figure 3: Pre-spoke Query/Key value distribution on every five epochs (0 to 20 epoch).

Figure 4: Comparison of the ATan surrogate function and its first-order Taylor linear approximation around zero (Lemma 4).

C EXPERIMENTAL SETTINGS

This appendix provides comprehensive experimental setup details for all experiments reported in Section 5, including datasets, hyperparameters, and evaluation metrics.

C.1 DATASETS

C.1.1 TIME SERIES FORECASTING

- **Metr-la (Jagadish et al., 2014):** Traffic speed dataset from Los Angeles County highways.
- **Pems-bay (Li et al., 2018):** Traffic speed dataset from the California Bay Area.
- **Solar (Lai et al., 2018):** Solar power generation dataset from the 2006 US National Solar Radiation Database.
- **Electricity (Lai et al., 2018):** Power consumption dataset recording electricity usage of 321 customers.

C.1.2 TEXT CLASSIFICATION

- **MR (Pang & Lee, 2005):** Sentiment analysis dataset for classifying positive/negative movie reviews.
- **SST-2 (Socher et al., 2013):** Binary sentiment classification dataset for movie review sentences.
- **SST-5 (Socher et al., 2013):** Sentiment classification dataset with five fine-grained classes (very positive to very negative).

- 864 • **Subj (Conneau & Kiela, 2018):** Dataset for classifying sentences as subjective or objective.
865
- 866 • **MRPC (Dolan & Brockett, 2005):** Dataset for determining whether two sentences are
867 semantically equivalent.
868
- 869 • **STS-B (Cer et al., 2017): Dataset for sentence pairs drawn from news headlines, video
870 and image captions.**
871
- 872 • **RTE (Haim et al., 2006):** Dataset for recognizing logical entailment relationships between
873 two sentences.
874

874 C.2 HYPERPARAMETER SETTINGS

875 All experiments are repeated three times under the same random seed, and we report the average
876 performance. Detailed hyperparameters for each task are as follows.
877

878 C.2.1 COMMON PARAMETERS

880 LIF neuron parameters commonly used in all experiments are shown in Table 5.
881

882 Table 5: Experiment configuration and hyperparameter settings for time series forecasting and text
883 classification tasks, including LIF neuron parameters, training settings, and positional encoding spe-
884 cific parameters.
885

886 Parameter	887 Time Series Forecasting	888 Text Classification
<i>Common LIF Neuron Parameters</i>		
888 Membrane leak time constant (τ)	889	2.0
Common firing threshold (U_{thr})		0.8
<i>Training & Model Parameters</i>		
890 Batch Size	64	64
Learning Rate	0.001 (1e-3)	5e-4
Optimizer	Adam	Adam
Embedding Dimension	256	768
Layer Depth	2	12
Time Steps (T)	4	4
Attention Heads	8	8
Max Sequence Length	-	256
<i>Positional Encoding Parameters</i>		
900 CPG Neurons (N_{CPG})	40	20
Spiking-RoPE Base (B)	100000.0	10000.0

903 D SPIKING-ROPE IMPLEMENTATION

904 This appendix provides detailed implementation details for the Spiking-RoPE method introduced in
905 Section 4.2, with specific focus on the tensor operations and computational procedures referenced
906 in the main methodology.
907

908 This section describes how to implement Spiking-RoPE from a tensor dimension perspective, refer-
909 encing the tensor transformation of the overall process as shown in Fig. 5. The core of Spiking-RoPE
910 is to apply positional information in rotational form to query (Q) and key (K) tensors with continu-
911 ous values before binarization.
912

913 D.1 1D IMPLEMENTATION IN SPIKING-ROPE

914 1D Spiking-RoPE encodes relative positional information along the sequence length axis L or time
915 axis T . Here, we focus our explanation on the sequence length axis.
916

Figure 5: Spiking-RoPE tensor transformation.

