
Strategic Classification under
Unknown Personalized Manipulation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the fundamental mistake bound and sample complexity in the strategic1

classification, where agents can strategically manipulate their feature vector up2

to an extent in order to be predicted as positive. For example, given a classifier3

determining college admission, student candidates may try to take easier classes to4

improve their GPA, retake SAT and change schools in an effort to fool the classifier.5

Ball manipulations are a widely studied class of manipulations in the literature,6

where agents can modify their feature vector within a bounded radius ball. Unlike7

most prior work, our work consider manipulations to be personalized, meaning8

that agents can have different levels of manipulation abilities (e.g., varying radii9

for ball manipulations), and unknown to the learner.10

We formalize the learning problem in an interaction model where the learner11

first deploys a classifier and the agent manipulates the feature vector within their12

manipulation set to game the deployed classifier. We investigate various scenarios13

in terms of the information available to the learner during the interaction, such14

as observing the original feature vector before or after deployment, observing the15

manipulated feature vector, or not seeing either the original or the manipulated16

feature vector. We begin by providing online mistake bounds and PAC sample17

complexity in these scenarios for ball manipulations. We also explore non-ball18

manipulations and show that, even in the simplest scenario where both the original19

and the manipulated feature vectors are revealed, the mistake bounds and sample20

complexity are lower bounded by Ω(|H|) when the target function belongs to a21

known classH.22

1 Introduction23

Strategic classification addresses the the problem of learning a classifier robust to manipulation and24

gaming by self-interested agents (Hardt et al., 2016). For example, given a classifier determining loan25

approval based on credit scores, applicants could open or close credit cards and bank accounts to26

increase their credit scores. In the case of a college admission classifier, students may try to take easier27

classes to improve their GPA, retake the SAT or change schools in an effort to be admitted. In both28

cases, such manipulations do not change their true qualifications. Recently, a collection of papers has29

studied strategic classification in both the online setting where examples are chosen by an adversary30

in a sequential manner (Dong et al., 2018; Chen et al., 2020; Ahmadi et al., 2021, 2023), and the31

distributional setting where the examples are drawn from an underlying data distribution (Hardt32

et al., 2016; Zhang and Conitzer, 2021; Sundaram et al., 2021; Lechner and Urner, 2022). Most33

existing works assume that manipulation ability is uniform across all agents or is known to the learner.34

However, in reality, this may not always be the case. For instance, low-income students may have a35

lower ability to manipulate the system compared to their wealthier peers due to factors such as the36

high costs of retaking the SAT or enrolling in additional classes, as well as facing more barriers to37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

accessing information about college (Milli et al., 2019) and it is impossible for the learner to know38

the highest achievable GPA or the maximum number of times a student may retake the SAT due to39

external factors such as socio-economic background and personal circumstances.40

We characterize the manipulation of an agent by a set of alternative feature vectors that she can modify41

her original feature vector to, which we refer to as the manipulation set. Ball manipulations are a42

widely studied class of manipulations in the literature, where agents can modify their feature vector43

within a bounded radius ball. For example, Dong et al. (2018); Chen et al. (2020); Sundaram et al.44

(2021) studied ball manipulations with distance function being some norm and Zhang and Conitzer45

(2021); Lechner and Urner (2022); Ahmadi et al. (2023) studied a manipulation graph setting, which46

can be viewed as ball manipulation w.r.t. the graph distance on a predefined known graph.47

In the online learning setting, the strategic agents come sequentially and try to game the current48

classifier. Following previous work, we model the learning process as a repeated Stackelberg49

game over T time steps. In round t, the learner proposes a classifier ft and then the agent, with a50

manipulation set (unknown to the learner), manipulates her feature in an effort to receive positive51

prediction from ft. There are several settings based on what and when the information is revealed52

about the original feature vector and the manipulated feature vector in the game. The simplest setting53

for the learner is observing the original feature vector before choosing ft and the manipulated vector54

after. In a slightly harder setting, the learner observes both the original and manipulated vectors after55

selecting ft. An even harder setting involves observing only the manipulated feature vector after56

selecting ft. The hardest and least informative scenario occurs when neither the original nor the57

manipulated feature vectors are observed.58

In the distributional setting, the agents are sampled from an underlying data distribution. Previous59

work assumes that the learner has full knowledge of the original feature vector and the manipulation60

set, and then views learning as a one-shot game and solves it by computing the Stackelberg equilibria61

of it. However, when manipulations are personalized and unknown, we cannot compute an equilibrium62

and study learning as a one-shot game. In this work, we extend the iterative online interaction model63

from the online setting to the distributional setting, where the sequence of agents is sampled i.i.d.64

from the data distribution. After repeated learning for T (which is equal to the sample size) rounds,65

the learner has to output a strategy-robust predictor for future use.66

In both online and distributional settings, examples are viewed through the lens of the current predictor67

and the learner does not have the ability to inquire about the strategies the previous examples would68

have adopted under a different predictor.69

Related work Our work is primarily related to strategic classification in online and distributional70

settings. Strategic classification was first studied in a distributional model by Hardt et al. (2016)71

and subsequently by Dong et al. (2018) in an online model. Hardt et al. (2016) assumed that agents72

manipulate by best response with respect to a uniform cost function known to the learner. Building73

on the framework of (Hardt et al., 2016), Lechner and Urner (2022); Sundaram et al. (2021); Zhang74

and Conitzer (2021); Hu et al. (2019); Milli et al. (2019) studied the distributional learning problem,75

and all of them assumed that the manipulations are predefined and known to the learner, either by a76

cost function or a predefined manipulation graph. For online learning, Dong et al. (2018) considered77

a similar manipulation setting as in this work, where manipulations are personalized and unknown.78

However, they studied linear classification with ball manipulations in the online setting and focused79

on finding appropriate conditions of the cost function to achieve sub-linear Stackelberg regret. Chen80

et al. (2020) also studied Stackelberg regret in linear classification with uniform ball manipulations.81

Ahmadi et al. (2021) studied the mistake bound under uniform (possbily unknown) ball manipulations,82

and Ahmadi et al. (2023) studied regret under a pre-defined and known manipulation. We postpone83

the discussion of studies on other objectives and models in the strategic setting to the Appendix A.84

2 Model85

Strategic classification Throughout this work, we consider the binary classification task. Let X86

denote the feature vector space, Y = {+1,−1} denote the label space, and H ⊆ YX denote the87

hypothesis class. In the strategic setting, instead of an example being a pair (x, y), an example, or88

agent, is a triple (x, u, y) where x ∈ X is the original feature vector, y ∈ Y is the label, and u ⊆ X is89

the manipulation set, which is a set of feature vectors that the agent can modify their original feature90

vector x to. In particular, given a hypothesis h ∈ YX , the agent will try to manipulate her feature91

2

vector x to another feature vector x′ within u in order to receive a positive prediction from h. The92

manipulation set u is unknown to the learner. In this work, we will be considering several settings93

based on what the information is revealed to the learner, including both the original/manipulated94

feature vectors, the manipulated feature vector only, or neither, and when the information is revealed.95

More formally, for agent (x, u, y), given a predictor h, if h(x) = −1 and her manipulation set96

overlaps the positive region by h, i.e., u ∩ Xh,+ ̸= ∅ with Xh,+ := {x ∈ X |h(x) = +1}, the agent97

will manipulate x to ∆(x, h, u) ∈ u∩Xh,+
1 to receive positive prediction by h. Otherwise, the agent98

will do nothing and maintain her feature vector at x, i.e., ∆(x, h, u) = x. We call ∆(x, h, u) the99

manipulated feature vector of agent (x, u, y) under predictor h.100

A general and fundamental type of manipulations is ball manipulations, where agents can manipulate101

their feature within a ball of personalized radius. More specifically, given a metric d over X , the102

manipulation set is a ball B(x; r) = {x′|d(x, x′) ≤ r} centered at x with radius r for some r ∈ R≥0.103

Note that we allow different agents to have different manipulation power and the radius can vary over104

agents. Let Q denote the set of allowed pairs (x, u), which we refer to as the feature-manipulation105

set space. For ball manipulations, we have Q = {(x,B(x; r))|x ∈ X , r ∈ R≥0} for some known106

metric d over X . In the context of ball manipulations, we use (x, r, y) to represent (x,B(x; r), y)107

and ∆(x, h, r) to represent ∆(x, h,B(x; r)) for notation simplicity.108

For any hypothesis h, let the strategic loss ℓstr(h, (x, u, y)) of h be defined as the loss at the manip-109

ulated feature, i.e., ℓstr(h, (x, u, y)) := 1(h(∆(x, h, u)) ̸= y). According to our definition of ∆(·),110

we can write down the strategic loss explicitly as111

ℓstr(h, (x, u, y)) =


1 if y = −1, h(x) = +1

1 if y = −1, h(x) = −1 and u ∩ Xh,+ ̸= ∅ ,
1 if y = +1, h(x) = −1 and u ∩ Xh,+ = ∅ ,
0 otherwise.

(1)

For any randomized predictor p (a distribution over hypotheses), the strategic behavior depends on the112

realization of the predictor and the strategic loss of p is ℓstr(p, (x, u, y)) := Eh∼p [ℓ
str(h, (x, u, y))].113

Online learning We consider the task of sequential classification where the learner aims to classify114

a sequence of agents (x1, u1, y1), (x2, u2, y2), . . . , (xT , uT , yT) ∈ Q × Y that arrives in an online115

manner. At each round, the learner feeds a predictor to the environment and then observes his116

prediction ŷt, the true feature yt and possibly along with some additional information about the117

original/manipulated feature vectors. We say the learner makes a mistake at round t if ŷt ̸= yt and118

the learner’s goal is to minimize the number of mistakes on the sequence. The interaction protocol119

(which repeats for t = 1, . . . , T) is described in the following.120

Protocol 1 Learner-Agent Interaction at round t

1: The environment picks an agent (xt, ut, yt) and reveals some context C(xt). In the online setting,
the agent is chosen adversarially, while in the distributional setting, the agent is sampled i.i.d.

2: The learner A observes C(xt) and picks a hypothesis ft ∈ YX .
3: The learner A observes the true label yt, the prediction ŷt = ft(∆t), and some feedback

F (xt,∆t), where ∆t = ∆(xt, ft, ut) is the manipulated feature vector.

The context function C(·) and feedback function F (·) reveals information about the original feature121

vector xt and the manipulated feature vector ∆t. C(·) reveals the information before the learner picks122

ft while F (·) does after. We study several different settings based on what and when information is123

revealed.124

• The simplest setting for the learner is observing the original feature vector xt before choosing ft125

and the manipulated vector ∆t after. This setting corresponds to C(xt) = xt and F (xt,∆t) = ∆t.126

We denote a setting by their values of C,F and thus, we denote this setting by (x,∆).127

• In a slightly harder setting, the learner observes both the original and manipulated vectors after128

selecting ft and thus, ft cannot depend on the original feature vector in this case. Then C(xt) =⊥129

and F (xt,∆t) = (xt,∆t), where ⊥ is a token for “no information”, and this setting is denoted by130

(⊥, (x,∆)).131

1For ball manipulations, agents break ties by selecting the closest one. For non-ball manipulations, agents
break ties randomly.

