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ABSTRACT

Positional signals in spiking neural networks (SNNs) suffer distortion due to
spike binarization and the nonlinear dynamics of Leaky Integrate-and-Fire (LIF)
neurons, which compromises self-attention mechanisms. We introduce Spiking-
RoPE, a spiking-friendly relative rotary positional encoding that applies two-
dimensional spatiotemporal position-dependent rotations to queries/keys prior to
binarization, ensuring that relative phase kernels are preserved in statistical ex-
pectation under LIF dynamics while maintaining content integrity. Building on
this core, we propose Spiking Fused-PE (SF-PE), a scheme that fuses abso-
lute CPG-based spikes with Spiking-RoPE. The resulting attention score decom-
poses into complementary row/column (absolute) and diagonal (relative) struc-
tures, thereby expanding the representable function space. We validate our method
across two diverse domains (time-series forecasting and text classification) on
Spikformer, Spike-driven Transformer, and QKFormer backbones. SF-PE con-
sistently improves accuracy and enhances length extrapolation capabilities. Abla-
tions on rotation bases and 1D vs. 2D variants support the design. These results es-
tablish rotary encoding as an effective, spiking-friendly relative PE for SNNs and
demonstrate that fusing absolute and relative signals yields synergistic benefits
under spiking constraints. Code: https://anonymous.4open.science/
r/SNN-ROPE-F6DE.

1 INTRODUCTION

Spiking neural networks (SNNs) transmit information via discrete spikes that emulate biological
firing, enabling event-driven computation with low energy and neuromorphic compatibility (Maass},
1997; Davies et al.l 2018} [Roy et al., 2019). Recent work has transplanted key Transformer com-
ponents to SNNs, including spike-friendly self-attention (Zhou et al., 2022} |Yao et al., 2023} |Song
et al.,|2024;Zhou et al.L[2024a). A persistent bottleneck, however, is positional encoding (PE). While
self-attention inherently lacks order awareness and therefore requires PE (Vaswani et al.,|2017), PE
signals in SNNs suffer distortion through spike binarization and the nonlinear dynamics of Leaky
Integrate-and-Fire (LIF) neurons.

Conventional continuous PEs (e.g., sinusoidal) differentiate positions through subtle embedding
changes. However, thresholding operations distort this information by either nullifying these sub-
tle differences (when inputs remain subthreshold) or drastically amplifying them (upon crossing the
threshold). This fundamental incompatibility motivates the development of spiking-friendly PEs that
can survive both binarization and LIF dynamics.

Through a systematic analysis of current approaches, we identify three critical gaps in the existing
SNN positional encoding landscape. Gap 1 (Theory): Existing SNN Transformers predominantly
rely on implicit, weight-based position learning and lack rigorous analysis of how positional in-
formation is preserved through binarization. Gap 2 (Single-paradigm limits): Absolute PE, such
as CPG-PE (Lv et al.| 2024)), exhibits sensitivity to shifts and suffers from aliasing on long se-
quences, whereas relative PE (e.g., Gray/Log-PE (Lv et al.,|2025)) encounters capacity constraints
and distance-resolution limitations. Gap 3 (Spatiotemporal modeling): SNN data are inherently
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spatiotemporal in nature, yet most PEs treat position as one-dimensional, thereby neglecting the
separable time and sequence axes.

To systematically address these identified gaps, we propose Spiking-RoPE, a comprehensive solu-
tion that begins with redesigning rotary positional encoding specifically for SNNs. Spiking-RoPE
applies position-dependent rotations to queries/keys prior to spike binarization, yielding relative
phase kernels that are preserved in statistical expectation under LIF dynamics while maintaining
content integrity. We further decouple rotations along sequence (length) and time axes to obtain
2D Spiking-RoPE, which explicitly models spatiotemporal relations. Finally, we integrate absolute
and relative signals in Spiking Fused-PE (SF-PE) by combining absolute CPG-based spikes at the
input with Spiking-RoPE within blocks. This fused scheme activates complementary row/column
(absolute) and diagonal (relative) structures in attention maps (See Fig. [2]in the Appendix), thereby
expanding representable function space.

To demonstrate the effectiveness and generalizability of our approach, we conduct extensive valida-
tion across two diverse domains (i.e., time series forecasting and text classification) and three estab-
lished spiking backbones (i.e., Spikformer, Spike-driven Transformer, QKFormer), supplemented by
comprehensive ablations on rotation bases and 1D vs. 2D variants. Our experimental results show
that SF-PE consistently improves accuracy and strengthens length extrapolation capabilities across
all evaluated scenarios.

Contributions.

* C1, Theoretical foundation (Gap 1): We rigorously prove that pre-spike rotary phases pre-
serve relative phase kernels in statistical expectation under LIF (See Appendix [A), thereby
explaining why rotation-based PEs are inherently compatible with spike dynamics.

* C2, Fused absolute-relative PE (Gap 2): SF-PE systematically integrates CPG-PE (abso-
lute) with Spiking-RoPE (relative), jointly inducing complementary row/column and diag-
onal attention structures.

* C3, Native spatiotemporal PE (Gap 3): Spiking-RoPE independently rotates along se-
quence and time axes to capture spatiotemporal relations that are inaccessible to 1D de-
signs.

* C4, Cross-domain evidence: Consistent gains across backbones and tasks, plus ablations,
establish robustness and generality across different domains (i.e., time series forecasting,
text classification).

2 RELATED WORK

2.1 SNN TRANSFORMER ARCHITECTURES

The adaptation of Transformers to the SNN domain has gained significant momentum in recent
years. Notable contributions include Spikformer (Zhou et al., [2022} |2024b), which pioneered the
integration of LIF neurons into vanilla Transformers to create spiking self-attention mechanisms.
Building on this foundation, Spike-driven Transformer (Yao et al., 2023; 2024) advanced the field
by proposing more computationally efficient spike-based MatMul operations. Spikingformer (Zhou
et al., 2023)) proposed a spike-based residual learning framework. QKFormer (Zhou et al.l [2024a)
improved the binarization process of queries and keys to reduce information loss. However, all
of these adopt approaches where weights indirectly learn positions without explicit PE, thereby
exemplifying Gap 1.

2.2 ABSOLUTE PE FOR SNN

Among absolute PE methods designed specifically for SNNs, CPG-PE (Lv et al [2024) represents
the current state-of-the-art approach. This method leverages central pattern generator properties to
assign distinct binary spike patterns to each position through frequency channel thresholding. While
demonstrating spike consistency and neuromorphic compatibility, CPG-PE exhibits fundamental
limitations that our work addresses: (1) Translation sensitivity, absolute coordinate terms in atten-
tion render it vulnerable to sequence shifts, and (2) Long sequence aliasing, finite period synthesis
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causes pattern collisions that become increasingly severe in extended sequences, directly contribut-
ing to Gap 2 identified in our analysis.

2.3 RELATIVE PE FOR SNN

In contrast to the absolute PE method, relative PE approaches for SNNs focus on encoding posi-
tional relationships rather than absolute positions. Gray-PE and Log-PE (Lv et al., 2025) represent
the most advanced relative PE approaches currently available for SNNs. Gray-PE approximates
relative distances using Hamming distance-based discrete codes, while Log-PE employs log-scale
distance buckets. However, both methods encounter critical limitations that reinforce Gap 2: Gray-
PE suffers from (1) representation upper bounds due to bit capacity constraints 2°, and (2) distance
ordering violations where Hamming distance fails to preserve actual distance relationships. Log-PE
encounters (1) coarse distance resolution due to distant interaction binning, and (2) spatiotemporal
instability during 2D extension, thereby highlighting the necessity for our Gap 3 solution.