1) Input Tensor and Parameter Definition

- **Input Tensor:** A Query or Key tensor $X \in \mathbb{R}^{T \times L \times D}$ is given, where T represents time steps, L represents sequence length, and D represents feature dimension.
- **Position and Frequency Indices:**
 - Position index: $m \in \{0, 1, \dots, L - 1\}$
 - Frequency index: $i \in \{0, 1, \dots, D/2 - 1\}$
- **Rotation Frequency:** Calculate $\theta_i = B^{-2i/D}$ corresponding to each frequency index, where B is a hyperparameter (e.g., 10000).

2) Channel Separation (Divide)

- Separate the input tensor X into even-indexed channels (X_{even}) and odd-indexed channels (X_{odd}) based on the last dimension D .
- $X_{\text{even}}, X_{\text{odd}} \in \mathbb{R}^{T \times L \times (D/2)}$

3) Rotation Kernel Generation (Cos & Sin Kernel)

- Generate Cosine and Sine kernel tensors by combining position m and frequency index i (Eq. 8).
- $\text{cos_kernel} \in \mathbb{R}^{L \times D/2}$: Each element has the value $\cos(m\theta_i)$.
- $\text{sin_kernel} \in \mathbb{R}^{L \times D/2}$: Each element has the value $\sin(m\theta_i)$.

4) Rotation Application (Rotate)

- Apply the generated kernels to the separated channels through broadcasting. cos_kernel and sin_kernel are broadcasted to the T dimension and operated with X_{even} and X_{odd} .
- Calculate the following according to RoPE's rotation formula, where the multiplication is the Hadamard product:

$$X'_{\text{even}} = X_{\text{even}} \cdot \text{cos_kernel} - X_{\text{odd}} \cdot \text{sin_kernel}$$

$$X'_{\text{odd}} = X_{\text{even}} \cdot \text{sin_kernel} + X_{\text{odd}} \cdot \text{cos_kernel}$$

- Both X'_{even} and X'_{odd} have dimensions $(T, L, D/2)$.

5) Channel Combination (Done)

- Interleave the rotation-applied X'_{even} and X'_{odd} back to their original order along the last dimension D to complete the final tensor $X_{\text{rotated}} \in \mathbb{R}^{T \times L \times D}$. This tensor contains relative positional information for the sequence length axis.

Algorithm 1 1D Spiking-RoPE algorithm implementation. The algorithm applies position-dependent rotations along the sequence length axis by computing trigonometric kernels and rotating even/odd channel pairs to inject relative positional information before spike binarization.

```

Require:  $x \in \mathbb{R}^{T \times L \times D}$  (Input tensor),  $B \in \mathbb{R}$  (Base value for frequency computation)
Ensure:  $x' \in \mathbb{R}^{T \times L \times D}$  (Position-encoded tensor)

1: function APPLY1DSPIKINGROPE( $x, B$ )
2:    $(T, L, D) \leftarrow$  shape of  $x$ 
3:    $x' \leftarrow$  copy of  $x$ 

4:   for all  $i \in \{0, 1, \dots, D/2 - 1\}$  do ▷ Compute rotation frequencies
5:      $\theta_i \leftarrow 1/B^{2i/D}$ 
6:   end for

7:   for all  $m \in \{0, 1, \dots, L - 1\}$  do ▷ Apply rotation for each position  $m$ 
8:     for all  $i \in \{0, 1, \dots, D/2 - 1\}$  do ▷ For each channel pair  $(2i, 2i + 1)$ 
9:        $c \leftarrow \cos(m\theta_i)$ 
10:       $s \leftarrow \sin(m\theta_i)$ 

11:       $x_{m,2i} \leftarrow x[:, m, 2i]$  ▷ Get the channel vector across time T
12:       $x_{m,2i+1} \leftarrow x[:, m, 2i + 1]$ 

13:       $x'[:, m, 2i] \leftarrow x_{m,2i} \cdot c - x_{m,2i+1} \cdot s$  ▷ Apply 2D rotation
14:       $x'[:, m, 2i + 1] \leftarrow x_{m,2i} \cdot s + x_{m,2i+1} \cdot c$ 
15:   end for
16: end for

17: return  $x'$ 
18: end function

```

D.2 2D IMPLEMENTATION IN SPIKING-ROPE

2D Spiking-RoPE considers the spatiotemporal characteristics of SNNs and encodes positional information for the sequence length axis L and time axis T independently.

