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APPENDIX

A BACKPROPAGATION THROUGH TIME IN SPIKING NEURAL NETWORKS

The content of this section is mostly referred to Lv et al. (2023).

Given a loss function L like Equation 7 and 8, the losses at every time step can be summed together
to give the following global gradient:
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where i and j denote different time steps, and Lt is the loss calculated at time step t. No matter which
time step is, the weights of an SNN are shared across all steps. Therefore, we have W0 = W1 =

· · · = W , which also indicates that ∂Wj

∂W = 1. Thus, Equation (9) can be written as follows:
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Based on the chain rule of derivatives, we obtain:
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where ∂Li

∂Si
is the derivative of the cross-entropy loss at the time step i with respect to Si, and ∂Si

∂Ui
can

be easily derived using surrogate gradients like Equation 3. As to the last term of
∑
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From Equation (2), we know that ∂Ui

∂Wi
= Xi. Therefore, Equation (9) can be simplified as follows:
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By the chain rule of derivatives over time, ∂Ui

∂Wj
can be factorized into two parts:
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It is easy to see that ∂Ui

∂Ui−1
is equal to β from Equation (2), and Equation (9) can be written as:
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We can treat ∂Ui−1

∂Wj
recurrently as Equation (12). Finally, we can update the weights W by the rule of

W = W − η ∂L
∂W , where η is a learning rate.

B DATASETS

The benchmark we used in Table 1 includes the following datasets:
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• MR: MR stands for Movie Review and it consists of movie-review documents labeled with
respect to their overall sentiment polarity (positive or negative) or subjective rating (Pang &
Lee, 2005).

• SST-5: SST-5 contains 11, 855 sentences extracted from movie reviews for sentiment
classification (Socher et al., 2013). There are 5 categories (very negative, negative, neutral,
positive, and very positive).

• SST-2: The binary version of SST-5. There are just 2 classes (positive and negative).
• Subj: The task of this dataset is to classify a sentence as being subjective or objective1.
• ChnSenti: ChnSenti comprises about 7, 000 Chinese hotel reviews annotated with positive

or negative labels2.
• Waimai: There are about 12, 000 Chinese user reviews collected by a food delivery platform

for binary sentiment classification (positive and negative)3 in this dataset.

C PERFORMANCE ON GLUE

General Language Understanding Evaluation (GLUE) benchmark is a collection of diverse natural
language understanding tasks. We report the performance of SpikeBERT on GLUE benchmark on
Table 4

Table 4: Classification accuracy achieved by different models on the GLUE benchmark. A BERT
model fine-tuned on the dataset is denoted as “FT BERT”. “SNN-TextCNN” is a SNN baseline
proposed by Lv et al. (2023). ∗ indicates that the model fails to converge. All reported experimental
results are averaged across 10 random seeds.

Task SST-2 MRPC RTE QNLI MNLI-(m/mm) QQP CoLA STS-B
Metric Acc F1 Acc Acc acc F1 Matthew’s corr Spearman’s corr
FT BERT 92.31 89.80 69.31 90.70 83.82/83.41 90.51 60.00 89.41
SNN-TextCNN 80.91 80.62 47.29∗ 56.23∗ 64.91/63.69 0.00∗ −5.28∗ 0.00∗

SpikeBERT 85.39 81.98 57.47 66.37 71.42/70.95 68.17 16.86∗ 18.73∗

Although SpikeBERT significantly outperforms the SNN baseline on all tasks, we find that the
performance of SpikeBERT on the Natural Language Inference (NLI) task (QQP, QNLI, RTE) is
not satisfactory compared to fine-tuned BERT. The possible reason is that we mainly focus on the
semantic representation of a single sentence in the pre-training distillation stage. Meanwhile, we
have to admit that SpikeBERT is not sensitive to the change of certain words or synonyms, for it
fails to converge on CoLA and STS-B datasets. We think that’s because spike trains are much worse
than floating-point data in representing fine-grained words. In the future, we intend to explore the
incorporation of novel pre-training loss functions to enhance the model’s ability to model sentence
entailment effectively.