3

• An even harder setting involves observing only the manipulated feature vector after selecting ft132

(which can only be revealed after ft since ∆t depends on ft). Then C(xt) =⊥ and F (xt,∆t) = ∆t133

and this setting is denoted by (⊥,∆).134

• The hardest and least informative scenario occurs when neither the original nor the manipulated135

feature vectors are observed. Then C(xt) =⊥ and F (xt,∆t) =⊥ and it is denoted by (⊥,⊥).136

Throughout this work, we focus on the realizable setting, where there exists a perfect classifier inH137

that never makes any mistake at the sequence of strategic agents. More specifically, there exists a138

hypothesis h∗ ∈ H such that for any t ∈ [T], we have yt = h∗(∆(xt, h
∗, ut)). Then we define the139

mistake bound as follows.140

Definition 1. For any choice of (C,F), let A be an online learning algorithm un-141

der Protocol 1 in the setting of (C,F). Given any realizable sequence S =142

(x1, u1, h
∗(∆(x1, h

∗, u1))), . . . , (xT , uT , h
∗(∆(xT , h

∗, uT))) ∈ (Q×Y)T , where T is any integer143

and h∗ ∈ H, letMA(S) be the number of mistakes A makes on the sequence S. The mistake bound144

of (H,Q), denoted MBC,F , is the smallest number B ∈ N such that there exists an algorithm A145

such thatMA(S) ≤ B over all realizable sequences S of the above form.146

According the rank of difficulty of the four settings with different choices of (C,F), the mistake147

bounds are ranked in the order of MBx,∆ ≤ MB⊥,(x,∆) ≤ MB⊥,∆ ≤ MB⊥,⊥.148

PAC learning In the distributional setting, the agents are sampled from an underlying dis-149

tribution D over Q × Y . The learner’s goal is to find a hypothesis h with low popula-150

tion loss Lstr
D (h) := E(x,u,y)∼D [ℓstr(h, (x, u, y))]. One may think of running empirical risk151

minimizer (ERM) over samples drawn from the underlying data distribution, i.e., returning152

argminh∈H
1
m

∑m
i=1 ℓ

str(h, (xi, ui, yi)), where (x1, u1, y1), . . . , (xm, um, ym) are i.i.d. sampled153

from D. However, ERM is unimplementable because the manipulation sets ui’s are never revealed to154

the algorithm, and only the partial feedback in response to the implemented classifier is provided. In155

particular, in this work we consider using the same interaction protocol as in the online setting, i.e.,156

Protocol 1, with agents (xt, ut, yt) i.i.d. sampled from the data distribution D. After T rounds of157

interaction (i.e., T i.i.d. agents), the learner has to output a predictor fout for future use.158

Again, we focus on the realizable setting, where the sequence of sampled agents (with manipulation)159

can be perfectly classified by a target function inH. Alternatively, there exists a classifier with zero160

population loss, i.e., there exists a hypothesis h∗ ∈ H such that Lstr
D (h∗) = 0. Then we formalize the161

notion of PAC sample complexity under strategic behavior as follows.162

Definition 2. For any choice of (C,F), letA be a learning algorithm that interacts with agents using163

Protocol 1 in the setting of (C,F) and outputs a predictor fout in the end. For any ε, δ ∈ (0, 1), the164

sample complexity of realizable (ε, δ)-PAC learning of (H,Q), denoted SCC,F (ε, δ), is defined as165

the smallest m ∈ N for which there exists a learning algorithm A in the above form such that for any166

distribution D over Q× Y where there exists a predictor h∗ ∈ H with zero loss, Lstr
D (h) = 0, with167

probability at least 1− δ over (x1, u1, y1), . . . , (xm, um, ym)
i.i.d.∼ D, Lstr

D (fout) ≤ ε.168

Similar to mistake bounds, the sample complexities are ranked in the same order SCx,∆ ≤169

SC⊥,(x,∆) ≤ SC⊥,∆ ≤ SC⊥,⊥ according the rank of difficulty of the four settings.170

3 Overview of Results171

In classic (non-strategic) online learning, the Halving algorithm achieves a mistake bound of log(|H|)172

by employing the majority vote and eliminating inconsistent hypotheses at each round. In classic173

PAC learning, the sample complexity of O(log(|H|)
ε) is achievable via ERM. Both mistake bound174

and sample complexity exhibit logarithmic dependency on |H|. This logarithmic dependency on |H|175

(when there is no further structural assumptions) is tight in both settings, i.e., there exist examples176

ofH with mistake bound of Ω(log(|H|)) and with sample complexity of Ω(log(|H|)
ε). In the setting177

where manipulation is known beforehand and only ∆t is observed, Ahmadi et al. (2023) proved a178

lower bound of Ω(|H|) for the mistake bound. Since in the strategic setting we can achieve a linear179

dependency on |H| by trying each hypothesis in H one by one and discarding it once it makes a180

mistake, the question arises:181

Can we achieve a logarithmic dependency on |H| in strategic classification?182

4

In this work, we show that the dependency on |H| varies across different settings and that in some183

settings mistake bound and PAC sample complexity can exhibit different dependencies on |H|. We184

start by presenting our results for ball manipulations in the four settings.185

• Setting of (x,∆) (observing xt before choosing ft and observing ∆t after) : For online learning,186

we propose an variant of the Halving algorithm, called Strategic Halving (Algorithm 1), which can187

eliminate half of the remaining hypotheses when making a mistake. The algorithm depends on ob-188

serving xt before choosing the predictor ft. Then by applying the standard technique of converting189

mistake bound to PAC bound, we are able to achieve sample complexity of O(log(|H|) loglog(|H|)
ε).190

• Setting of (⊥, (x,∆)) (observing both xt and ∆t after selecting ft) : We prove that, there exists191

an example of (H,Q) s.t. the mistake bound is lower bounded by Ω(|H|). This implies that no192

algorithm can perform significantly better than sequentially trying each hypothesis, which would193

make at most |H| mistakes before finding the correct hypothesis. However, unlike the construction194

of mistake lower bounds in classic online learning, where all mistakes can be forced to occur in the195

initial rounds, we demonstrate that we require Θ(|H|2) rounds to ensure that all mistakes occur. In196

the PAC setting, we first show that, any learning algorithm with proper output fout, i.e., fout ∈ H,197

needs a sample size of Ω(|H|
ε). We can achieve a sample complexity of O(log

2(|H|)
ε) by executing198

Algorithm 2, which is a randomized algorithm with improper output.199

• Setting of (⊥,∆) (observing only ∆t after selecting ft) : The mistake bound of Ω(|H|) also holds200

in this setting, as it is known to be harder than the previous setting. For the PAC learning, we show201

that any conservative algorithm, which only depends on the information from the mistake rounds,202

requires Ω(|H|
ε) samples. The optimal sample complexity is left as an open problem.203

• Setting of (⊥,⊥) (observing neither xt nor ∆t) : Similarly, the mistake bound of Ω(|H|) still holds.204

For the PAC learning, we show that the sample complexity is Ω(|H|
ε) by reducing the problem to a205

stochastic linear bandit problem.206

Then we move on to non-ball manipulations. However, we show that even in the simplest setting of207

observing xt before choosing ft and observing ∆t after, there is an example of (H,Q) such that the208

sample complexity is Ω̃(|H|
ε). This implies that in all four settings of different revealed information,209

we will have sample complexity of Ω̃(|H|
ε) and mistake bound of Ω̃(|H|). We summarize our results210

in Table 1.211

setting mistake bound sample complexity

ball

(x,∆) Θ(log(|H|)) (Thm 1) Õ(log(|H|)
ε)a (Thm 2), Ω(log(|H|)

ε)

(⊥, (x,∆))
O(min(

√
log(|H|)T , |H|)) (Thm 4) O(log

2(|H|)
ε) (Thm 6), Ω(log(|H|)

ε)

Ω(min(T
|H| log(|H|) , |H|))(Thm 3) SCprop = Ω(|H|

ε) (Thm 5)

(⊥,∆) Θ(|H|) (implied by Thm 3) SCcsv = Ω̃(|H|
ε) (Thm 7)

(⊥,⊥) Θ(|H|) (implied by Thm 3) Õ(|H|
ε) , Ω̃(|H|

ε) (Thm 8)
nonball all Ω̃(|H|)(Cor 1) , O(|H|) Õ(|H|

ε) , Ω̃(|H|
ε) (Cor 1)

a A factor of loglog(|H|) is neglected.
Table 1: The summary of results. Õ and Ω̃ ignore logarithmic factors on |H| and 1

ε . The superscripts
prop stands for proper learning algorithms and csv stands for conservative learning algorithms.
All lower bounds in the non-strategic setting also apply to the strategic setting, implying that
MBC,F ≥ Ω(log(|H|)) and SCC,F ≥ Ω(log(|H|)

ε) for all settings of (C,F). In all four settings, a
mistake bound of O(|H|) can be achieved by simply trying each hypothesis inH while the sample
complexity can be achieved as Õ(|H|

ε) by converting the mistake bound of O(|H|) to a PAC bound
using standard techniques.

4 Ball manipulations212

In ball manipulations, when B(x; r) ∩ Xh,+ has multiple elements, the agent will always break ties213

by selecting the one closest to x, i.e., ∆(x, h, r) = argminx′∈B(x;r)∩Xh,+
d(x, x′). In round t, the214

learner deploys predictor ft, and once he knows xt and ŷt, he can calculate ∆t himself without215

needing knowledge of rt by216

5

∆t =

{
argminx′∈Xft,+

d(xt, x
′) if ŷt = +1 ,

xt if ŷt = −1 .
Thus, for ball manipulations, knowing xt is equivalent to knowing both xt and ∆t.217

4.1 Setting (x,∆): Observing xt Before Choosing ft218

Online learning We propose a new algorithm with mistake bound of log(|H|) in setting (x,∆). To219

achieve a logarithmic mistake bound, we must construct a predictor ft such that if it makes a mistake,220

we can reduce a constant fraction of the remaining hypotheses. The primary challenge is that we do221

not have access to the full information, and predictions of other hypotheses are hidden. To extract222

the information of predictions of other hypotheses, we take advantage of ball manipulations, which223

induces an ordering over all hypotheses. Specifically, for any hypothesis h and feature vector x, we224

define the distance between x and h by the distance between x and the positive region by h, X+
h , i.e.,225

d(x, h) := min{d(x, x′)|x′ ∈ X+
h } . (2)

At each round t, given xt, the learner calculates the distance d(xt, h) for all h in the version space226

(meaning hypotheses consistent with history) and selects a hypothesis ft such that d(xt, ft) is the227

median among all distances d(xt, h) for h in the version space. We can show that by selecting ft in228

this way, the learner can eliminate half of the version space if ft makes a mistake. We refer to this229

algorithm as Strategic Halving, and provide a detailed description of it in Algorithm 1.230

Theorem 1. For any feature-ball manipulation set spaceQ and hypothesis classH, Strategic Halving231

achieves mistake bound MBx,∆ ≤ log(|H|).232

Algorithm 1 Strategic Halving
1: Initialize the version space VS = H.
2: for t = 1, . . . , T do
3: pick an ft ∈ VS such that d(xt, ft) is the median of {d(xt, h)|h ∈ VS}.
4: if ŷt ̸= yt and yt = + then VS← VS \ {h ∈ VS|d(xt, h) ≥ d(xt, ft)};
5: else if ŷt ̸= yt and yt = − then VS← VS \ {h ∈ VS|d(xt, h) ≤ d(xt, ft)}.
6: end for

To prove Theorem 1, we only need to show that each mistake reduces the version space by half.233