1) Feature Dimension Partitioning

- Divide the last feature dimension D of the input tensor $X \in \mathbb{R}^{T \times L \times D}$ into two equal-sized blocks.
 - $X_l \in \mathbb{R}^{T \times L \times (D/2)}$: Part to be used for sequence length (L) axis rotation
 - $X_t \in \mathbb{R}^{T \times L \times (D/2)}$: Part to be used for time (T) axis rotation

2) Independent Application of 1D RoPE to Each Axis

- **(a) Sequence Length Axis Rotation:**
 - Apply the 1D Spiking-RoPE process described in Appendix D.1 directly to tensor X_t .
 - Here, the feature dimension becomes $D/2$, and the rotation kernel is generated based on sequence length L .
 - This yields $X'_t \in \mathbb{R}^{T \times L \times (D/2)}$.
- **(b) Time Axis Rotation:**
 - Apply the same 1D Spiking-RoPE process to tensor X_t , but change the positional reference to the time axis T .

- **Rotation Kernel Generation:** Use position index $t \in \{0, 1, \dots, T - 1\}$ to generate `cos_kernel_t` and `sin_kernel_t` of size $(T, D/4)$ (since feature dimension $D/2$ is again divided into even/odd, resulting in $D/4$).
- **Rotation Application:** Broadcast the generated time kernels to the L dimension (sequence length axis) and apply to X_t .
- This yields $X'_t \in \mathbb{R}^{T \times L \times (D/2)}$.

3) Final Tensor Combination

- Concatenate the tensors X'_l and X'_t , which have been independently rotated for both axes, along the last feature dimension.
- Finally obtain $X_{2D_rotated} = \text{concat}([X'_l, X'_t]) \in \mathbb{R}^{T \times L \times D}$ with both spatiotemporal positional information encoded.

Algorithm 2 2D Spiking-RoPE algorithm implementation. This algorithm extends 1D Spiking-RoPE to handle spatiotemporal data by independently applying rotations along both sequence length and time axes, with feature dimensions partitioned equally between the two axes.

Require: $x \in \mathbb{R}^{T \times L \times D}$ (Spatiotemporal input tensor), $B \in \mathbb{R}$ (Base value for frequency computation)

Ensure: $x' \in \mathbb{R}^{T \times L \times D}$ (Spatiotemporally encoded tensor)

- 1: **function** **APPLY2D SPIKINGROPE**(x, B)
- 2: $x_L \leftarrow x[:, :, : D/2]$ ▷ Partition features for length (L) axis
- 3: $x_T \leftarrow x[:, :, D/2 :]$ ▷ Partition features for time (T) axis
- 4: $x'_L \leftarrow \text{Apply1D SpikingRoPE}(x_L, B)$ ▷ Encode the length axis
- 5: $x_T^{\text{perm}} \leftarrow \text{Transpose}(x_T, \text{axes} = (0, 1))$
- 6: $x_T'^{\text{perm}} \leftarrow \text{Apply1D SpikingRoPE}(x_T^{\text{perm}}, B)$
- 7: $x'_T \leftarrow \text{Transpose}(x_T'^{\text{perm}}, \text{axes} = (0, 1))$
- 8: $x' \leftarrow \text{Concatenate}(x'_L, x'_T, \text{axis} = 2)$ ▷ Combine the encoded partitions
- 9: **return** x'
- 10: **end function**

E COMPARISON WITH GRAY/LOG PE

While Gray-PE and Log-PE represent advanced relative positional encoding methods for SNNs, their official code has not been fully released at the time of this writing. To ensure reproducibility, we limit our direct comparison to the publicly available Spikformer backbone, for which we utilize Gray-PE and Log-PE results based on their paper. This allows for a fair and direct performance evaluation against our proposed SF-PE.

Table 6: Performance comparison on time series forecasting across 4 benchmark datasets with prediction lengths of 6, 24, 48, and 96 hours. Best results are highlighted in **bold**. PE types: R = relative, F = Fused (absolute + relative). Metrics: higher R^2 and lower RSE indicate better performance. All results are averaged across 3 random seeds.