3 PRELIMINARY

3.1 NOTATION

T denotes the number of time steps, L is the sequence length (number of tokens/patches), and D
is the feature dimension. Bold uppercase letters denote tensors, and operations apply to the last
dimension unless otherwise specified. BN(-) denotes batch normalization, and SN(-) denotes the
spike operation induced by LIF in Eq. [T}

3.2 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

In this study, we use LIF neurons (Maassl |1997) for spike binarization in SNNs. At discrete time ¢,
the membrane potential update H (¢), spike S(¢), and post-reset potential U (¢) for input current I (t)

are as follows:
1 Ht)=Ut =1+ (I(t) = (Ut =1) = Ureset) ) »
S(t) = O(H(t) — Uwr), (1)
U(t) = (1 - S(t)) H(t) + S(t) Uteset

where 7 is the leak time constant, Uy, is the threshold, UL is the reset potential, and O(-) is
the Heaviside step function. In this paper, SN(z) refers to spike output under LIF dynamics (e.g.,
@(Z - Uthl‘))'

3.3 SPIKING SELF-ATTENTION

Spiking Self-Attention (SSA) is a transformation of self-attention adapted for spike representations
following Spikformer (Zhou et al., 2022). For spike tensor X € {0, 1}7*ExD:

Q. =BN(X)Wg, K.=BN(X)Wgk, V.=BN(X)Wy, 2)
where Wy y are learnable linear mappings. The corresponding spike embeddings are:
Q; =SN(Q.), K;=SN(K.), V,=SN(V,.). 3)

Time indices are omitted for notational simplicity, and attention is computed at each time step as fol-
lows, where AttnMap is an integer matrix reflecting spike co-occurrence over feature dimensions:

AttnMap = Q, K] € Ni*F, SSA = SN(AttnMap - V). 4)
3.4 CPG-PE
CPG-PE (Lv et al,, [2024) is an absolute PE that borrows the periodic firing principles of central
pattern generators. For K channels with different periods, at position ¢ € {0,...,L — 1}:
(i) = cos(wyi + ¢x), k=1,... K, ®)
g (i) = O(uy (i) — 1) € {0,1}, (6)
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(c) Spiking Fused-PE
Figure 1: SFPE architecture. The diagram illustrates the integration of CPG-PE and RoPE with

Spiking Neural Network, showing the flow from input spike trains through the fused PE to the
attention computation in spiking transformers.

binary signals are synthesized to create:

pPE = [g1(1), 92(3), ..., gx ()] € {0,1}F, )

where wy, is the angular frequency (T}, = 27 /wg), ¢k is the phase, 7y is the threshold, and © is the
Heaviside step function.

3.5 ROTARY POSITIONAL EMBEDDING (ROPE)

ROPE (Su et al., [2024) encodes positional information by rotating (2i—1, 2¢) channel pairs of em-
beddings at position m with position-dependent angles. For per-head dimension d (even), the fre-

quencies are set as §; = B~2(=1/d (; = 1,... d/2), where base B > 1 determines the rotation
frequency. The block diagonal rotation matrix at position m € {0,..., L — 1} is:
o cos(mby) —sin(mb) cos(mbyj) —sin(mbys) dxd
Fon = dlag( {Sin(mﬂl) cos(mby) |77 |sin(mby/2)  cos(mby2) eRTE®

For query/key Q., K. € RE*4 RoPE is applied position-wise as:

(Qc)m = Rm (Qc)ma (Kc)m = Rm (Kc)m; (9)

while values remain unchanged.

4 METHODOLOGY

4.1 OVERVIEW

Positional encoding (PE) in SNN-based transformers has evolved through the development process
shown in Fig. |1} Early SNN transformers (a) suffered from performance degradation by learning
positional information implicitly. CPG-PE (b) was introduced as the first explicit, absolute positional
encoding (PE), but it revealed new limitations, such as pattern collisions in long sequences.

Building on this, our proposed Spiking Fused-PE (c) is a fusion approach that combines CPG-PE
for learning absolute positions with our Spiking-RoPE for injecting relative relationships. This dual-
stage design leverages both types of information to expand the representation space and enhance its
performance.
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4.2 SPIKING-ROPE

RoPE, originally designed for continuous neural networks, decomposes attention inner products
into kernels that depend only on relative phase differences A through position-dependent rotations.
Building on this foundation, we propose Spiking-RoPE by adapting this rotation mechanism to the
pre-spike binarization stage, where relative phase kernels are maintained from a statistical expecta-
tion perspective even under LIF leakage and threshold conditions. (See Fig. [5]in the Appendix for
Spiking-RoPE transformation steps; See Appendix [D|for the detailed implementation).

Theoretical Foundation (Gap 1 Resolution): The critical insight enabling Spiking-RoPE is our
theoretical proof that phase rotation preserves relative positional information statistically even after
spike binarization. This addresses Gap 1 by providing the first rigorous analysis of positional infor-
mation preservation in SNNs. The complete theoretical analysis, including expectation preservation
proofs and LIF dynamics interaction, is presented in Appendix [A]

4.2.1 1D SPIKING-ROPE

1D Spiking-RoPE encodes relative positional information along a single axis. For this purpose,
rotation matrices ;) are applied to (2r—1,2r) channel pairs in even dimension d.

G = Ry ql(c)7 ];j = Ry(j) kg'C)’ Aij = (i) = ¢()- (10)

As a result, the relative relationship between two positions 7, j depends only on the phase difference
A

ij-
4.2.2 2D SPIKING-ROPE

To explicitly model the spatiotemporal characteristics of SNN data, 2D Spiking-RoPE encodes po-
sitional information by separating it into sequence length axis / and time axis ¢. First, the embedding
is divided into two equal-dimensional blocks, and independent 1D Spiking-RoPE is applied to each
block. One block rotates based on sequence position (7), while the other rotates based on time step

(t:)-
~ N c,t 7 c,l) . c,t
4 = [Rw(i) ngc ) i Ry, t) q,( )]’ kj = [Rw(j) k]( : i Rty kj( )]' Y

When computing query/key inner products, letting A; = ¢; (i) — () and Ay = i (t;) — we(t;),
the inner product operation naturally separates into the sum of relative phase kernel A; along the
length axis and relative phase kernel A; along the time axis as shown below. This allows the model
to consider both spatiotemporal relative distances.

(@i k) = (@, k) cos AL+ (0, TED) sin A)

(12)
+ ((qgc’t), kj(-c’t)> cos Ay + <qi(c’t), Jk§c"t)> sin Ay).

4.2.3 PHASE PRESERVATION UNDER LIF

LIF performs nonlinear transformations (Eq. [T), and there is a risk of losing positional informa-
tion encoded as continuous values during this process. We show that PE applied at the pre-spike
stage through Spiking-RoPE is preserved from a statistical expectation perspective even after LIF’s
spiking transformation.

This proof involves approximating the firing probability function of LIF neurons as a linear function.
Batch Normalization in SSA (Eq. [2) stabilizes the distribution of pre-spike inputs to mean 0 and
variance 1. Assuming that input currents are distributed in a narrow region around the mean (0) such
that the firing probability function operates almost linearly, we can show that the probability of query
and key firing simultaneously in a specific dimension is approximately proportional to the product
of pre-spike values ¢;q, k;4. Under this linear approximation, the expectation of inner products over
all dimensions is derived as follows.