D THEORETICAL ENERGY CONSUMPTION CALCULATION

According to Yao et al. (2022), for spiking neural networks (SNNs), the theoretical energy consump-
tion of layer l can be calculated as:

Energy(l) = EAC × SOPs(l) (16)

where SOPs is the number of spike-based accumulate (AC) operations. For traditional artificial neural
networks (ANNs), the theoretical energy consumption required by the layer b can be estimated by

Energy(b) = EMAC × FLOPs(b) (17)

1
https://www.cs.cornell.edu/people/pabo/movie-review-data/

2
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/

ChnSentiCorp_htl_all.csv
3
https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv
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where FLOPs is the floating point operations of b, which is the number of multiply-and-accumulate
(MAC) operations. We assume that the MAC and AC operations are implemented on the 45nm
hardware (Horowitz, 2014), where EMAC = 4.6pJ and EAC = 0.9pJ . Note that 1J = 103 mJ
= 1012 pJ. The number of synaptic operations at the layer l of an SNN is estimated as

SOPs(l) = T × γ × FLOPs(l) (18)

where T is the number of times step required in the simulation, γ is the firing rate of input spike train
of the layer l.

Therefore, we estimate the theoretical energy consumption of SpikeBERT as follows:

ESpikeBERT = EMAC × EMB1
emb+EAC ×

(
M∑

m=1

SOPm
SNN FC +

N∑
n=1

SOPSSA

)
(19)

where EMB1
emb is the embedding layer of SpikeBERT. Then the SOPs of m SNN Fully Connected

Layer (FC) and l SSA are added together and multiplied by EAC .

E ENERGY REDUCTION COMPARED TO OTHER BERT VARIANTS

We compare the energy reduction between SpikeBERT, Tiny BERT(Jiao et al., 2019), and Distil-
BERT(Sanh et al., 2019) in Table 5.

Table 5: Energy consumption per sample of fine-tuned BERT, SpikeBERT, TinyBERT and Dis-
tilBERT during inference on 3 text classification benchmarks. “FLOPs” denotes the floating point
operations of ANNs. “SOPs” denotes the synaptic operations of SpikeBERT. “Energy” denotes the
average theoretical energy required for each test example prediction.

Dataset Model Parameters(M) FLOPs/SOPs(G) Energy(mJ) Energy Reduction Accuracy(%)

Waimai

FT BERT 109.0 22.46 103.38 - 90.27
SpikeBERT 109.0 27.81 29.90 71.08% ↓ 89.66
TinyBERT 67.0 11.30 52.01 49.69% ↓ 89.72
DistilBERT 52.2 7.60 34.98 66.16% ↓ 89.40

ChnSenti

FT BERT 109.0 22.46 103.38 - 89.48
SpikeBERT 109.0 28.47 30.51 70.49% ↓ 86.36
TinyBERT 67.0 11.30 52.01 49.69% ↓ 88.70
DistilBERT 52.2 7.60 34.98 66.16% ↓ 87.41

SST-2

FT BERT 109.0 22.23 102.24 - 92.31
SpikeBERT 109.0 27.46 28.54 72.09% ↓ 85.39
TinyBERT 67.0 11.30 52.01 49.13% ↓ 91.60
DistilBERT 52.2 7.60 34.98 65.78% ↓ 90.40

We want to state again that spiking neural networks and model compressing are two different
technological pathways to achieve energy efficiency. Future advancements in neuromorphic hardware
are expected to decrease energy consumption further.

F DISCUSSION OF LIMITATIONS

In the image classification task, spiking neural networks have demonstrated comparable performance
to ViT on CIFAR-10-DVS and DVS-128-Gesture datasets, which are neuromorphic event-based
image datasets created using dynamic vision sensors. We think that the performance gap between
SNNs and ANNs in language tasks is mainly due to the lack of neuromorphic language datasets. It is
unfair to evaluate SNNs on the datasets that were created to train and evaluate ANNs because these
datasets are mostly processed by continuous values. However, it is quite hard to convert language
to neuromorphic information without information loss. We hope there will be a new technology to
transfer sentences to neuromorphic spikes.
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In addition, GPU memory poses a limitation in our experiments. Spiking neural networks have an
additional dimension, denoted as T (time step), compared to artificial neural networks. Increasing
the number of time steps allows for capturing more information but results in an increased demand
for GPU memory by a factor of T . During our experiments, we observe that maintaining the
same number of time steps during training requires reducing the sentence length of input sentences,
which significantly constrains the performance of our models. We remain optimistic that future
advancements will provide GPUs with sufficient memory to support the functionality of SNNs.

17