Models	PE Type	Metric	Metr-la (L = 12)			Pems-bay (L = 12)			Solar (L = 168)			Electricity (L = 168)			Avg.				
			6	24	48	96	6	24	48	96	6	24	48	96	6	24	48	96	
Spikformer w/Gray-PE Lv et al. (2025)	R	$R^2 \uparrow$ RSE \downarrow	.728 .546	.544 .706	.414 .806	.295 .885	.782 .506	.724 .578	.694 .597	.673 .618	.936 .257	.840 .409	.756 .507	.710 .546	.974 .324	.972 .304	.966 .320	.962 .313	.748
Spikformer w/Log-PE Lv et al. (2025)	R	$R^2 \uparrow$ RSE \downarrow	.735 .543	.535 .719	.424 .799	.290 .876	.789 .496	.717 .575	.691 .601	.670 .620	.933 .265	.841 .408	.758 .504	.734 .525	.978 .272	.974 .300	.968 .314	.964 .309	.750
Spikformer w/SF-PE (Ours)	F	$R^2 \uparrow$ RSE \downarrow	.739 .538	.561 .698	.432 .795	.317 .871	.783 .499	.713 .576	.698 .618	.670 .511	.939 .251	.877 .311	.782 .240	.752 .300	.981 .306	.975 .303	.972 .306	.965 .307	.760

The experimental results presented in Table 6 clearly demonstrate the superiority of SF-PE. Across all four time series forecasting benchmarks, our model consistently outperforms both Gray-PE and

1080 Log-PE. On average, SF-PE achieves a higher R^2 score 0.760 compared to both Gray-PE and Log-
 1081 PE. While the model demonstrated superior or competitive results across most benchmarks, partic-
 1082 ularly in long-term forecasting on the Metr-la and Solar datasets, its performance on the Pems-bay
 1083 dataset was comparable to the other relative PE methods. This overall strong performance validates
 1084 that the synergistic fusion of absolute and relative positional encodings in our model provides a
 1085 robust advantage over methods that use relative encoding alone.

F ROTATION FREQUENCY VARIATION

(a) Time series forecasting

(b) Text classification

Figure 6: Performance versus RoPE base parameter B .

The base value B is a core hyperparameter of Spiking-RoPE, which determines the rotation frequency. Appropriate frequency selection enables the model to effectively distinguish relative distances of various lengths. Too high frequencies may focus excessively on short-range relationships and miss long-range dependencies, while too low frequencies make fine positional distinctions difficult.

Our experiments, illustrated in Figure 6, demonstrate that the model is robust to the parameter B , with performance consistently peaking at $B = 10000$ across all tested datasets. We therefore adopt this value as the default for B in all our experiments.

G SPACE AND TIME EFFICIENCY COMPARISON

Table 7: Efficiency comparison on the Electricity task using Spikformer

	Params(M)	GFLOPs	Avg training time per epoch(sec)	Avg inference time per epoch(sec)
Spikformer w/Conv-PE Zhou et al. (2022)	1.67	72.07	42.56	5.16
Spikformer w/CPG-PE Lv et al. (2024)	1.7	72.08	42.67	5.23
Spikformer w/SF-PE (Ours)	1.7	72.09	42.74	5.26

To evaluate the impact of SF-PE on computational and training efficiency compared to existing methods, we measured the computational costs of three different PE schemes on the Electricity task using Spikformer. The comparison metrics include the number of parameters, GFLOPs, average training time per epoch, and average inference time per epoch. We report the per-epoch average time because the total number of epochs required for full training varies across runs due to the inherent uncertainty of spikes.

Table 7 demonstrates that SF-PE incurs minimal computational overhead. The proposed method requires no additional parameters, resulting in the exact same parameter count as CPG-PE and a negligible difference in GFLOPs. Furthermore, the time cost increase over CPG-PE is trivial, and the computational overhead remains within approximately 0.2 seconds compared to Spikformer.

1134 H PRE-SPIKE VS. POST-SPIKE FOR SF-PE

1135

1136

1137

Table 8: Pre-spike and Post-spike RoPE comparison on four time series forecasting tasks.