Elg; k;] = oG, kj), (13)
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where o > 0 is a scaling constant depending on neuron sensitivity and input distribution, and

attention scores are determined by the inner product value (g;, k;). When Spiking-RoPE is applied,

(Gi, k;) is expanded as a function of relative phase A;; = ¢ — j, resulting in the final attention score
having the following relationship:

SA(qi, ki) x Elg; kj] o <q§c), k(-c)> cos Agj + (q(c), ka(-c)> sin Ayj. (14)

% J [
In conclusion, Spiking-RoPE preserves phase kernels containing relative positional information un-
der nonlinear LIF dynamics, enabling the utilization of positional information in SNNs.

4.3 FUSED PE

In Transformer-based models, positional encoding (PE) injects order and dependencies between
tokens. Existing research has independently used either absolute or relative PE. We propose fused
PE, which combines both approaches to enhance positional representation power. To simultaneously
reflect absolute PE p* and relative PE R, in input z, query/key are defined as follows:

G = Rom Walzi +pi™),  kj = Reg) Wr(z; +15”), (15)

where p® is the absolute PE, and R,u) € R?¥*4 js the RoPE-style block rotation at position i.
This configuration organically fuses two information sources within a single vector by projecting
content+absolute information through linear mapping, then injecting relative information through
phase rotation. The row/column structure created by absolute PE and the diagonal structure cre-
ated by relative PE are simultaneously activated, providing richer representation power compared
to single PE (See Fig. [2|in the Appendix). Subsequently, in continuous (pre-spike) space, letting

q§C) = WQ(mi + p‘;‘bs) and k‘;c) = WK(in + pa;bs)’
6= Roal”, ki = Rk, A= oli) = ().
With the 90° block rotation operator .J for even channel pairs, the inner product is as follows.

(G, l~€J> = <q§c)’ kj(-c)> cos Aj; + (qfc), J krj(-c)> sin Ay (16)
According to Appendix |A] this inner product approximately preserves the relative phase kernel form
of the above equation in the expectation E[g;" k;] even after spike binarization.

4.4 FINAL INCORPORATION

Following fused PE, we propose Spiking Fused-PE (SF-PE), a fused method that combines CPG-PE
for absolute PE and Spiking-RoPE for relative PE. First, after injecting CPG-PE from Eq.[7]into the
embedding,

¢\? = Wo(z; + EpS™), &\ = Wi(z; + Ep§*®),  EeR™K, (17
which is rotated with 2D Spiking-RoPE. Then, the continuous inner product is decomposed with
respect to the relative phases of the two axes as follows:

di/2 di/2
(Gir kj) = Z (AE;)T cos AWV + Bl(jl)r sin Ag})) + Z (AS)T cos AW + Bl(;)r sin Agjf))7 (18)
r=1 r=1

where d; and d; denote per-axis even dimensions, and the amplitude terms are
O _ g (el) (e O _ g (e (el)
Aij = (g, 7]?7‘ ), By = (g; 7ka )

and similarly AE?, Bi(;) are defined for the time axis. Consequently, the attention score of SF-PE
is structured as a sum of contributions from the length [ and time ¢ axes, each of which is itself a
sum over individual rotational frequency channel pairs. This decomposition shows how two types of
positional information are complementarily combined for each channel pair: absolute information
(amplitudes A, B) and relative information (trigonometric kernels, A;, A;), allowing the model to
capture richer and more granular positional details. This structure is preserved from a statistical
expectation perspective even after the spike binarization process, enabling SNNs to effectively learn
complex spatiotemporal patterns.



Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on time series forecasting on 4 benchmarks with various predic-
tion lengths 6, 24, 48, 96. The best results are shown in bold. PE types: A = absolute, F = Fused
(absolute + relative). Metrics: higher R? and lower RSE indicate better performance. All results are
averaged across 3 random seeds.

PE . Metr-la (L = 12) Pems-bay (L = 12) Solar (L = 168) Electricity (L = 168)
Models Type | MM 627 48 96 | 6 24 48 96| 6 24 48 96 | 6 24 48 %

Avg.

R*T | 727 554 413 284 | 785 734 688 .673 | 953 .858 759 718 | .978 975 .972 964 | .733
RSE| | .551 704 .808 .895 | .502 .558 .610 .618 | .223 377 .504 545 | 260 277 347 425 | 512
R*T | 713 527 399 267 | .773 .697 .686 .667 | .929 .828 744 .674 | .959 955 .955 954 | .733
RSE| | .565 725 .818 903 | 514 594 .606 .621 | 272 426 519 .586 | .373 371 379 .382 | .541
R*T | 726 526 418 287 | 780 712 .690 .666 | 937 .833 757 .707 | .972 970 .966 .960 | .744

Transformer w/Sin-PE (Upper bound) A

Spikformer w/Conv-PEZhou et al. (2022] A

Spikformer w/CPG-PE[LY et al. |j2024} A | RSE| | 553 720 806 .890 | 508 .580 602 622 | 257 420 506 555 | 299 310 314 355 | .519
- P . RII |79 561 432 317|783 713 6% 670 939 877 782 752 981 975 972 965 | 760
pritormer w/sk- urs RSE| | .538 .698 .795 .871 | 499 .576 .593 .618 .251 362 .479 .511 .240 .280 .300 .336 | .497
—— - R71 | 588 364 236 .121| 674 668 658 639 | 922 837 .732 685 | 958 051 046 930 | .682

SDT-V1 w/Cony-PE[Yao et al. {2023} A | RSE] | .92 841 935 984 | 599 605 .616 637 | 281 405 .533 584 | 367 389 412 430 | 582
— - . RZ1 | 601 387 257 .152| .695 695 680 664 | 935 860 748 710 | 966 955 959 945 | .700

SDT-V1 w/CPG-PE|LV et al. |f2024] A | RSE| | 667 827 910 972 | 580 578 .592 607 | 260 383 515 553 | 320 378 362 417 | 558
o . RII | 703 470 296 187|741 700 686 679 945 871 794 766 979 971 971 969 | 733

RSE| | .576 .769 .886 .952 | .533 .573 .587 .593 242 369 466 496 259 299 302 310 | 513
R*1 | 706 509 411 275 |.735 671 .667 .663 | 927 .841 737 .689 | .966 .961 .958 955 | .729
RSE| | .577 743 816 901 | .557 .621 .625 .629 | 275 402 .527 .569 | .302 .324 340 .358 | .535
R?T | 711 522 423 286 | .743 684 .681 .668 | 930 .856 .755 .732 | .977 968 .966 .959 | .734
RSE| | .567 729 .801 890 | .548 .608 .611 .623 | 271 389 .508 .531 | .264 .289 .307 .361 | .533
R*T | 717 520 419 292 | .749 .702 .698 .668 .934 .868 .793 .737 .981 972 .968 954 | .748
RSE| | .561 .730 .804 .887 | .542 .590 .594 .623 .264 372 468 .526 .244 299 318 383 | .513

QKFormer w/Conv-PE Zhou et al. (2024a) A

QKFormer w/CPG-PE|Lv et al. (2024 A

QKFormer w/SF-PE (Ours) F

5 EXPERIMENTS

We evaluate on two diverse domains, time series forecasting and text classification, to test the
modality-agnostic nature of SF-PE. The choice follows directly from the method’s characteristics:
(1) pre-spike rotary phases preserve relative kernels under LIF (C1; Sec. Sec. [42.3); (2) the
fused absolute-relative scheme induces complementary row/column vs. diagonal attention struc-
ture that any ordered data exhibits (C2; Eq. @ and (3) the 2D variant decouples length and time
to model spatiotemporal relations while remaining compatible with 1D sequences (C3; Sec. 4
Eq. @ We therefore assess robustness across (a) modalities (continuous signals vs. discrete tokens)
and (b) SNN backbones (Spikformer, SDT-V1, QKFormer), and we include length extrapolation to
specifically probe relative-position generalization.