Supposing that ft misclassifies a true positive example (xt, rt,+1) by negative, then we know234

that d(xt, ft) > rt while the target hypothesis h∗ must satisfy that d(xt, h
∗) ≤ rt. Hence any h235

with d(xt, h) ≥ d(xt, ft) cannot be h∗ and should be eliminated. Since d(xt, ft) is the median of236

{d(xt, h)|h ∈ VS}, we can elimate half of the version space. It is similar when ft misclassifies a237

true negative. The detailed proof is deferred to Appendix C.238

PAC learning We can convert Strategic Halving to a PAC learner by the standard technique of239

converting a mistake bound to a PAC bound (GALLANT, 1986). Specifically, the learner runs240

Strategic Halving until it produces a hypothesis ft that survives for 1
ε log(

log(|H|)
δ) rounds and241

outputs this ft. Then we have Theorem 2, and the proof is included in Appendix D.242

Theorem 2. For any feature-ball manipulation set space Q and hypothesis classH, we can achieve243

SCx,∆(ε, δ) = O(log(|H|)
ε log(log(|H|)

δ)) by combining Strategic Halving and the standard technique244

of converting a mistake bound to a PAC bound.245

4.2 Setting (⊥, (x,∆)): Observing xt After Choosing ft246

When xt is not revealed before the learner choosing ft, the algorithm of Strategic Halving does not247

work anymore. We demonstrate that it is impossible to reduce constant fraction of version space when248

making a mistake, and prove that the mistake bound is lower bounded by Ω(|H|) by constructing a249

negative example of (H,Q). However, we can still achieve sample complexity with poly-logarithmic250

dependency on |H| in the distributional setting.251

4.2.1 Results in the Online Learning Model252

To offer readers an intuitive understanding of the distinctions between the strategic setting and253

standard online learning, we commence by presenting an example in which no deterministic learners,254

including the Halving algorithm, can make fewer than |H| − 1 mistakes.255

6

Example 1. Consider a star shape metric space (X , d), where X = {0, 1, . . . , n}, d(i, j) = 2 and256

d(0, i) = 1 for all i, j ∈ [n] with i ̸= j. The hypothesis class is composed of singletons over [n],257

i.e.,H = {21{i} − 1|i ∈ [n]}. When the learner is deterministic, the environment can pick an agent258

(xt, rt, yt) dependent on ft. If ft is all-negative, then the environment picks (xt, rt, yt) = (0, 1,+1),259

and then the learner makes a mistake but no hypothesis can be eliminated. If ft predicts 0 by positive,260

the environment will pick (xt, rt, yt) = (0, 0,−1), and then the learner makes a mistake but no261

hypothesis can be eliminated. If ft predicts some i ∈ [n] by positive, the environment will pick262

(xt, rt, yt) = (i, 0,−1), and then the learner makes a mistake with only one hypothesis 21{i} − 1263

eliminated. Therefore, the learner will make n− 1 mistakes.264

In this work, we allow the learner to be randomized. When an (xt, rt, yt) is generated by the265

environment, the learner can randomly pick an ft, and the environment does not know the realization266

of ft but knows the distribution where ft comes from. It turns out that randomization does not help267

much. We prove that there exists an example in which any (possibly randomized) learner will incur268

Ω(|H|) mistakes.269

Theorem 3. There exists a feature-ball manipulation set space Q and hypothesis class H s.t. the270

mistake bound MB⊥,(x,∆) ≥ |H|−1. For any (randomized) algorithmA and any T ∈ N, there exists271

a realizable sequence of (xt, rt, yt)1:T such that with probability at least 1− δ (over randomness of272

A), A makes at least min(T
5|H| log(|H|/δ) , |H| − 1) mistakes.273

Essentially, we design an adversarial environment such that the learner has a probability of 1
|H| of274

making a mistake at each round before identifying the target function h∗. The learner only gains275

information about the target function when a mistake is made. The detailed proof is deferred to276

Appendix E. Theorem 3 establishes a lower bound on the mistake bound, which is |H| − 1. However,277

achieving this bound requires a sufficiently large number of rounds, specifically T = Ω̃(|H|2). This278

raises the question of whether there exists a learning algorithm that can make o(T) mistakes for any279

T ≤ |H|2. In Example 1, we observed that the adversary can force any deterministic learner to make280

|H| − 1 mistakes in |H| − 1 rounds. Consequently, no deterministic algorithm can achieve o(T)281

mistakes.282

To address this, we propose a randomized algorithm that closely resembles Algorithm 1, with a283

modification in the selection of ft. Instead of using line 3, we choose ft randomly from VS since284

we lack prior knowledge of xt. This algorithm can be viewed as a variation of the well-known285

multiplicative weights method, applied exclusively during mistake rounds. For improved clarity, we286

present this algorithm as Algorithm 3 in Appendix F due to space limitations.287

Theorem 4. For any T ∈ N, Algorithm 3 will make at most min(
√
4 log(|H|)T , |H| − 1) mistakes288

in expectation in T rounds.289

Note that the T -dependent upper bound in Theorem 4 matches the lower bound in Theorem 3 up290

to a logarithmic factor when T = |H|2. This implies that approximately |H|2 rounds are needed to291

achieve |H| − 1 mistakes, which is a tight bound up to a logarithmic factor. Proof of Theorem 4 is292

included in Appendix F.293

4.2.2 Results in the PAC Learning Model294

In the PAC setting, the goal of the learner is to output a predictor fout after the repeated interactions.295

A common class of learning algorithms, which outputs a hypothesis fout ∈ H, is called proper.296

Proper learning algorithms are a common starting point when designing algorithms for new learning297

problems due to their natural appeal and ability to achieve good performance, such as ERM in classic298

PAC learning. However, in the current setting, we show that proper learning algorithms do not work299

well and require a sample size linear in |H|. The formal theorem is stated as follows and the proof is300

deferred to Appendix G.301

Theorem 5. There exists a feature-ball manipulation set space Q and hypothesis class H s.t.302

SCprop
⊥,∆(ε,

7
8) = Ω(|H|

ε), where SCprop
⊥,∆(ε, δ) is the (ε, δ)-PAC sample complexity achievable by303

proper algorithms.304

Theorem 5 implies that any algorithm capable of achieving sample complexity sub-linear in |H| must305

be improper. As a result, we are inspired to devise an improper learning algorithm. Before presenting306

7

the algorithm, we introduce some notations. For two hypotheses h1, h2, let h1 ∨ h2 denote the union307

of them, i.e., (h1 ∨h2)(x) = +1 iff. h1(x) = +1 or h2(x) = +1. Similarly, we can define the union308

of more than two hypotheses. Then for any union of k hypotheses, f = ∨ki=1hi, the positive region of309

f is the union of positive regions of the k hypotheses and thus, we have d(x, f) = mini∈[k] d(x, hi).310

Therefore, we can decrease the distance between f and any feature vector x by increasing k. Based311

on this, we devise a new randomized algorithm with improper output, described in Algorithm 2.312

Theorem 6. For any feature-ball manipulation set space Q and hypothesis classH, we can achieve313

SC⊥,(x,∆)(ε, δ) = O(log
2(|H|)+log(1/δ)

ε log(1δ)) by combining Algorithm 2 with a standard confi-314

dence boosting technique. Note that the algorithm is improper.315

Algorithm 2
1: Initialize the version space VS0 = H.
2: for t = 1, . . . , T do
3: randomly pick kt ∼ Unif({1, 2, 22, . . . , 2⌊log2(nt)−1⌋}) where nt = |VSt−1|;
4: sample kt hypotheses h1, . . . , hkt

independently and uniformly at random from VSt−1;
5: let ft = ∨kt

i=1hi.
6: if ŷt ̸= yt and yt = + then VSt = VSt−1 \ {h ∈ VSt−1|d(xt, h) ≥ d(xt, ft)};
7: else if ŷt ̸= yt and yt = − then VSt = VSt−1 \ {h ∈ VSt−1|d(xt, h) ≤ d(xt, ft)};
8: else VSt = VSt−1.
9: end for

10: randomly pick τ from [T] and randomly sample h1, h2 from VSτ−1 with replacement.
11: output h1 ∨ h2

Now we outline the high-level ideas behind Algorithm 2. In correct rounds where ft makes no316

mistake, the predictions of all hypotheses are either correct or unknown, and thus, it is hard to317

determine how to make updates. In mistake rounds, we can always update the version space similar318

to what was done in Strategic Halving. To achieve a poly-logarithmic dependency on |H|, we aim to319

reduce a significant number of misclassifying hypotheses in mistake rounds. The maximum number320

we can hope to reduce is a constant fraction of the misclassifying hypotheses. We achieve this by321

randomly sampling a ft (lines 3-5) s.t. ft makes a mistake, and d(xt, ft) is greater (smaller) than the322

median of d(xt, h) for all misclassifying hypotheses h for true negative (positive) examples. However,323

due to the asymmetric nature of manipulation, which aims to be predicted as positive, the rate of324

decreasing misclassifications over true positives is slower than over true negatives. To compensate325

for this asymmetry, we output a fout = h1 ∨ h2 with two selected hypotheses h1, h2 (lines 10-11)326

instead of a single one to increase the chance of positive prediction.327

We prove that Algorithm 2 can achieve small strategic loss in expectation as described in Lemma 1.328

Then we can achieve the sample complexity in Theorem 6 by boosting Algorithm 2 to a strong learner.329

This is accomplished by running Algorithm 2 multiple times until we obtain a good predictor. The330

proofs of Lemma 1 and Theorem 6 are deferred to Appendix H.331

Lemma 1. Let S = (xt, rt, yt)
T
t=1 ∼ DT denote the i.i.d. sampled agents in T rounds and let A(S)332

denote the output of Algorithm 2 interacting with S. For any feature-ball manipulation set space Q333

and hypothesis classH, when T ≥ 320 log2(|H|)
ε , we have EA,S [Lstr(A(S))] ≤ ε.334

4.3 Settings (⊥,∆) and (⊥,⊥)335

Online learning As mentioned in Section 2, both the settings of (⊥,∆) and (⊥,⊥) are harder than336

the setting of (⊥, (x,∆)), all lower bounds in the setting of (⊥, (x,∆)) also hold in the former two337

settings. Therefore, by Theorem 3, we have MB⊥,⊥ ≥ MB⊥,∆ ≥ MB⊥,(x,∆) = |H| − 1.338

PAC learning In the setting of (⊥,∆), Algorithm 2 is not applicable anymore since the learner lacks339

observation of xt, making it impossible to replicate the version space update steps in lines 6-7. It is340

worth noting that both PAC learning algorithms we have discussed so far fall under a general category341

called conservative algorithms, depend only on information from the mistake rounds. Specifically,342

an algorithm is said to be conservative if for any t, the predictor ft only depends on the history of343

mistake rounds up to t, i.e., τ < t with ŷτ ̸= yτ , and the output fout only depends on the history of344

mistake rounds, i.e., (ft, ŷt, yt,∆t)t:ŷt ̸=yt
. Any algorithm that goes beyond this category would need345

to utilize the information in correct rounds. As mentioned earlier, in correct rounds, the predictions346

8

of all hypotheses are either correct or unknown, which makes it challenging to determine how to347

make updates. For conservative algorithms, we present a lower bound on the sample complexity in348

the following theorem, which is Ω̃(|H|
ε), and its proof is included in Appendix I. The optimal sample349

complexity in the setting (⊥,∆) is left as an open problem.350

Theorem 7. There exists a feature-ball manipulation set space Q and hypothesis class H s.t.351