Models	PE Type	Metric	Metr-la (L = 12)			Pems-bay (L = 12)			Solar (L = 168)			Electricity (L = 168)			Avg.				
			6	24	48	96	6	24	48	96	6	24	48	96					
Spikformer w/Conv-PE Zhou et al. (2022)	R	$R^2 \uparrow$ RSE \downarrow	.713 .565	.527 .725	.399 .818	.267 .903	.773 .514	.697 .594	.686 .606	.667 .621	.929 .272	.828 .426	.744 .519	.674 .586	.959 .373	.955 .371	.955 .379	.954 .382	.733 .541
Spikformer w/SF-PE (Post-spike)	F	$R^2 \uparrow$ RSE \downarrow	.558 .702	.358 .846	.281 .895	.145 .976	.682 .591	.669 .602	.655 .615	.646 .623	.881 .355	.791 .470	.735 .529	.689 .573	.941 .431	.939 .439	.932 .454	.929 .367	.677 .592
Spikformer w/SF-PE (Pre-spike)	F	$R^2 \uparrow$ RSE \downarrow	.739 .538	.561 .698	.432 .795	.317 .871	.783 .499	.713 .576	.698 .593	.670 .618	.939 .251	.877 .362	.782 .479	.752 .511	.981 .240	.975 .280	.965 .300	.972 .336	.760 .497

1143

1144 To validate the theoretical implementation of RoPE in SNNs, we conducted a comparative experiment
 1145 between pre-spike and post-spike RoPE applications. Table 8 presents the performance comparison
 1146 on the time-series forecasting task using the Spikformer backbone.

1147 Post-spike RoPE faces two primary issues. First, RoPE operates by rotating vectors by specific angles.
 1148 Applying this transformation to binary spikes generates floating-point values, thereby destroying
 1149 the inherent discrete nature of SNNs. Second, applying geometric rotations to low-resolution
 1150 binary spikes introduces quantization errors and information distortion. As shown in Table 8, the
 1151 post-spike method yields an average R^2 of 0.677, showing significant performance degradation
 1152 compared to the baseline Conv-PE.

1153 In contrast, our proposed pre-spike method applies rotation to the continuous membrane potentials
 1154 prior to the LIF binarization step. This approach ensures high precision in the rotation operation
 1155 without information loss. Furthermore, as proved in Theorem 1, the relative phase information en-
 1156 coded in the membrane potential is preserved in the form of statistical expectation even after passing
 1157 through the nonlinear LIF dynamics. Consequently, the pre-spike method achieved an average R^2
 1158 of 0.760, demonstrating consistent performance improvements over the post-spike approach. This
 1159 empirically validates our theoretical assertion that the pre-spike strategy is essential for effective
 1160 relative positional encoding in SNNs.

I LIMITATIONS

1161

1162

1163 The core theoretical foundation of this study critically depends on approximating the firing probability
 1164 function of LIF neurons using a first-order Taylor series for phase preservation proof. This linear
 1165 approximation is most effective when the pre-spike membrane potential distribution is stabilized
 1166 near zero mean by Batch Normalization and has a narrow unimodal form. However, under neuron
 1167 saturation states or broad distributions that may occur in real networks, the approximation accuracy
 1168 may degrade, which can weaken the phase preservation effect. Although experimental results validate
 1169 the effectiveness of Spiking-RoPE and its underlying approximation, the model’s behavior in
 1170 extreme sparse or saturated environments with complex neuron models requires additional research.
 1171 Future work should verify Spiking-RoPE’s generalizability by expanding the experimental focus
 1172 from sequential data to the vision domain of images.

1173

1174 THE USE OF LARGE LANGUAGE MODELS

1175

1176

1177 **Tool & Version:** Gemini (Google, 2025-09)

1178

1179 **Research Stage:** Generated visualization scripts.

1180

1181 **Writing Stage:** Language editing of author-drafted text for clarity and conciseness.

1182

1183 **Human Oversight:** All outputs reviewed/edited by the authors; authors accept full responsibility
 1184 for the content.

1185

1186

1187