Our experimental validation systematically demonstrates how our gap-targeted solutions (C1-C3)
translate to performance improvements across diverse domains. For our primary comparisons, we
evaluate against two baselines: Conv-PE (Zhou et al., 2022} |Yao et al.l 2023} |[Zhou et al., 2024a)),
where positional information is learned implicitly, and CPG-PE (Lv et al.||2024), the state-of-the-art
absolute PE for SNNs. However, there has been no research effort for applying relative PE to SNNs,
making a direct comparison with a pre-existing method challenging (See the alternative comparison
in Appendix [E)). Additionally, we utilize our Spiking-RoPE as a relative-only baseline and provide
a detailed comparison in the ablation studies. Detailed experimental settings, including datasets,
metrics, and hyperparameters, are provided in Appendix

5.1 TIME SERIES FORECASTING

Table|1|shows the performance of SF-PE on four time series forecasting datasets. The results reveal
several notable patterns:

Consistent superiority of SF-PE: SF-PE consistently outperforms absolute PE approaches across
all backbone models (Spikformer, SDT-V1, and QKFormer). In particular, the average R? score
improved from 0.744 to 0.760 on Spikformer and showed a substantial improvement from 0.700 to
0.733 on SDT-V1. Similarly, SF-PE achieved a leading average R? score of 0.748 on QKFormer.

Robustness in long-term prediction: While the performance degradation occurs as prediction
length increases (6 to 96 hours), SF-PE maintains relatively stable performance compared to other
methods. Specifically, in the 96-hour prediction on the Metr-la dataset, SF-PE achieves R? = 0.317,
showing a 10.5% improvement over CPG-PE’s 0.287. This suggests that our SF-PE is more effective
at capturing long-term dependencies.

Dataset-specific characteristic analysis:

* Solar dataset: The strong periodic patterns in this dataset appear well-suited for spatiotem-
poral PE, as all models achieved their highest performance on this task.
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Table 2: Performance comparison on six text classification tasks using the Spikformer backbone.
The best results are shown in bold. PE types: A = absolute, F = Fused (absolute + relative). Metrics:
F1 score for MRPC, Pearson Correlation for STS-B and accuracy for all other tasks. All results are
averaged across 3 random seeds.

Model ‘ Tl;];e Param(M) } MR Se_g;l%lgm ASI:Jat:ijlSSST—S } MR%gl 1‘1aguTySB } Inflngclgce } Avg.
Fine-tuned BERT (Upperbound) | A | 1098 [ 8639 0201 0543 49.87 | 89.75 | 8647 | 6942 [ 8133
Conv-PEZhou et al.|(2022] [ A 109.8 | 71.84 80.17 8835 38.60 | 6838 | 1871 | 5271 | 59.84
CPG-PE|Lv et al[(2024) A 1104 | 7273 8177 8897 39.15 | 70.10 | 1871 | 5271 | 60.59
SE-PE (Ours) F 1104 | 7357 81.83 89.70 40.05 | 70.59 | 1924 | 5271 | 61.10

* Electricity dataset: Despite high dimensionality (321 customers), SF-PE shows particu-
larly strong results, indicating that our fused PE approach can effectively capture complex
multivariate relationships.

* Traffic data (Metr-la, Pems-bay): SF-PE consistently maintains its performance advan-
tage on the more volatile and inherently challenging traffic datasets, even with lower abso-
lute scores.

Comparison with upper bound: Vanilla transformer used in SNNs is considered the performance
upper bound, as the binarization process in spiking models can cause information loss compared
to the continuous values used in standard transformers. Notably, in some instances, the addition of
SF-PE enables spiking models to outperform the upper bound.

5.2 TEXT CLASSIFICATION

Table 2] presents the performance on six text classification tasks.

Improvement in sentiment analysis: Our SF-PE consistently surpasses both the CPG-PE baseline
and the model without PE across all sentiment analysis tasks. Specifically, it achieves 73.57% ac-
curacy on the MR task, an improvement of 0.84% over CPG-PE 72.73%. It also attains the highest
performance of 40.05% in the fine-grained sentiment classification of SST-5.

Improvement in other tasks: On the MRPC, SF-PE improves the F1 score by 0.49% to 70.59%,
compared to CPG-PE. However, for the RTE, neither CPG-PE nor SF-PE provides a performance
benefit over the Spikformer baseline. This phenomenon arises because the subtle differences be-
tween sentence pairs in NLP tasks often cause the model to fall into local minima or, in the worst
case, fail to converge [2023). Nevertheless, while CPG-PE showed no performance im-
provement on the STS-B task where similar issues have been reported, SF-PE achieved a 0.53%
performance gain.

Comparison with upper bound: While the BERT model provides upper bounds, SF-PE demon-

strates substantial performance. Particularly, on the Subj (subjectivity classification) task, our
method achieves 89.70%, narrowing the performance gap to BERT’s 95.43%.

5.3 LENGTH EXTRAPOLATION ANALYSIS

Table 3: Length extrapolation evaluation on four time series forecasting tasks. Models were trained
on short sequences (i.e., L = 12) and tested on significantly longer sequences (i.e., L = 168).
Metrics: a higher R? indicates better performance. All results are averaged across 3 random seeds.

‘ Avg.

PE | Metrla(L=12->168) | Pems-bay (L=12->168) | Solar(L=12->168) | Blectricity (L = 12->168)
Models ‘Type ‘ Metric |—¢ 9 | 6 24 48 96 | 6 24 96 | 6 24 43 96 |
2
Spikformer w/CPG-PE ‘ A | RET [ 551 339 307 149|677 631 594 520|928 747 513 342|979 975 967 96l | 637

RSE| | .708 859 .879 974 | 595 .636 .675 739 | 273 512 741 918 | 266 284 321 .344 | .608
R21 | .601 .387 257 .187 | .694 .679 .653 .647 | 936 .764 .528 371 | 980 .977 971 .966 | .662

Spikformer w/SF-PE (Ours)  F | pop| | 667 827 010 952 | 579 .593 .617 .622 | 256 .493 756 .889 | 263 279 .302 .324 | .583

We evaluate the sensitivity of our proposed method to sequence length variations by training models
on short sequences (L = 12) and testing them on long sequences (L = 168). This test assesses how
well the models maintain performance under extremely extrapolated conditions.
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The results in Table 3] show that our SF-PE consistently achieves higher performance than CPG-
PE in all cases, with an average R? of 0.662 compared to CPG-PE’s 0.637. This indicates that the
relative positional information within SF-PE enables the model to effectively generalize positional
relationships and maintain stable prediction performance, even when the sequence length changes
dramatically.

5.4 ABLATION STUDY

5.4.1 1D vs. 2D IN SPIKING-ROPE Table 4: 1D vs. 2D SNN RoPE performance on
Electricity dataset using Spikformer backbone.