SCcsv
⊥,∆(ε,

7
8) = Ω̃(|H|

ε), where SCcsv
⊥,∆(ε, δ) is (ε, δ)-PAC the sample complexity achievable by352

conservative algorithms.353

In the setting of (⊥,⊥), our problem reduces to a best arm identification problem in stochastic bandits.354

We prove a lower bound on the sample complexity of Ω̃(|H|
ε) in Theorem 8 by reduction to stochastic355

linear bandits and applying the tools from information theory. The proof is deferred to Appendix J.356

Theorem 8. There exists a feature-ball manipulation set space Q and hypothesis class H s.t.357

SC⊥,⊥(ε,
7
8) = Ω̃(|H|

ε).358

5 Non-ball Manipulations359

In this section, we move on to non-ball manipulations. In ball manipulations, for any feature vector360

x, we have an ordering of hypotheses according to their distances to x, which helps to infer the361

predictions of some hypotheses without implementing them. However, in non-ball manipulations, we362

don’t have such structure anymore. Therefore, even in the simplest setting of observing xt before ft363

and ∆t, we have the PAC sample complexity lower bounded by Ω̃(|H|
ε).364

Theorem 9. There exists a feature-manipulation set space Q and hypothesis class H s.t.365

SCx,∆(ε,
7
8) = Ω̃(|H|

ε).366

The proof is deferred to Appendix K. It is worth noting that in the construction of the proof, we let367

all agents to have their original feature vector xt = 0 such that xt does not provide any information.368

Since (x,∆) is the simplest setting and any mistake bound can be converted to a PAC bound via369

standard techniques (see Section B.2 for more details), we have the following corollary.370

Corollary 1. There exists a feature-manipulation set space Q and hypothesis class H s.t. for all371

choices of (C,F), SCC,F (ε,
7
8) = Ω̃(|H|

ε) and MBC,F = Ω̃(|H|).372

6 Discussion and Open Problems373

In this work, we investigate the mistake bound and sample complexity of strategic classification across374

multiple settings. Unlike prior work, we assume that the manipulation is personalized and unknown375

to the learner, which makes the strategic classification problem more challenging. In the case of376

ball manipulations, when the original feature vector xt is revealed prior to choosing ft, the problem377

exhibits a similar level of difficulty as the non-strategic setting (see Table 1 for details). However,378

when the original feature vector xt is not revealed beforehand, the problem becomes significantly379

more challenging. Specifically, any learner will experience a mistake bound that scales linearly with380

|H|, and any proper learner will face sample complexity that also scales linearly with |H|. In the case381

of non-ball manipulations, the situation worsens. Even in the simplest setting, where the original382

feature is observed before choosing ft and the manipulated feature is observed afterward, any learner383

will encounter a linear mistake bound and sample complexity.384

Besides the question of optimal sample complexity in the setting of (⊥,∆) as mentioned in Sec 4.3,385

there are some other fundamental open questions.386

Combinatorial measure Throughout this work, our main focus is on analyzing the dependency387

on the size of the hypothesis class |H| without assuming any specific structure of H. Just as VC388

dimension provides tight characterization for PAC learnability and Littlestone dimension characterizes389

online learnability, we are curious if there exists a combinatorial measure that captures the essence390

of strategic classification in this context. In the proofs of the most lower bounds in this work, we391

consider hypothesis class to be singletons, in which both the VC dimension and Littlestone dimension392

are 1. Therefore, they cannot be candidates to characterize learnability in the strategic setting.393

Agnostic setting We primarily concentrate on the realizable setting in this work. However, investigat-394

ing the sample complexity and regret bounds in the agnostic setting would be an interesting avenue395

for future research.396

9

References397

Ahmadi, S., Beyhaghi, H., Blum, A., and Naggita, K. (2021). The strategic perceptron. In Proceedings398

of the 22nd ACM Conference on Economics and Computation, pages 6–25.399

Ahmadi, S., Beyhaghi, H., Blum, A., and Naggita, K. (2022). On classification of strategic agents400

who can both game and improve. arXiv preprint arXiv:2203.00124.401

Ahmadi, S., Blum, A., and Yang, K. (2023). Fundamental bounds on online strategic classification.402

arXiv preprint arXiv:2302.12355.403

Brückner, M. and Scheffer, T. (2011). Stackelberg games for adversarial prediction problems. In404

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data405

mining, pages 547–555.406

Chen, Y., Liu, Y., and Podimata, C. (2020). Learning strategy-aware linear classifiers. Advances in407

Neural Information Processing Systems, 33:15265–15276.408

Dalvi, N., Domingos, P., Sanghai, S., and Verma, D. (2004). Adversarial classification. In Proceedings409

of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,410

pages 99–108.411

Dong, J., Roth, A., Schutzman, Z., Waggoner, B., and Wu, Z. S. (2018). Strategic classification from412

revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and Computation,413

pages 55–70.414

GALLANT, S. I. (1986). Optimal linear discriminants. Eighth International Conference on Pattern415

Recognition, pages 849–852.416

Haghtalab, N., Immorlica, N., Lucier, B., and Wang, J. Z. (2020). Maximizing welfare with incentive-417

aware evaluation mechanisms. arXiv preprint arXiv:2011.01956.418

Haghtalab, N., Lykouris, T., Nietert, S., and Wei, A. (2022). Learning in stackelberg games with419

non-myopic agents. In Proceedings of the 23rd ACM Conference on Economics and Computation,420

pages 917–918.421

Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters, M. (2016). Strategic classification. In422

Proceedings of the 2016 ACM conference on innovations in theoretical computer science, pages423

111–122.424

Hu, L., Immorlica, N., and Vaughan, J. W. (2019). The disparate effects of strategic manipulation. In425

Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 259–268.426

Jagadeesan, M., Mendler-Dünner, C., and Hardt, M. (2021). Alternative microfoundations for427

strategic classification. In International Conference on Machine Learning, pages 4687–4697.428

PMLR.429

Kleinberg, J. and Raghavan, M. (2020). How do classifiers induce agents to invest effort strategically?430

ACM Transactions on Economics and Computation (TEAC), 8(4):1–23.431

Lechner, T. and Urner, R. (2022). Learning losses for strategic classification. In Proceedings of the432

AAAI Conference on Artificial Intelligence, volume 36, pages 7337–7344.433

Milli, S., Miller, J., Dragan, A. D., and Hardt, M. (2019). The social cost of strategic classification.434

In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 230–239.435

Montasser, O., Hanneke, S., and Srebro, N. (2019). Vc classes are adversarially robustly learnable,436

but only improperly. In Conference on Learning Theory, pages 2512–2530. PMLR.437

Rajaraman, N., Han, Y., Jiao, J., and Ramchandran, K. (2023). Beyond ucb: Statistical complexity438

and optimal algorithms for non-linear ridge bandits. arXiv preprint arXiv:2302.06025.439

Sundaram, R., Vullikanti, A., Xu, H., and Yao, F. (2021). Pac-learning for strategic classification. In440

International Conference on Machine Learning, pages 9978–9988. PMLR.441

10

Zhang, H. and Conitzer, V. (2021). Incentive-aware pac learning. In Proceedings of the AAAI442

Conference on Artificial Intelligence, volume 35, pages 5797–5804.443

Zrnic, T., Mazumdar, E., Sastry, S., and Jordan, M. (2021). Who leads and who follows in strategic444

classification? Advances in Neural Information Processing Systems, 34:15257–15269.445

11

A Additional Related Work446

There has been a lot of research on various other issues and models in strategic classification. Beyond447

sample complexity, Hu et al. (2019); Milli et al. (2019) focused on other social objectives, such as448

social burden and fairness. Recent works also explored different models of agent behavior, including449

proactive agents Zrnic et al. (2021), non-myopic agents (Haghtalab et al., 2022) and noisy agents (Ja-450

gadeesan et al., 2021). Ahmadi et al. (2023) considers two agent models of randomized learners: a451

randomized algorithm model where the agents respond to the realization, and a fractional classifier452

model where agents respond to the expectation, and our model corresponds to the randomized al-453

gorithm model. Additionally, there is also a line of research on agents interested in improving their454

qualifications instead of gaming (Kleinberg and Raghavan, 2020; Haghtalab et al., 2020; Ahmadi455

et al., 2022).456

Beyond strategic classification, there is a more general research area of learning using data from strate-457

gic sources, such as a single data generation player who manipulates the data distribution (Brückner458

and Scheffer, 2011; Dalvi et al., 2004). Adversarial perturbations can be viewed as another type of459

strategic source (Montasser et al., 2019).460

B Technical Lemmas461

B.1 Boosting expected guarantee to high probability guarantee462

Consider any (possibly randomized) PAC learning algorithm A in strategic setting, which can output463

a predictor A(S) after T steps of interaction with i.i.d. agents S ∼ DT s.t. E [Lstr(A(S))] ≤ ε,464

where the expectation is taken over both the randomness of S and the randomness of algorithm. One465

standard way in classic PAC learning of boosting the expected loss guarantee to high probability loss466

guarantee is: running A on new data S and verifying the loss of A(S) on a validation data set; if the467

validation loss is low, outputting the current A(S), and repeating this process otherwise.468

We will adopt this method to boost the confidence as well. The only difference in our strategic setting469

is that we can not re-use validation data set as we are only allowed to interact with the data through470

the interaction protocol. Our boosting scheme is described in the following.471

• For round r = 1, . . . , R,472

– Run A for T steps of interactions to obtain a predictor hr.473

– Apply hr for the following m0 rounds to obtain the empirical strategic loss on m0,474

denoted as l̂r = 1
m0

∑tr+m0

t=tr+1 ℓ
str(hr, (xt, rt, yt)), where tr + 1 is the starting time of475

these m0 rounds.476

– Break and output hr if l̂r ≤ 4ε.477

• If for all r ∈ [R], l̂r > 4ε, output an arbitrary hypothesis.478

Lemma 2. Given an algorithmA, which can output a predictorA(S) after T steps of interaction with479

i.i.d. agents S ∼ DT s.t. the expected loss satisfies E [Lstr(A(S))] ≤ ε. Let hA denote the output of480

the above boosting scheme given algorithm A as input. By setting R = log 2
δ and m0 = 3 log(4R/δ)

2ε ,481

we have Lstr(hA) ≤ 8ε with probability 1− δ. The total sample size is R(T +m0) = O(log(1δ)(T +482

log(1/δ)
ε)).483

Proof. For all r = 1, . . . , R, we have E [Lstr(hr)] ≤ ε. By Markov’s inequality, we have484

Pr(Lstr(hr) > 2ε) ≤ 1

2
.