We proposed Spiking-RoPE, which indepen- The best results are shown in bold and the second

dently encodes positional information along the highest results are underlined. Metrics: a higher

temporal ¢ and spatial | axes. Tab. [] validates R? indicates better performance.

this design by comparing the performance of

1D and 2D in Spiking-RoPE on the Electricity a1 TPEe \ . lgzectricgg' - | Ave.
dataset. ype | |
Conv-PE [ [ 959 955 955 954 | 956

[ 972 970 966 960 [ .967

975 972 966 960 | .968
976 973 968 962 | .970

[ 981 975 972 965 [ 973

The results show a clear progression in perfor- _CPG-PE |
mance. While both 1D Spiking-RoPE variants ~_ID-Spatial RoPE
. 1D-Temporal RoPE
show strong performance, 2D Spiking-RoPE —pxopE
further improves the average R? score to 0.971. Spiking Fused-PE_|
The complete SF-PE model ultimately attains
the highest score of 0.973. This demonstrates a clear synergy between separating spatiotemporal

features and fusing absolute with relative positional information.

|| B R A | > >

5.5 RESULTS DISCUSSION AND ANALYSIS

The experimental results demonstrate the effective design of SF-PE from multiple angles:

Empirical validation of theoretical predictions: The phase preservation theory presented in Sec-
tion[#.2.3] has been confirmed in actual experiments. Despite nonlinear transformations of LIF neu-
rons, the consistently improved performance of models with Spiking-RoPE suggests that phase ker-
nel preservation under linear approximation is indeed effective.

Synergistic effect of Fused PE: The combination of absolute PE (CPG-PE) and relative PE
(Spiking-RoPE) creates synergy beyond simple performance summation. As shown in Eq. [T6] this
is because absolute information (amplitudes A, B) and relative information (trigonometric kernels
cos A, sin A) work complementarily to expand the representation space.

Task-specific adaptability:

* Time series forecasting: The spatiotemporal separation approach of Spiking-RoPE is par-
ticularly effective for tasks where periodic patterns and long-term dependencies are impor-
tant.

» Text classification: Relative positional information contributes to performance improve-
ment even in natural language tasks where contextual understanding is crucial.

* Length extrapolation: Shows stable performance even on inputs longer than training se-
quences, confirming generalization ability.

6 CONCLUSION

We presented Spiking Fused-PE (SF-PE), a spiking-friendly positional encoding that fuses ab-
solute CPG codes with pre-spike rotary phases. Built on Spiking-RoPE and its 2D extension, our
design preserves relative phase kernels under LIF dynamics while injecting complementary absolute
information. Across time series and text tasks on Spikformer, SDT-V1, and QKFormer backbones,
SF-PE delivers consistent accuracy gains and stronger length extrapolation without an increase in
model parameters. These results validate that absolute and relative encodings are synergistic in spik-
ing transformers and provide a principled approach for spatiotemporal PE under spiking constraints.
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Figure 2: Attention map activation differences between Absolute/Relative/Fused PE approaches.
Green regions indicate higher activation, while red regions show lower activation. The fused PE
approach demonstrates more balanced and distributed attention patterns, combining the structured
patterns of absolute PE with the relative position awareness.

A PROOF OF RELATIVE PHASE KERNEL PRESERVATION UNDER LIF
DYNAMICS

This appendix provides the detailed mathematical proof for Gap 1 Resolution (C1) - our theoretical
foundation for spiking-friendly positional encoding introduced in Section [ These proofs establish
why Spiking-RoPE succeeds where previous approaches fail, directly addressing the theoretical
void identified in our gap analysis (Section [T)). The results presented here underpin the practical
performance gains demonstrated in Section 3]

Theorem 1 (Relative Phase Kernel Preservation). Let ¢ : R — [0,1] be the spike probability

function of a LIF neuron, and assume that batch normalization ensures E[G;q) = Elk;q) = 0 for
all dimensions d. Under the assumption that o is continuously differentiable in a neighborhood of
0 and the pre-spike activations are concentrated near zero, the expected attention score between
spiked query and key vectors preserves the relative phase kernel structure:

Elg k;] = C + g, kj) + O(€*),
where C = D-o(0)? is a position-independent constant, o« = o' (0)? > 0 is the sensitivity-dependent

scaling factor, and € quantifies the deviation from the linearization point.

Proof. We proceed through several lemmas to establish the main result.

Lemma 1 (Query/Key Setup). According to Section [3.2| and Section the pre-spike query and
key vectors with injected positional information are given by:

Gi = Rig\”, k= Rk, (19)
where R;, R; are position-dependent rotation matrices and qgc), k§c) are the continuous embeddings

before spiking.

Lemma 2 (Expected Inner Product Decomposition). Let g; and k; denote the spiked query and key
vectors, where each component q;q, kjq € {0,1} is a binary random variable. Then by linearity of

expectation:
D D
Elg; kj] =E [Z Qidkjd] = Elgiak;d] (20)
d=1 d=1

Proof of Lemma 2| This follows directly from the linearity of expectation operator over finite sums.
O

Lemma 3 (Binary Variable Product Expectation). For binary random variables q;q, kjq € {0,1},
the expectation of their product equals the joint probability:

Elgiakja] = P(gia = 1,kja = 1) 210

12
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Proof of Lemma 3]
Elgiakja) = Z Giak;jaP(qid, kja) (22)
Gia-kja€{0,1}
=1-1-P(giqa=1,kjq = 1)+ (other terms are zero) (23)
= P(qia = 1,kjq = 1) (24)

O

Lemma 4 (Taylor Approximation of Spike Probability). Let o(u) = P(s = 1|u) be the spike prob-
ability function for input current u, which is monotonically increasing and continuously differen-
tiable. Given that the SSA block applies batch normalization to ensure zero mean and unit variance
(excluding bias), and assuming that the input distribution is concentrated in a neighborhood of zero,
we have:

o(u) = a(0) + o’ (0)u + O(u?), (25)
where o (0) represents the baseline firing probability and o' (0) > 0 represents the sensitivity at the
linearization point.

Lemma 5 (Taylor Approximation of Spike Probability with Remainder Bound). Let o(u) = Pr(s =
1 | w) be continuously differentiable in a neighborhood of 0 and suppose E[G;q] = E[k;q] = 0 (post-
BN centering; zero-bias linear maps). Assume moreover that o has bounded second derivative on
[—e, el supjy <. |0” (w)| < Ma. Then for |ul, |v] <,

o(u)o(v) = (0)* + o' (0)* uv + o(0)o’ (0)(u + v) + 20(0)0” (0)(u* + v*) + R,
and with E[u] = E[v] = 0,

[E[o(w)o®)] - (o(0)* + o’ (0)E[u])| < $lo(0)0”(0)|(Eu?] + E[o*]) + E[|Rs]]

Proof of Lemmald} By Taylor’s theorem, for a continuously differentiable function ¢ in a neighbor-

hood of u = 0:
o(u) = o(0) + o' (€)u

for some ¢ between 0 and uw. Under the assumption that ¢ has a bounded second derivative and the
inputs are concentrated near zero, we can approximate ¢’ (£) ~ ¢’(0) with error O(u), yielding the
stated result.

O

Lemma 6 (Query/Key Joint Firing Probability Approximation). Let the joint firing probability of
query and key be P(q;q = 1,kjq = 1). Given inputs §;q and k;q, instead of assuming conditional
independence of spiking events, we approximate the expected joint firing rate by considering the
statistical properties of the inputs.

P(gia = 1,kjq = 1) = E[o(Gia)o (k;q)] (26)
~ E[((0) + 0"(0)Gia) (0(0) + 0" (0)kja)]  (by Eq.23) 27)
=E[0(0)? + 0(0)0”(0)(Gia + kja) + o’ (0)*Giak;al (28)
= 0(0)* + 0(0)0" (0) (E[Gia] + Elkja)) + o' (0)*Elgiakja].  (29)

Since BN ensures E[iq] ~ 0 and E[k;q) ~ 0, the middle term vanishes. For a given token pair; the

pre-spike values G;q and k;jq are deterministic. The expectation is taken over the stochastic spiking
events, which are functions of these pre-spike values.

P(gia = 1,kjq = 1) = 0(0) + ' (0)%Giak;a- (30)

Proof of Lemmal[6] This follows from the derivation above using Taylor expansion and the zero-
mean property ensured by batch normalization. [

13
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Now we combine all lemmas to complete the proof of Theorem [T}

Substituting the result from Lemmalf]into the expectation formula from Lemma 2}

D
Elg; k;) = ZP(‘]M =1,kja=1) (Lemmal2) 31)
d=1
D ~
= (0(0)* + 0'(0)*Giakja) (Lemmal6) (32)
d=1
D ~
=D-0(0)*+0'(0)* ) Giakja (33)
d=1
= C+a(G@i kj) + O(?) (34)

where C' = D -¢(0)? is a position-independent constant representing the baseline co-firing expecta-
tion determined solely by the neuron’s intrinsic firing rate, and o = o’ (0)? > 0 is a positive scaling
constant depending on the neuron’s sensitivity.

The constant C' adds a uniform positive offset to the attention score expectations for all position
pairs (4, 7). After normalizing out this constant bias effect, the attention score expectation becomes
proportional to the pre-spike inner product:

Elg kj] — C = a(Gi, k;) + O(€?) (35)

This establishes that the expected attention scores preserve the relative phase kernel structure en-
coded in the pre-spike embeddings, completing the proof. O

Theorem 2 (RoPE Kernel Preservation). When Spiking-RoPE is applied to the pre-spike embed-

dings such that q; = R(‘D(i)qgc) and /~€j = Rw(j)k(c), the expected attention score preserves the
relative phase dependence:

Elg] k;] ~ C + a[(¢\”, k) cos(A) + (4, Tk sin(Ay)]

i J

where A;; = (i) — @(j) is the relative phase difference and J is the 90 rotation operator.

Proof of Theorem[2) This follows directly from Theorem [ljand the trigonometric expansion of the
RoPE inner product (g;, k;) as shown in the main text. O

B FORMAL ANALYSIS OF APPROXIMATION ERROR BOUND

To rigorously validate the linear approximation assumption of the LIF firing function used in The-
orem [T] we conduct a formal analysis of the expected approximation error. We define the total
expected error £ as the integral of the pointwise error weighted by the input probability density

E=Eypwllo(u) —a(u)|] = /% e(u)p(u) du, (36)

J —00

where w is the pre-spike membrane potential, o (u) is the actual surrogate gradient function (ATan),
&(u) is the linear approximation, and p(u) is the probability density function of w. Based on the
empirical observations in Figure [3] and Figure [f] we decompose this integral into a Core Linear
Region (Ju| < 1) and a Tail Region (|u| > 1)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

&= /u|<1 e(u)p(u) du Jr/ e(u)p(u) du . 37

[u|>1

Term 1: Core Linear Region Term 2: Tail Region

B.1 EMPIRICAL VALIDATION OF INPUT DISTRIBUTION

We analyze the distribution of pre-spike membrane potentials p(u) in the trained model. As shown
in Figure El the use of batch normalization effectively stabilizes the distribution of Query (Q) and
Key (K) potentials.

» Zero-Centered & Narrow: The distributions are consistently centered near zero (1 = 0)
with a standard deviation of o ~ 1.1 across all training epochs.

* RoPE Invariance: The distributions before and after applying RoPE (blue vs. red his-
tograms in Figure [3) overlap almost perfectly, indicating that the rotation operation does
not distort the statistical properties of the input, preserving the validity of the approximation
throughout the network depth.

B.2 ERROR BOUND DECOMPOSITION

Combining the distribution analysis with the linearity analysis in Figure[d] we evaluate the two terms
of the expected error.

1) Term 1: Core Linear Region (ju| < 1)
Figure E| demonstrates that the interval [—1, 1] corresponds to the inflection point of the
ATan surrogate function. In this region, the linear approximation (green dashed line) and
the actual function (red solid line) are nearly indistinguishable.

 Observation: The pointwise error e(u) in this region is essentially negligible (= 0).
* Density: Empirically, approximately 73 % of the total probability mass lies within this
high-precision core.
* Result: The contribution of Term 1 to the total error is minimal due to the vanishing
e(u).
2) Term 2: Tail Region (|u| > 1)
Outside the unit interval, the pointwise error e(u) begins to increase as the surrogate func-
tion saturates. However, the contribution of this error is suppressed by the vanishing prob-
ability density.
* Observation: As shown in Figure [3] the input density p(u) decays rapidly (sub-
Gaussian tail) for |u| > 1.

* Density: Over 95% of the data falls within the [—2, 2] range. The probability mass
in the extreme saturation region (Ju| > 2), where the linear assumption would fail
significantly, is statistically insignificant (< 5%).

* Result: The exponential decay of p(u) dominates the linear growth of e(u), ensuring
that the integral of Term 2 remains tightly bounded.

The quantitative analysis in Figure [f] confirms a consistently high correlation (> 0.96) between the
ATan function and its linear approximation within the effective data range. Consequently, the total
expected error £ is bounded by a small constant

E ~ €core P(|U| < 1) + Chair - P(|U| > 2) ~ 0. (38)

This provides a strong empirical justification that the phase preservation properties derived in The-
orem [T]hold in expectation under the actual operating conditions of the SNN.
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Figure 3: Pre-spike Query/Key value distribution on every five epochs (0 to 20 epoch).
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Figure 4: Comparison of the ATan surrogate function and its first-order Taylor linear approximation
around zero (Lemmad).

C EXPERIMENTAL SETTINGS

This appendix provides comprehensive experimental setup details for all experiments reported in
Section 3] including datasets, hyperparameters, and evaluation metrics.

C.1 DATASETS

C.1.1 TiIME SERIES FORECASTING

* Metr-la (Jagadish et al.,[2014): Traffic speed dataset from Los Angeles County highways.
* Pems-bay (Li et al., 2018): Traffic speed dataset from the California Bay Area.

Solar (Lai et al.,[2018): Solar power generation dataset from the 2006 US National Solar
Radiation Database.

Electricity (Lai et al., 2018): Power consumption dataset recording electricity usage of
321 customers.

C.1.2 TEXT CLASSIFICATION

* MR (Pang & Lee, 2005): Sentiment analysis dataset for classifying positive/negative
movie reviews.

 SST-2 (Socher et al,2013): Binary sentiment classification dataset for movie review sen-
tences.

¢ SST-5 (Socher et al,[2013): Sentiment classification dataset with five fine-grained classes
(very positive to very negative).
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* Subj (Conneau & Kiela, 2018): Dataset for classifying sentences as subjective or objec-
tive.

* MRPC (Dolan & Brockett, 2005): Dataset for determining whether two sentences are
semantically equivalent.

* STS-B (Cer et al.}[2017): Dataset for sentence pairs drawn from news headlines, video
and image captions.

* RTE (Haim et al.,2006): Dataset for recognizing logical entailment relationships between
two sentences.

C.2 HYPERPARAMETER SETTINGS

All experiments are repeated three times under the same random seed, and we report the average
performance. Detailed hyperparameters for each task are as follows.

C.2.1 COMMON PARAMETERS
LIF neuron parameters commonly used in all experiments are shown in Table[5]
Table 5: Experiment configuration and hyperparameter settings for time series forecasting and text

classification tasks, including LIF neuron parameters, training settings, and positional encoding spe-
cific parameters.