For any fixed hr, if Lstr(hr) ≥ 8ε, we will have l̂r ≤ 4ε with probability ≤ e−m0ε; if Lstr(hr) ≤ 2ε,485

we will have l̂r ≤ 4ε with probability ≥ 1− e−2m0ε/3 by Chernoff bound.486

12

Let E denote the event of {∃r ∈ [R],Lstr(hr) ≤ 2ε} and F denote the event of {l̂r > 4ε for all487

r ∈ [R]}. When F does not hold, our boosting will output hr for some r ∈ [R].488

Pr(Lstr(hA) > 8ε)

≤Pr(E,¬F) Pr(Lstr(hA) > 8ε|E,¬F) + Pr(E,F) + Pr(¬E)

≤
R∑

r=1

Pr(hA = hr,Lstr(hr) > 8ε|E,¬F) + Pr(E,F) + Pr(¬E)

≤Re−m0ε + e−2m0ε/3 +
1

2R

≤δ ,

by setting R = log 2
δ and m0 = 3 log(4R/δ)

2ε .489

B.2 Converting mistake bound to PAC bound490

In any setting of (C,F), if there is an algorithm A that can achieve the mistake bound of B, then we491

can convert A to a conservative algorithm by not updating at correct rounds. The new algorithm can492

still achieve mistake bound of B as A still sees a legal sequence of examples. Given any conservative493

online algorithm, we can convert it to a PAC learning algorithm using the standard longest survivor494

technique (GALLANT, 1986).495

Lemma 3. In any setting of (C,F), given any conservative algorithm A with mistake bound B, let496

algorithm A′ run A and output the first ft which survives over 1
ε log(

B
δ) examples. A′ can achieve497

sample complexity of O(Bε log(Bδ)).498

Proof of Lemma 3. When the sample size m ≥ B
ε log(Bδ), the algorithm A will produce at most B499

different hypotheses and there must exist one surviving for 1
ε log(

B
δ) rounds sinceA is a conservative500

algorithm with at most B mistakes. Let h1, . . . , hB denote these hypotheses and let t1, . . . , tB denote501

the time step they are produced. Then we have502

Pr(fout = hi and Lstr(hi) > ε) = E
[
Pr(fout = hi and Lstr(hi) > ε|ti, z1:ti−1)

]
<E

[
(1− ε)

1
ε log(B

δ)
]
=

δ

B
.

By union bound, we have503

Pr(Lstr(fout) > ε) ≤
B∑
i=1

Pr
z1:T

(fout = hi and Lstr(hi) > ε) < δ.

We are done.504

B.3 Smooth the distribution505

Lemma 4. For any two data distribution D1 and D2, let D3 = (1 − p)D1 + pD2 be the506

mixture of them. For any setting of (C,F) and any algorithm, let PD be the dynamics of507

(C(x1), f1, y1, ŷ1, F (x1,∆1), . . . , C(xT), fT , yT , ŷT , F (xT ,∆T)) under the data distribution D.508

Then for any event A, we have |PD3
(A)−PD1

(A)| ≤ 2pT .509

Proof. Let B denote the event of all (xt, ut, yt)
T
t=1 being sampled from D1. Then PD3(¬B) ≤ pT .510

Then511

PD3
(A) = PD3

(A|B)PD3
(B) +PD3

(A|¬B)PD3
(¬B)

= PD1
(A)PD3

(B) +PD3
(A|¬B)PD3

(¬B)

= PD1
(A)(1−PD3

(¬B)) +PD3
(A|¬B)PD3

(¬B) .

By re-arranging terms, we have512

|PD1(A)−PD3(A)| = |PD1(A)PD3(¬B)−PD3(A|¬B)PD3(¬B)| ≤ 2pT .

513

13

C Proof of Theorem 1514

Proof. When a mistake occurs, there are two cases.515

• If ft misclassifies a true positive example (xt, rt,+1) by negative, we know that d(xt, ft) >516

rt while the target hypothesis h∗ must satisfy that d(xt, h
∗) ≤ rt. Then any h ∈ VS with517

d(xt, h) ≥ d(xt, ft) cannot be h∗ and are eliminated. Since d(xt, ft) is the median of518

{d(xt, h)|h ∈ VS}, we can eliminate half of the version space.519

• If ft misclassifies a true negative example (xt, rt,−1) by positive, we know that d(xt, ft) ≤520

rt while the target hypothesis h∗ must satisfy that d(xt, h
∗) > rt. Then any h ∈ VS with521

d(xt, h) ≤ d(xt, ft) cannot be h∗ and are eliminated. Since d(xt, ft) is the median of522

{d(xt, h)|h ∈ VS}, we can eliminate half of the version space.523

Each mistake reduces the version space by half and thus, the algorithm of Strategic Halving suffers at524

most log2(|H|) mistakes.525

D Proof of Theorem 2526

Proof. In online learning setting, an algorithm is conservative if it updates it’s current predictor527

only when making a mistake. It is straightforward to check that Strategic Halving is conservative.528

Combined with the technique of converting mistake bound to PAC bound in Lemma 3, we prove529

Theorem 2.530

E Proof of Theorem 3531

Proof. Consider the feature space X = {0, e1, . . . , en, 0.9e1, . . . , 0.9en}, where ei’s are standard532

basis vectors in Rn and metric d(x, x′) = ∥x− x′∥2 for all x, x′ ∈ X . Let the hypothesis class be a533

set of singletons over {ei|i ∈ [n]}, i.e.,H = {21{ei}− 1|i ∈ [n]}. We divide all possible hypotheses534

(not necessarily inH) into three categories:535

• The hypothesis 21∅ − 1, which predicts all negative.536

• For each x ∈ {0, 0.9e1, . . . , 0.9en}, let Fx,+ denote the class of hypotheses h predicting x537

as positive.538

• For each i ∈ [n], let Fi denote the class of hypotheses h satisfying h(x) = −1 for all539

x ∈ {0, 0.9e1, . . . , 0.9en} and h(ei) = +1. And let F∗ = ∪i∈[n]Fi denote the union of540

them.541

Note that all hypotheses over X fall into one of the three categories.542

Now we consider a set of adversaries E1, . . . , En, such that the target function in the adversarial543

environment Ei is 21{ei} − 1. We allow the learners to be randomized and thus, at round t, the544

learner draws an ft from a distribution D(ft) over hypotheses. The adversary, who only knows the545

distribution D(ft) but not the realization ft, picks an agent (xt, rt, yt) in the following way.546

• Case 1: If there exists x ∈ {0, 0.9e1, . . . , 0.9en} such that Prft∼D(ft)(ft ∈ Fx,+) ≥ c for547

some c > 0, then for all j ∈ [n], the adversary Ej picks (xt, rt, yt) = (x, 0,−1). Let Bt
1,x548

denote the event of ft ∈ Fx,+.549

– In this case, the learner will make a mistake with probability c. Since for all h ∈ H,550

h(∆(x, h, 0)) = h(x) = −1, they are all consistent with (x, 0,−1).551

• Case 2: If Prft∼D(ft)(ft = 21∅ − 1) ≥ c, then for all j ∈ [n], the adversary Ej picks552

(xt, rt, yt) = (0, 1,+1). Let Bt
2 denote the event of ft = 21∅ − 1.553

– In this case, with probability c, the learner will sample a ft = 21∅ − 1 and misclassify554

(0, 1,+1). Since for all h ∈ H, h(∆(0, h, 1)) = +1, they are all consistent with555

(0, 1,+1).556

14

• Case 3: If the above two cases do not hold, let it = argmaxi∈[n] Pr(ft(ei) = 1|ft ∈ F∗),557

xt = 0.9eit . For radius and label, different adversaries set them differently. Adversary Eit558

will set (rt, yt) = (0,−1) while other Ej for j ̸= it will set (rt, yt) = (0.1,−1). Since559

Cases 1 and 2 do not hold, we have Prft∼D(ft)(ft ∈ F∗) ≥ 1− (n+ 2)c. Let Bt
3 denote560

the event of ft ∈ F∗ and Bt
3,i denote the event of ft ∈ Fi.561

(a) With probability Pr(Bt
3,it

) ≥ 1
n Pr(Bt

3) ≥
1−(n+2)c

n , the learner samples a ft ∈562

Fit , and thus misclassifies (0.9eit , 0.1,−1) in Ej for j ̸= it but correctly classifies563

(0.9eit , 0,−1). In this case, the learner observes the same feedback in all Ej for j ̸= it564

and identifies the target function 21{eit} − 1 in Eit .565

(b) If the learner samples a ft with ft(eit) = ft(0.9eit) = −1, then the learner observes566

xt = 0.9eit , yt = −1 and ŷt = −1 in all Ej for j ∈ [n]. Therefore the learner cannot567

distinguish between adversaries in this case.568

(c) If the learner samples a ft with ft(0.9eit) = +1, then the learner observes xt = 0.9eit ,569

yt = −1 and ŷt = +1 in all Ej for j ∈ [n]. Again, since the feedback are identical in570

all Ej and the learner cannot distinguish between adversaries in this case.571

For any learning algorithm A, his predictions are identical in all of adversarial environments {Ej |j ∈572

[n]} before he makes a mistake in Case 3(a) in one environment Eit . His predictions in the following573

rounds are identical in all of adversarial environments {Ej |j ∈ [n]} \ {Eit} before he makes574

another mistake in Case 3(a). Suppose that we run A in all adversarial environment of {Ej |j ∈ [n]}575

simultaneously. Note that once we make a mistake, the mistake must occur simultaneously in at576

least n − 1 environments. Specifically, if we make a mistake in Case 1, 2 or 3(c), such a mistake577

simultaneously occur in all n environments. If we make a mistake in Case 3(a), such a mistake578

simultaneously occur in all n environments except Eit . Since we will make a mistake with probability579

at least min(c, 1−(n+2)c
n) at each round, there exists one environment in {Ej |j ∈ [n]} in which A580

will make n− 1 mistakes.581

Now we lower bound the number of mistakes dependent on T . Let t1, t2, . . . denote the time steps in582

which we makes a mistake. Let t0 = 0 for convenience. Now we prove that583

Pr(ti > ti−1 + k|ti−1) =

ti−1+k∏
τ=ti−1+1

Pr(we don’t make a mistake in round τ)

≤
ti−1+k∏

τ=ti−1+1

(1(Case 3 at round τ)(1− 1− (n+ 2)c

n
) + 1(Case 1 or 2 at round τ)(1− c))

≤(1−min(
1− (n+ 2)c

n
, c))k ≤ (1− 1

2(n+ 2)
)k ,

by setting c = 1
2(n+2) . Then by letting k = 2(n+ 2) ln(n/δ), we have

Pr(ti > ti−1 + k|ti−1) ≤ δ/n .

For any T ,584

Pr(# of mistakes < min(
T

k + 1
, n− 1))

=≤Pr(∃i ∈ [n− 1], ti − ti−1 > k)

≤
n−1∑
i=1

Pr(ti − ti−1 > k) ≤ δ .

Therefore, we have proved that for any T , with probability at least 1 − δ, we will make at least585

min(T
2(n+2) ln(n/δ)+1 , n− 1) mistakes.586

15

F Proof of Theorem 4587

Algorithm 3 MWMR (Multiplicative Weights on Mistake Rounds)
1: Initialize the version space VS = H.
2: for t=1,. . . ,T do
3: Pick one hypotheses ft from VS uniformly at random.
4: if ŷt ̸= yt and yt = + then
5: VS← VS \ {h ∈ VS|d(xt, h) ≥ d(xt, ft)}.
6: else if ŷt ̸= yt and yt = − then
7: VS← VS \ {h ∈ VS|d(xt, h) ≤ d(xt, ft)}.
8: end if
9: end for

Proof. First, when the algorithm makes a mistake at round t, he can at least eliminate ft. Therefore,588

the total number of mistakes will be upper bounded by |H| − 1.589

Let pt denote the fraction of hypotheses misclassifying xt. We say a hypothesis h is inconsistent590

with (xt, ft, yt, ŷt) iff (d(xt, h) ≥ d(xt, ft) ∧ ŷt = − ∧ yt = +) or (d(xt, h) ≤ d(xt, ft) ∧ ŷt =591

+ ∧ yt = −). Then we define the following events.592

• Et denotes the event that MWMR makes a mistake at round t. We have Pr(Et) = pt.593

• Bt denotes the event that at least pt

2 fraction of hypotheses are inconsistent with594

(xt, ft, yt, ŷt). We have Pr(Bt|Et) ≥ 1
2 .595

Let n = |H| denote the cardinality of hypothesis class and nt denote the number of hypotheses in596

VS after round t. Then we have597

1 ≤ nT = n ·
T∏

t=1

(1− 1(Et)1(Bt)
pt
2
) .