Parameter | Time Series Forecasting | Text Classification
Common LIF Neuron Parameters
Membrane leak time constant (7) 2.0
Common firing threshold (Uyy,,.) 0.8
Training & Model Parameters
Batch Size 64 64
Learning Rate 0.001 (1e-3) Se-4
Optimizer Adam Adam
Embedding Dimension 256 768
Layer Depth 2 12
Time Steps (T') 4 4
Attention Heads 8 8
Max Sequence Length - 256
Positional Encoding Parameters
CPG Neurons (Ncpg) 40 20
Spiking-RoPE Base (B5) 10000.0 10000.0

D SPIKING-ROPE IMPLEMENTATION

This appendix provides detailed implementation details for the Spiking-RoPE method introduced in
Section 4.2} with specific focus on the tensor operations and computational procedures referenced
in the main methodology.

This section describes how to implement Spiking-RoPE from a tensor dimension perspective, refer-
encing the tensor transformation of the overall process as shown in Fig.[5] The core of Spiking-RoPE
is to apply positional information in rotational form to query (@) and key (K) tensors with continu-
ous values before binarization.

D.1 1D IMPLEMENTATION IN SPIKING-ROPE

1D Spiking-RoPE encodes relative positional information along the sequence length axis L or time
axis T'. Here, we focus our explanation on the sequence length axis.
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2. Divide 3. Cos & Sin Kernel \
(odd and even indices)

o [\/fi

5. Rotate (©) 6. Done

Figure 5: Spiking-RoPE tensor transformation.

1) Input Tensor and Parameter Definition

« Input Tensor: A Query or Key tensor X € RT*E*P 5 given, where T represents
time steps, L represents sequence length, and D represents feature dimension.
 Position and Frequency Indices:
- Position index: m € {0,1,...,L — 1}
- Frequency index: ¢ € {0,1,...,D/2 — 1}
* Rotation Frequency: Calculate §; = B~2"/P corresponding to each frequency index,
where B is a hyperparameter (e.g., 10000).
2) Channel Separation (Divide)

 Separate the input tensor X into even-indexed channels (Xeyen) and odd-indexed chan-
nels (X,q4q) based on the last dimension D.

* Xevena Xodd S RTXLX(D/Q)
3) Rotation Kernel Generation (Cos & Sin Kernel)

* Generate Cosine and Sine kernel tensors by combining position m and frequency in-
dex i (Eq.[).
» cos_kernel € REXP/2: Each element has the value cos(m#;).
*+ sin_kernel € RL*P/2: Each element has the value sin(mé;).
4) Rotation Application (Rotate)

e Apply the generated kernels to the separated channels through broadcasting.
cos_kernel and sin_kernel are broadcasted to the T dimension and operated
with Xeyen and Xogq.

* Calculate the following according to RoPE’s rotation formula, where the multiplica-
tion is the Hadamard product:

Xéven = Xeven - cos_kernel — Xyqq - sin_kernel

(/,dd = Xeven - sin_kernel + Xyqq - cos_kernel
* Both X/, and X/, have dimensions (T, L, D/2).
5) Channel Combination (Done)
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* Interleave the rotation-applied X/, and X/, back to their original order along the
last dimension D to complete the final tensor X;ouea € RT*L*P . This tensor contains
relative positional information for the sequence length axis.

Algorithm 1 1D Spiking-RoPE algorithm implementation. The algorithm applies position-
dependent rotations along the sequence length axis by computing trigonometric kernels and rotating
even/odd channel pairs to inject relative positional information before spike binarization.

Require: » € RT*L*D (Input tensor), B € R (Base value for frequency computation)
Ensure: ' € RT*LXD (Position-encoded tensor)

1: function APPLY 1 DSPIKINGROPE(z, B)

2: (T, L, D) < shape of =

3: z' + copy of T

4: foralli € {0,1,...,D/2—1} do

5: 6; < 1/B%/P > Compute rotation frequencies
6: end for

7 forallm € {0,1,...,L — 1} do > Apply rotation for each position m
8 foralli € {0,1,...,D/2 -1} do > For each channel pair (24,2 4 1)
9: ¢ + cos(mb;)

10 s + sin(mb;)

11: Tm,2; < X[, m, 21] > Get the channel vector across time T
12: Tm,2i+1 < J?[I, m, 21+ 1]

13: x'[1,m, 28] 4= Tim,2i - € — T 2641+ S > Apply 2D rotation
14: 2'[5,m, 204+ 1] < Tp2i - S + T 2it1 - €

15: end for

16: end for

17: return 2’

18: end function

D.2 2D IMPLEMENTATION IN SPIKING-ROPE

2D Spiking-RoPE considers the spatiotemporal characteristics of SNNs and encodes positional in-
formation for the sequence length axis L and time axis 7" independently.

1) Feature Dimension Partitioning
* Divide the last feature dimension D of the input tensor X € RT*E*P into two equal-
sized blocks.
- X; € RT*Lx(D/2); Part to be used for sequence length (L) axis rotation
- X, € RT*Lx(D/2): part to be used for time (7") axis rotation
2) Independent Application of 1D RoPE to Each Axis

* (a) Sequence Length Axis Rotation:
- Apply the 1D Spiking-RoPE process described in Appendix [D.I]directly to tensor
X
— Here, the feature dimension becomes D/2, and the rotation kernel is generated
based on sequence length L.
— This yields X] € RT*Lx(D/2),
¢ (b) Time Axis Rotation:
— Apply the same 1D Spiking-RoPE process to tensor X, but change the positional
reference to the time axis 7.
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- Rotation Kernel Generation: Use position index ¢ € {0,1,...,7 — 1} to generate
cos_kernel_t and sin_kernel_t of size (T, D/4) (since feature dimension
D/2 is again divided into even/odd, resulting in D/4).
— Rotation Application: Broadcast the generated time kernels to the L dimension
(sequence length axis) and apply to X;.
— This yields X € RT*Lx(D/2),
3) Final Tensor Combination

* Concatenate the tensors X and X/, which have been independently rotated for both
axes, along the last feature dimension.

* Finally obtain Xop roaea = concat([X/, X;]) € RT*EXD with both spatiotemporal
positional information encoded.

Algorithm 2 2D Spiking-RoPE algorithm implementation. This algorithm extends 1D Spiking-
RoPE to handle spatiotemporal data by independently applying rotations along both sequence length
and time axes, with feature dimensions partitioned equally between the two axes.

Require: x € RT*L*D (Spatiotemporal input tensor), B € R (Base value for frequency computa-
tion)
Ensure: 2/ ¢ RT*L>D (Spatiotemporally encoded tensor)
1: function APPLY2DSPIKINGROPE(z, B)

2: xp <z D/2) > Partition features for length (L) axis
3: xr x5, D/2 ] > Partition features for time (T) axis
4: x, < Apply1DSpikingRoPE(xy,, B) > Encode the length axis

> Encode the time axis by treating T as the sequence dimension
5: 2™ <« Transpose(z, axes = (0,1))
6: 2™ « Apply IDSpikingRoPE(z5:™, B)

7. 2, < Transpose(z"™, axes = (0, 1))
8: x’ < Concatenate(z , x/, axis = 2) > Combine the encoded partitions
9: return z’

10: end function

E COMPARISON WITH GRAY/LOG PE

While Gray-PE and Log-PE represent advanced relative positional encoding methods for SNNs,
their official code has not been fully released at the time of this writing. To ensure reproducibility,
we limit our direct comparison to the publicly available Spikformer backbone, for which we utilize
Gray-PE and Log-PE results based on their paper. This allows for a fair and direct performance
evaluation against our proposed SF-PE.

Table 6: Performance comparison on time series forecasting across 4 benchmark datasets with pre-
diction lengths of 6, 24, 48, and 96 hours. Best results are highlighted in bold. PE types: R = relative,
F = Fused (absolute + relative). Metrics: higher R? and lower RSE indicate better performance. All
results are averaged across 3 random seeds.

Models PE Metric

Metr-la (L = 12) Pems-bay (L = 12) Solar (L = 168) Electricity (L = 168)
Type 6 24 48 96 6 24 48 96 6 24 48

96 6 24 48 96

RZ7T [.728 544 414 295 [ .782 724 694 .673 [ 936 840 .756 .710 | .974 972 966 .962 | .748
RSE| | .546 706 .806 .885 | .506 .578 .597 .618 | 257 409 .507 .546 | 276 304 320 342 | 513
R*T [.735 535 424 290 [.789 717 .691 .670 | .933 .841 .758 .734 | 978 974 .968 .964 | .750
RSE| | 543 719 .799 .876 | 496 .575 .601 .620 | .265 408 .504 .525 | .272 .300 .314 .340 | .509
R?T [.739 561 432 317 | 783 713 .698 670 939 877 .782 .752 981 .975 .972 .965 | .760
RSE] | .538 .698 .795 .871 | 499 576 .593 .618 .251 .362 479 .511 .240 .280 .300 .336 | .497

Spikformer w/Gray-PE|Lv et al.|(2025] R

Spikformer w/Log-PE|Lv et al. (2025} R

Spikformer w/SF-PE (Ours) 15

The experimental results presented in Table [6] clearly demonstrate the superiority of SF-PE. Across
all four time series forecasting benchmarks, our model consistently outperforms both Gray-PE and
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Log-PE. On average, SF-PE achieves a higher R? score 0.760 compared to both Gray-PE and Log-
PE. While the model demonstrated superior or competitive results across most benchmarks, partic-
ularly in long-term forecasting on the Metr-la and Solar datasets, its performance on the Pems-bay
dataset was comparable to the other relative PE methods. This overall strong performance validates
that the synergistic fusion of absolute and relative positional encodings in our model provides a
robust advantage over methods that use relative encoding alone.

F ROTATION FREQUENCY VARIATION
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Figure 6: Performance versus RoPE base parameter B.

The base value B is a core hyperparameter of Spiking-RoPE, which determines the rotation fre-
quency. Appropriate frequency selection enables the model to effectively distinguish relative dis-
tances of various lengths. Too high frequencies may focus excessively on short-range relationships
and miss long-range dependencies, while too low frequencies make fine positional distinctions dif-
ficult.

Our experiments, illustrated in Figure [§] demonstrate that the model is robust to the parameter B,
with performance consistently peaking at B = 10000 across all tested datasets. We therefore adopt
this value as the default for B in all our experiments.

G SPACE AND TIME EFFICIENCY COMPARISON

Table 7: Efficiency comparison on the Electricity task using Spikformer

[ Params(M) | GFLOPs | Avg training time per epoch(sec) | Avg inference time per epoch(sec)

Spikformer w/Conv-PE[Zhou et al.|(2022) 1.67 72.07 42.56 [ 5.16
Spikformer w/CPG-PE|Lv et al. |(2024) 1.7 72.08 42.67 | 523
Spikformer w/SF-PE (Ours) 1.7 72.09 42.74 5.26

To evaluate the impact of SF-PE on computational and training efficiency compared to existing
methods, we measured the computational costs of three different PE schemes on the Electricity task
using Spikformer. The comparison metrics include the number of parameters, GFLOPs, average
training time per epoch, and average inference time per epoch. We report the per-epoch average
time because the total number of epochs required for full training varies across runs due to the
inherent uncertainty of spikes.

Table 7 demonstrates that SF-PE incurs minimal computational overhead. The proposed method
requires no additional parameters, resulting in the exact same parameter count as CPG-PE and a
negligible difference in GFLOPs. Furthermore, the time cost increase over CPG-PE is trivial, and
the computational overhead remains within approximately 0.2 seconds compared to Spikformer.
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H PRE-SPIKE VS. POST-SPIKE FOR SF-PE

Table 8: Pre-spike and Post-spike RoPE comparison on four time series forecasting tasks.

PE N Metr-la (L =12 Pems-bay (L =12 Solar (L = 168 Electricity (L = 168
Models Type | Mettic |5 S g G e s g S 96
- RZT | 713 527 399 267 | 7713 697 686 667 | 929 828 744 674 | 950 055 955 054 | 733
Spikformer w/Conv-PE[Zhou etal |(2022] | R RSETL 565 725 818 903 | 514 594 606 621 | 272 426 519 586 | 373 371 379 382 | 541
R71 [ 558 358 281 145 | 682 660 655 646 | 881 791 735 689 | 941 939 932 929 | 677
RSEL | 702 846 895 976 | .591 602 615 623 | 355 470 520 573 | 431 439 454 367 | 592
R71 739 561 432 317 783 713 698 670 939 877 782 752 981 975 972 965 760
RSEL 538 .698 795 871 499 576 .593 618 251 362 479 511 240 280 300 336 497

Avg.

Spikformer w/SF-PE (Post-spike) F

Spikformer w/SF-PE (Pre-spike) F

To validate the theoretical implementation of RoPE in SNNs, we conducted a comparative experi-
ment between pre-spike and post-spike RoPE applications. Table [§] presents the performance com-
parison on the time-series forecasting task using the Spikformer backbone.

Post-spike RoPE faces two primary issues. First, RoPE operates by rotating vectors by specific an-
gles. Applying this transformation to binary spikes generates floating-point values, thereby destroy-
ing the inherent discrete nature of SNNs. Second, applying geometric rotations to low-resolution
binary spikes introduces quantization errors and information distortion. As shown in Table [§] the
post-spike method yields an average R? of 0.677, showing significant performance degradation
compared to the baseline Conv-PE.

In contrast, our proposed pre-spike method applies rotation to the continuous membrane potentials
prior to the LIF binarization step. This approach ensures high precision in the rotation operation
without information loss. Furthermore, as proved in Theorem[I] the relative phase information en-
coded in the membrane potential is preserved in the form of statistical expectation even after passing
through the nonlinear LIF dynamics. Consequently, the pre-spike method achieved an average R?
of 0.760, demonstrating consistent performance improvements over the post-spike approach. This
empirically validates our theoretical assertion that the pre-spike strategy is essential for effective
relative positional encoding in SNNs.

I LIMITATIONS

The core theoretical foundation of this study critically depends on approximating the firing probabil-
ity function of LIF neurons using a first-order Taylor series for phase preservation proof. This linear
approximation is most effective when the pre-spike membrane potential distribution is stabilized
near zero mean by Batch Normalization and has a narrow unimodal form. However, under neuron
saturation states or broad distributions that may occur in real networks, the approximation accuracy
may degrade, which can weaken the phase preservation effect. Although experimental results vali-
date the effectiveness of Spiking-RoPE and its underlying approximation, the model’s behavior in
extreme sparse or saturated environments with complex neuron models requires additional research.
Future work should verify Spiking-RoPE ’s generalizability by expanding the experimental focus
from sequential data to the vision domain of images.

THE USE OF LARGE LANGUAGE MODELS

Tool & Version: Gemini (Google, 2025-09)

Research Stage: Generated visualization scripts.

Writing Stage: Language editing of author-drafted text for clarity and conciseness.

Human Oversight: All outputs reviewed/edited by the authors; authors accept full responsibility
for the content.
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