By taking logarithm of both sides, we have598

0 ≤ ln(nT) = ln(n) +

T∑
t=1

ln(1− 1(Et)1(Bt)
pt
2
) ≤ ln(n)−

T∑
t=1

1(Et)1(Bt)
pt
2
,

where the last inequality adopts ln(1− x) ≤ −x for x ∈ [0, 1). Then by taking expectation of both599

sides, we have600

0 ≤ ln(n)−
T∑

t=1

Pr(Et ∧Bt)
pt
2
.

Since Pr(Et) = pt and Pr(Bt|Et) ≥ 1
2 , then we have601

1

4

T∑
t=1

p2t ≤ ln(n) .

Then we have the expected number of mistakes E [MMWMR(T)] as602

E [MMWMR(T)] =

T∑
t=1

pt ≤

√√√√ T∑
t=1

p2t ·
√
T ≤

√
4 ln(n)T ,

where the first inequality applies Cauchy-Schwarz inequality.603

16

G Proof of Theorem 5604

Proof. Construction of Q,H and a set of realizable distributions605

• Let feature space X = {0, e1, . . . , en} ∪ X0, where X0 = {σ(0,1,...,n−1)
z |σ ∈ Sn} with606

z =

√
12+...+(n−1)2

α for some small α = 0.1. Here Sn is the set of all permutations607

over n elements. So X0 is the set of points whose coordinates are a permutation of608

{0, 1/z, . . . , (n− 1)/z} and all points in X0 have the ℓ2 norm equal to α. Define a metric609

d by letting d(x1, x2) = ∥x1 − x2∥2 for all x1, x2 ∈ X . Then for any x ∈ X0 and610

i ∈ [n], d(x, ei) = ∥x− ei∥2 =
√
(xi − 1)2 +

∑
j ̸=i x

2
j =

√
1 +

∑n
j=1 x

2
j − 2xi =611

√
1 + α2 − 2xi. Note that we consider space (X , d) rather than (Rn, ∥·∥2).612

• Let the hypothesis class be a set of singletons over {ei|i ∈ [n]}, i.e.,H = {21{ei} − 1|i ∈613

[n]}.614

• We now define a collection of distributions {Di|i ∈ [n]} in whichDi is realized by 21{ei}−1.615

For any i ∈ [n], Di puts probability mass 1 − 3nε on (0, 0,−1). For the remaining 3nε616

probability mass,Di picks x uniformly at random from X0 and label it as positive. If xi = 0,617

set radius r(x) = ru :=
√
1 + α2; otherwise, set radius r(x) = rl :=

√
1 + α2 − 2 · 1z).618

Hence, X0 are all labeled as positive. For j ̸= i, hj = 21{ej} − 1 labels {x ∈ X0|xj = 0}619

negative since r(x) = rl and d(x, hj) = ru > r(x). Therefore, Lstr(hj) =
1
n · 3nε = 3ε.620

To output fout ∈ H, we must identify the true target function.621

Information gain from different choices of ft Let h∗ = 21{ei∗} − 1 denote the target function.622

Since (0, 0,−1) is realized by all hypotheses, we can only gain information about the target function623

when xt ∈ X0. For any xt ∈ X0, if d(xt, ft) ≤ rl or d(xt, ft) > ru, we cannot learn anything about624

the target function. In particular, if d(xt, ft) ≤ rl, the learner will observe xt ∼ Unif(X0), yt = +1,625

ŷt = +1 in all {Di|i ∈ [n]}. If d(xt, ft) > ru, the learner will observe xt ∼ Unif(X0), yt = +1,626

ŷt = −1 in all {Di|i ∈ [n]}. Therefore, we cannot obtain any information about the target function.627

Now for any xt ∈ X0, with the it-th coordinate being 0, we enumerate the distance between x and x′628

for all x′ ∈ X .629

• For all x′ ∈ X0, d(x, x′) ≤ ∥x∥+ ∥x′∥ ≤ 2α < rl;630

• For all j ̸= it, d(x, ej) =
√
1 + α2 − 2xj ≤ rl;631

• d(x, eit) = ru;632

• d(x,0) = α < rl.633

Only ft = 21{eit} − 1 satisfies that rl < d(xt, ft) ≤ ru and thus, we can only obtain information634

when ft = 21{eit} − 1. And the only information we learn is whether it = i∗ because if it ̸= i∗, no635

matter which i∗ is, our observation is identical. If it ̸= i∗, we can eliminate 21{eit} − 1.636

Sample size analysis For any algorithm A, his predictions are identical in all environments {Di|i ∈637

[n]} before a round t in which ft = 21{eit} − 1. Then either he learns it in Dit or he eliminates638

21{eit} − 1 and continues to perform the same in the other environments {Di|i ̸= it}. Suppose639

that we run A in all stochastic environments {Di|i ∈ [n]} simultaneously. When we identify it in640

environment Dit , we terminate A in Dit . Consider a good algorithm A which can identify i in Di641

with probability 7
8 after T rounds of interaction for each i ∈ [n], that is,642

Pr
Di,A

(iout ̸= i) ≤ 1

8
,∀i ∈ [n] . (3)

Therefore, we have643 ∑
i∈[n]

Pr
Di,A

(iout ̸= i) ≤ n

8
. (4)

17

Let nT denote the number of environments that have been terminated by the end of round T . Let644

Bt denote the event of xt being in X0 and Ct denote the event of ft = 21{eit} − 1. Then we have645

Pr(Bt) = 3nε and Pr(Ct|Bt) =
1
n , and thus Pr(Bt ∧ Ct) = 3nε · 1n . Since at each round, we can646

eliminate one environment only when Bt ∧ Ct is true, then we have647

E [nT] ≤ E

[
T∑

t=1

1(Bt ∧ Ct)

]
= T · 3nε · 1

n
= 3εT .

Therefore, by setting T =
⌊n

2 ⌋−1

6ε and Markov’s inequality, we have648

Pr(nT ≥
⌊n
2

⌋
− 1) ≤ 3εT⌊

n
2

⌋
− 1

=
1

2
.

When there are
⌈
n
2

⌉
+ 1 environments remaining, the algorithm has to pick one iout, which fails in at649

least
⌈
n
2

⌉
of the environments. Then we have650 ∑

i∈[n]

Pr
Di,A

(iout ̸= i) ≥
⌈n
2

⌉
Pr(nT ≤

⌊n
2

⌋
− 1) ≥ n

4
,

which conflicts with Eq (4). Therefore, for any algorithm A, to achieve Eq (3), it requires T ≥651

⌊n
2 ⌋−1

6ε .652

H Proof of Theorem 6653

Given Lemma 1, we can upper bound the expected strategic loss, then we can boost the confidence of654

the algorithm through the scheme in Section B.1. Theorem 6 follows by combining Lemma 1 and655

Lemma 2. Now we only need to prove Lemma 1.656

Proof of Lemma 1. For any set of hypotheses H , for every z = (x, r, y), we define657

κp(H, z) :=

{
|{h ∈ H|h(∆(x, h, r)) = −}| if y = + ,

0 otherwise.

So κp(H, z) is the number of hypotheses mislabeling z for positive z’s and 0 for negative z’s.658

Similarly, we define κn as follows,659

κn(H, z) :=

{
|{h ∈ H|h(∆(x, h, r)) = +}| if y = − ,

0 otherwise.

So κn(H, z) is the number of hypotheses mislabeling z for negative z’s and 0 for positive z’s.660

In the following, we divide the proof into two parts. First, recall that in Algorithm 2, the output661

is constructed by randomly sampling two hypotheses with replacement and taking the union of662

them. We represent the loss of such a random predictor using κp(H, z) and κn(H, z) defined above.663

Then we show that whenever the algorithm makes a mistake, with some probability, we can reduce664
κp(VSt−1,zt)

2 or κn(VSt−1,zt)
2 hypotheses and utilize this to provide a guarantee on the loss of the final665

output.666

Upper bounds on the strategic loss For any hypothesis h, let fpr(h) and fnr(h) denote the false667

positive rate and false negative rate of h respectively. Let p+ denote the probability of drawing668

a positive sample from D, i.e., Pr(x,r,y)∼D(y = +) and p− denote the probability of drawing a669

negative sample from D. Let D+ and D− denote the data distribution conditional on that the label670

is positive and that the label is negative respectively. Given any set of hypotheses H , we define a671

random predictor R2(H) = h1 ∨ h2 with h1, h2 randomly picked from H with replacement. For a672

true positive z, R2(H) will misclassify it with probability κp(H,z)2

|H|2 . Then we can find that the false673

negative rate of R2(H) is674

fnr(R2(H)) = Ez=(x,r,+)∼D+
[Pr(R2(H)(x) = −)] = Ez=(x,r,+)∼D+

[
κp(H, z)2

|H|2

]
.

18

Similarly, for a true negative z, R2(H) will misclassify it with probability 1 − (1 − κn(H,z)
|H|)2 ≤675

2κn(H,z)
|H| . Then the false positive rate of R2(H) is676

fpr(R2(H)) = Ez=(x,r,−)∼D− [Pr(R2(H)(x) = +)] ≤ Ez=(x,r,−)∼D+

[
2κn(H, z)

|H|

]
.

Hence the loss of R2(H) is677

Lstr(R2(H)) ≤ p+Ez∼D+

[
κp(H, z)2

|H|2

]
+ p−Ez∼D+

[
2κn(H, z)

|H|

]

= Ez∼D

[
κp(H, z)2

|H|2
+ 2

κn(H, z)

|H|

]
, (5)

where the last equality holds since κp(H, z) = 0 for true negatives and κn(H, z) = 0 for true678

positives.679

Loss analysis In each round, the data zt = (xt, rt, yt) is sampled fromD. When the label yt is posi-680

tive, if the drawn ft satisfying that 1) ft(∆(xt, ft, rt)) = − and 2) d(xt, ft) ≤ median({d(xt, h)|h ∈681

VSt−1, h(∆(xt, h, rt)) = −}), then we are able to remove κp(VSt−1,zt)
2 hypotheses from the version682

space. Let Ep,t denote the event of ft satisfying the conditions 1) and 2). With probability 1
⌊log2(nt)⌋ ,683

we sample kt = 1. Then we sample an ft ∼ Unif(VSt−1). With probability κp(VSt−1,zt)
2nt

, the684

sampled ft satisfies the two conditions. So we have685

Pr(Ep,t|zt,VSt−1) ≥
1

log2(nt)

κp(VSt−1, zt)

2nt
. (6)

The case of yt being negative is similar to the positive case. Let En,t denote the event of ft satisfying686

that 1) ft(∆(xt, ft, rt)) = + and 2) d(xt, ft) ≥ median({d(xt, h)|h ∈ VSt−1, h(∆(xt, h, rt)) =687

+}). If κn(VSt−1, zt) ≥ nt

2 , then with probability 1
⌊log2(nt)⌋ , we sample kt = 1. Then with688

probability greater than 1
4 we will sample an ft satisfying that 1) ft(∆(xt, ft, rt)) = + and 2)689

d(xt, ft) ≥ median({d(xt, h)|h ∈ VSt−1, h(∆(xt, h, rt)) = +}). If κn(VSt−1, zt) < nt

2 , then690

with probability 1
⌊log2(nt)⌋ , we sampled a kt satisfying691

nt

4κn(VSt−1, zt)
< kt ≤

nt

2κn(VSt−1, zt)
.

Then we randomly sample kt hypotheses and the expected number of sampled hypotheses which692

mislabel zt is kt · κn(VSt−1,zt)
nt

∈ (14 ,
1
2]. Let gt (given the above fixed kt) denote the number of693

sampled hypotheses which mislabel xt and we have E [gt] ∈ (14 ,
1
2]. When gt > 0, ft will misclassify694

zt by positive. We have695

Pr(gt = 0) = (1− κn(VSt−1, zt)

nt
)kt < (1− κn(VSt−1, zt)

nt
)

nt
4κn(VSt−1,zt) ≤ e−1/4 ≤ 0.78

and by Markov’s inequality, we have696

Pr(gt ≥ 3) ≤ E [gt]

3
≤ 1

6
≤ 0.17 .

Thus Pr(gt ∈ {1, 2}) ≥ 0.05. Conditional on gt is either 1 or 2, with probability ≥ 1
4 , all of these697

gt hypotheses h′ satisfies d(xt, h
′) ≥ median({d(xt, h)|h ∈ VSt−1, h(∆(xt, h, rt)) = +}), which698

implies that d(xt, ft) ≥ median({d(xt, h)|h ∈ VSt−1, h(∆(xt, h, rt)) = +}). Therefore, we have699

Pr(En,t|zt, ,VSt−1) ≥
1

80 log2(nt)
. (7)

Let vt denote the fraction of hypotheses we eliminated at round t, i.e., vt = 1− nt+1

nt
. Then we have700

vt ≥ 1(Ep,t)
κp(VSt−1, zt)

2nt
+ 1(En,t)

κn(VSt−1, zt)

2nt
. (8)

19

Since nt+1 = nt(1− vt), we have701

1 ≤ nT+1 = n

T∏
t=1

(1− vt) .

By taking logarithm of both sides, we have702

0 ≤ lnnT+1 = lnn+

T∑
t=1

ln(1− vt) ≤ lnn−
T∑

t=1

vt ,

where we use ln(1− x) ≤ −x for x ∈ [0, 1) in the last inequality. By re-arranging terms, we have703

T∑
t=1

vt ≤ lnn .

Combined with Eq (8), we have704

T∑
t=1

1(Ep,t)
κp(VSt−1, zt)

2nt
+ 1(En,t)

κn(VSt−1, zt)

2nt
≤ lnn .

By taking expectation w.r.t. the randomness of f1:T and dataset S = z1:T on both sides, we have705

T∑
t=1

Ef1:T ,z1:T

[
1(Ep,t)

κp(VSt−1, zt)

2nt
+ 1(En,t)

κn(VSt−1, zt)

2nt

]
≤ lnn .

Since the t-th term does not depend on ft+1:T , zt+1:T and VSt−1 is determined by z1:t−1 and f1:t−1,706

the t-th term becomes707

Ef1:t,z1:t

[
1(Ep,t)

κp(VSt−1, zt)

2nt
+ 1(En,t)

κn(VSt−1, zt)

2nt

]
=Ef1:t−1,z1:t

[
Eft

[
1(Ep,t)

κp(VSt−1, zt)

2nt
+ 1(En,t)

κn(VSt−1, zt)

2nt
|f1:t−1, z1:t

]]
=Ef1:t−1,z1:t

[
Eft [1(Ep,t)|f1:t−1, z1:t]

κp(VSt−1, zt)

2nt
+ Eft [1(En,t)|f1:t−1, z1:t]

κn(VSt−1, zt)

2nt

]
(9)

≥Ef1:t−1,z1:t

[
1

log2(nt)

κ2
p(VSt−1, zt)

4n2
t

+
1

80 log2(nt)

κn(VSt−1, zt)

2nt

]
, (10)

where Eq (9) holds due to that VSt−1 is determined by f1:t−1, z1:t−1 and does not depend on ft708

and Eq (10) holds since Prft(Ep,t|f1:t−1, z1:t) = Prft(Ep,t|VSt−1, zt) ≥ 1
log2(nt)

κp(VSt−1,zt)
2nt

by709

Eq (6) and Prft(En,t|f1:t−1, z1:t) = Prft(En,t|VSt−1, zt) ≥ 1
80 log2(nt)

by Eq (7). Thus, we have710

T∑
t=1

Ef1:t−1,z1:t

[
1

log2(nt)

κ2
p(VSt−1, zt)

4n2
t

+
1

80 log2(nt)

κn(VSt−1, zt)

2nt

]
≤ lnn .

Since zt ∼ D and zt is independent of z1:t−1 and f1:t−1, thus, we have the t-th term on the LHS711

being712

Ef1:t−1,z1:t

[
1

log2(nt)

κ2
p(VSt−1, zt)

4n2
t

+
1

80 log2(nt)

κn(VSt−1, zt)

2nt

]

=Ef1:t−1,z1:t−1

[
Ezt∼D

[
1

log2(nt)

κ2
p(VSt−1, zt)

4n2
t

+
1

80 log2(nt)

κn(VSt−1, zt)

2nt

]]

≥ 1

320 log2(n)
Ef1:t−1,z1:t−1

[
Ez∼D

[
κ2
p(VSt−1, z)

n2
t

+
2κn(VSt−1, z)

nt

]]

≥ 1

320 log2(n)
Ef1:t−1,z1:t−1

[
Lstr(R2(VSt−1))

]
,

20

where the last inequality adopts Eq (5). By summing them up and re-arranging terms, we have713

Ef1:T ,z1:T

[
1

T

T∑
t=1

Lstr(R2(VSt−1))

]
=

1

T

T∑
t=1

Ef1:t−1,z1:t−1

[
Lstr(R2(VSt−1))

]
≤ 320 log2(n) ln(n)

T
.

For the output of Algorithm 2, which randomly picks τ from [T], randomly samples h1, h2 from714

VSτ−1 with replacement and outputs h1 ∨ h2, the expected loss is715

E
[
Lstr(A(S))

]
=ES,f1:T

[
1

T

T∑
t=1

Eh1,h2∼Unif(VSt−1)

[
Lstr(h1 ∨ h2)

]]

=ES,f1:T

[
1

T

T∑
t=1

Lstr(R2(VSt−1))

]

≤320 log2(n) ln(n)

T
≤ ε ,

when T ≥ 320 log2(n) ln(n)
ε .716

Post proof discussion of Lemma 1717

• Upon first inspection, readers might perceive a resemblance between the proof of the loss718

analysis section and the standard proof of converting regret bound to error bound.This719

standard proof converts a regret guarantee on f1:T to an error guarantee of 1
T

∑T
t=1 ft.720

However, in this proof, the predictor employed in each round is ft, while the output is an721

average over R2(VSt−1) for all t ∈ [T]. Our algorithm does not provide a regret guarantee722

on f1:T .723

• Please note that our analysis exhibits asymmetry regarding losses on true positives and true724

negatives. Specifically, the probability of identifying and reducing half of the misclassifying725

hypotheses on true positives, denoted as Pr(Ep,t|zt,VSt−1) (Eq (6)), is lower than the726

corresponding probability for true negatives, Pr(En,t|zt,VSt−1) (Eq (7)). This discrepancy727

arises due to the different levels of difficulty in detecting misclassifying hypotheses. For728

example, if there is exactly one hypothesis h misclassifying a true positive zt = (xt, rt, yt),729

it is very hard to detect this h. We must select an ft satisfying that d(xt, ft) > d(xt, h
′) for730

all h′ ∈ H \ {h} (hence ft will make a mistake), and that d(xt, ft) ≤ d(xt, h) (so that we731

will know h misclassifies zt). Algorithm 2 controls the distance d(xt, ft) through kt, which732

is the number of hypotheses in the union. In this case, we can only detect h when kt = 1733

and ft = h, which occurs with probability 1
nt log(nt)

.734

However, if there is exactly one hypothesis h misclassifying a true negative zt = (xt, rt, yt),735

we have that d(xt, h) = minh′∈H d(xt, h
′). Then by setting ft = ∨h∈Hh, which will736

makes a mistake and tells us h is a misclassifying hypothesis. Our algorithm will pick such737

an ft with probability 1
log(nt)

.738

I Proof of Theorem 7739

Proof. We will prove Theorem 7 by constructing an instance of Q andH and showing that for any740

conservative learning algorithm, there exists a realizable data distribution s.t. achieving ε loss requires741

at least Ω̃(|H|
ε) samples.742

Construction of Q,H and a set of realizable distributions743

• Let the input metric space (X , d) be constructed in the following way. Consider the
feature space X = {e1, . . . , en} ∪ X0, where X0 = {σ(0,1,...,n−1)

z |σ ∈ Sn} with z =√
12+...+(n−1)2

α for some small α = 0.1. Here Sn is the set of all permutations over n
elements. So X0 is the set of points whose coordinates are a permutation of {0, 1/z, . . . , (n−
1)/z} and all points in X0 have the ℓ2 norm equal to α. We define the metric d by restricting

21

ℓ2 distance to X , i.e., d(x1, x2) = ∥x1 − x2∥2 for all x1, x2 ∈ X . Then we have that for
any x ∈ X0 and i ∈ [n], the distance between x and ei is

d(x, ei) = ∥x− ei∥2 =

√
(xi − 1)2 +

∑
j ̸=i

x2
j =

√√√√1 +

n∑
j=1

x2
j − 2xi =

√
1 + α2 − 2xi ,

which is greater than
√
1 + α2 − 2α > 0.8 > 2α. For any two points x, x′ ∈ X0,744

d(x, x′) ≤ 2α by triangle inequality.745

• Let the hypothesis class be a set of singletons over {ei|i ∈ [n]}, i.e.,H = {21{ei} − 1|i ∈746

[n]}.747

• We now define a collection of distributions {Di|i ∈ [n]} in whichDi is realized by 21{ei}−1.748

For any i ∈ [n], we define Di in the following way. Let the marginal distribution DX749

over X be uniform over X0. For any x, the label y is + with probability 1 − 6ε and750

− with probability 6ε, i.e., D(y|x) = Rad(1 − 6ε). Note that the marginal distribution751

DX×Y = Unif(X0) × Rad(1 − 6ε) is identical for any distribution in {Di|i ∈ [n]} and752

does not depend on i.753

If the label is positive y = +, then let the radius r = 2. If the label is negative y = −, then let754

r =
√
1 + α2 − 2(xi +

1
z), which guarantees that x can be manipulated to ej iff d(x, ej) <755

d(x, ei) for all j ∈ [n]. Since xi ≤ α and 1
z ≤ α, we have

√
1 + α2 − 2(xi +

1
z) ≥756

√
1− 4α > 2α. Therefore, for both positive and negative examples, we have radius r757

strictly greater than 2α in both cases.758

Randomization and improperness of the output fout do not help Note that algorithms are759

allowed to output a randomized fout and to output fout /∈ H. We will show that randomization and760

improperness of fout don’t make the problem easier. That is, supposing that the data distribution761

is Di∗ for some i∗ ∈ [n], finding a (possibly randomized and improper) fout is not easier than762

identifying i∗. Since our feature space X is finite, we can enumerate all hypotheses not equal to763

21{ei∗} − 1 and calculate their strategic population loss as follows.764

• 21∅ − 1 predicts all negative and thus Lstr(21∅ − 1) = 1− 6ε;765

• For any a ⊂ X s.t. a ∩X0 ̸= ∅, 21a − 1 will predict any point drawn from Di∗ as positive766

(since all points have radius greater than 2α and the distance between any two points in X0767

is smaller than 2α) and thus Lstr(21a − 1) = 6ε;768

• For any a ⊂ {e1, . . . , en} satisfying that ∃i ̸= i∗, ei ∈ a, we have Lstr(21a−1) ≥ 3ε. This769

is due to that when y = −, x is chosen from Unif(X0) and the probability of d(x, ei) <770

d(x, ei∗) is 1
2 . When d(x, ei) < d(x, ei∗), 21a − 1 will predict x as positive.771

Under distribution Di∗ , if we are able to find a (possibly randomized) fout with strategic loss of772

Lstr(fout) ≤ ε, then we have Lstr(fout) = Eh∼fout [Lstr(h)] ≥ Prh∼fout(h ̸= 21{ei∗} − 1) · 3ε.773

Thus, Prh∼fout(h = 21{ei∗} − 1) ≥ 2
3 . Hence, if we are able to find a (possibly randomized) fout774

with ε error, then we are able to identify i∗ by checking which realization of fout has probability775

greater than 2
3 . In the following, we will focus on the sample complexity to identify i∗. Let iout776

denote the algorithm’s answer to question “what is i∗?”.777

Conservative algorithms When running a conservative algorithm, the rule of choosing ft at round778

t and choosing the final output fout does not depend on the correct rounds, i.e. {τ ∈ [T]|ŷτ = yτ}.779

Let’s define780

∆′
t =

{
∆t if ŷt ̸= yt
⊥ if ŷt = yt ,

(11)

where ⊥ is just a symbol representing “no information”. Then for any conservative algorithm,781

the selected predictor ft is determined by (fτ , ŷτ , yτ ,∆
′
τ) for τ < t and the final output fout is782

22

determined by (ft, ŷt, yt,∆
′
t)

T
t=1. From now on, we consider ∆′

t as the feedback in the learning783

process of a conservative algorithm since it make no difference from running the same algorithm with784

feedback ∆t.785

Smooth the data distribution For technical reasons (appearing later in the analysis), we don’t want786

to analyze distribution {Di|i ∈ [n]} directly as the probability of ∆t = ei is 0 when ft(ei) = +1787

under distribution Di. Instead, we consider the mixture of Di and another distribution D′′
i , which788

is identical to Di except that r(x) = d(x, ei) when y = −. More specifically, let D′
i = (1 −789

p)Di + pD′′
i with some extremely small p, where D′′

i ’s marginal distribution over X × Y is still790

Unif(X0) × Rad(1 − 6ε); the radius is r = 2 when y = +, ; and the radius is r = d(x, ei) when791

y = −. For any data distribution D, let PD be the dynamics of (f1, y1, ŷ1,∆′
1, . . . , fT , yT , ŷT ,∆

′
T)792

under D. According to Lemma 4, by setting p = ε
16n2 , when T ≤ n

ε , with high probability we never793

sample from D′′
i and have that for any i, j ∈ [n]794 ∣∣PDi

(iout = j)−PD′
i
(iout = j)

∣∣ ≤ 1

8
. (12)

From now on, we only consider distribution D′
i instead of Di. The readers might have the question795

that why not using D′
i for construction directly. This is because D′

i does not satisfy realizability and796

no hypothesis has zero loss under D′
i.797

Information gain from different choices of ft In each round of interaction, the learner picks a798

predictor ft, which can be out ofH. Here we enumerate all choices of ft.799

• ft(·) = 21∅ − 1 predicts all points in X by negative. No matter what i∗ is, we will observe800

(∆t = xt, yt) ∼ Unif(X0)×Rad(1− 6ε) and ŷt = −. They are identically distributed for801

all i∗ ∈ [n], and thus, ∆′
t is also identically distributed. We cannot tell any information of i∗802

from this round.803

• ft = 21at
− 1 for some at ⊂ X s.t. a∩X0 ̸= ∅. Then ∆t = ∆(xt, ft, rt) = ∆(xt, ft, 2α)804

since rt > 2α and d(xt, ft) ≤ 2α, ŷt = +, yt ∼ Rad(1− 6ε). None of these depends on805

i∗ and again, the distribution of (ŷt, yt,∆′
t) is identical for all i∗ and we cannot tell any806

information of i∗ from this round.807

• ft = 21at
− 1 for some non-empty at ⊂ {e1, . . . , en}. For rounds with yt = +, we have808

ŷt = + and ∆t = ∆(xt, ft, 2), which still not depend on i∗. Thus we cannot learn any809

information about i∗. But we can learn when yt = −. For rounds with yt = −, if ∆t ∈ at,810

then we could observe ŷt = + and ∆′
t = ∆t, which at least tells that 21{∆t} − 1 is not the811

target function (with high probability); if ∆t /∈ at, then ŷt = − and we observe ∆′
t =⊥.812

Therefore, we only need to focus on the rounds with ft = 21at
− 1 for some non-empty at ⊂813

{e1, . . . , en} and yt = −. It is worth noting that drawing an example x from X0 uniformly, it814

is equivalent to uniformly drawing a permutation of H such that the distances between x and h815

over all h ∈ H are permuted according to it. Then ∆t = ej iff ej ∈ at, d(x, ej) ≤ d(x, ei∗) and816

d(x, ej) ≤ d(x, el) for all el ∈ at. Let kt = |at| denote the cardinality of at. In such rounds, under817

distribution D′
i∗ , the distribution of ∆′

t are described as follows.818

1. The case of ei∗ ∈ at: For all j ∈ at \ {i∗}, with probability 1
kt

, d(xt, ej) =819

minel∈at
d(xt, el) and thus, ∆′

t = ∆t = ej and ŷt = + (mistake round). With prob-820

ability 1
kt

, we have d(xt, ei∗) = minel∈at d(xt, el). If the example is drawn from Di∗ , we821

have ∆t = xt and yt = − (correct round), thus ∆′
t =⊥. If the example is drawn from D′′

i∗ ,822

we have we have ∆′
t = ∆t = ei∗ and yt = + (mistake round). Therefore, according to the823

definition of ∆′
t (Eq (11)), we have824

∆′
t =


ej w.p. 1

kt
for ej ∈ at, j ̸= i∗

ei∗ w.p. 1
kt
p

⊥ w.p. 1
kt
(1− p) .

We denote this distribution by P∈(at, i
∗).825

23

2. The case of ei∗ /∈ at: For all j ∈ at, with probability 1
kt+1 , then d(xt, ej) =826

minel∈at∪{ei∗} d(xt, el) and thus, ∆t = ej and ŷt = + (mistake round). With proba-827

bility 1
kt+1 , we have d(x, ei∗) < minel∈at

d(xt, el) and thus, ∆t = xt, ŷt = − (correct828

round), and ∆′
t =⊥. Therefore, the distribution of ∆′

t is829

∆′
t =

{
ej w.p. 1

kt+1 for ej ∈ at
⊥ w.p. 1

kt+1 .

We denote this distribution by P/∈(at).830

To measure the information obtained from ∆′
t, we will utilize the KL divergence of the distribution831

of ∆′
t under the data distribution Di∗ from that under a benchmark distribution. Let D = 1

n

∑
i∈nD′

i832

denote the average distribution. The process of sampling from D is equivalent to sampling i∗833

uniformly at random from [n] first and drawing a sample from Di∗ . Then under D, for any ej ∈ at,834

we have835

Pr(∆′
t = ej) =Pr(i∗ = j) Pr(∆′

t = ej |i∗ = j) + Pr(i∗ ∈ at \ {j}) Pr(∆′
t = ej |i∗ ∈ at \ {j})

+ Pr(i∗ /∈ at) Pr(∆
′
t = ej |i∗ /∈ at)

=
1

n
· p
kt

+
kt − 1

n
· 1
kt

+
n− kt

n
· 1

kt + 1
=

nkt − 1 + p(kt + 1)

nkt(kt + 1)
,

and836

Pr(∆′
t =⊥) = Pr(i∗ ∈ at) Pr(∆

′
t =⊥ |i∗ ∈ at) + Pr(i∗ /∈ at) Pr(∆

′
t =⊥ |i∗ /∈ at)

=
kt
n
· 1− p

kt
+

n− kt
n
· 1

kt + 1
=

n+ 1− p(kt + 1)

n(kt + 1)
.

Thus, the distribution of ∆′
t under D is837

∆′
t =

{
ej w.p. nkt−1+p(kt+1)

nkt(kt+1) for ej ∈ at

⊥ w.p. n+1−p(kt+1)
n(kt+1) .

We denote this distribution by P (at). Next we will compute the KL divergences of P∈(at, i
∗) and838

P/∈(at) from P (at). We will use the inequality log(1+x) ≤ x for x ≥ 0 in the following calculation.839

For any i∗ s.t. ei∗ ∈ at, we have840

DKL(P (at)∥P∈(at, i
∗))

=(kt − 1)
nkt − 1 + p(kt + 1)

nkt(kt + 1)
log(

nkt − 1 + p(kt + 1)

nkt(kt + 1)
kt)

+
nkt − 1 + p(kt + 1)

nkt(kt + 1)
log(

nkt − 1 + p(kt + 1)

nkt(kt + 1)
· kt
p
)

+
n+ 1− p(kt + 1)

n(kt + 1)
log(

n+ 1− p(kt + 1)

n(kt + 1)
· kt
1− p

)

≤0 + 1

kt + 1
log(

1

p
) +

2p

kt + 1
=

1

kt + 1
log(

1

p
) +

2p

kt + 1
, (13)

and841

DKL(P (at)∥P/∈(at))

=kt
nkt − 1 + p(kt + 1)

nkt(kt + 1)
log(

nkt − 1 + p(kt + 1)

nkt(kt + 1)
(kt + 1))

+
n+ 1− p(kt + 1)

n(kt + 1)
log(

n+ 1− p(kt + 1)

n(kt + 1)
(kt + 1))

≤0 + n+ 1

n2(kt + 1)
=

n+ 1

n2(kt + 1)
. (14)

24

Lower bound of the information We utilize the information theoretical framework of proving842

lower bounds for linear bandits (Theorem 11 by Rajaraman et al. (2023)) here. For notation simplicity,843

for all i ∈ [n], let Pi denote the dynamics of (f1,∆′
1, y1, ŷ1, . . . , fT ,∆

′
T , yT , ŷT) under D′

i and P844

denote the dynamics under D. Let Bt denote the event of {ft = 21at
− 1 for some non-empty at ⊂845

{e1, . . . , en}}. As discussed before, for any at, conditional on ¬Bt or yt = +1, (∆′
t, yt, ŷt) are846

identical in all {D′
i|i ∈ [n]}, and therefore, also identical in D. We can only obtain information at847

rounds when Bt ∧ (yt = −1) occurs. In such rounds, we know that ft is fully determined by history848

(possibly with external randomness , which does not depend on data distribution), yt = −1 and ŷt is849

fully determined by ∆′
t (ŷt = +1 iff. ∆′

t ∈ at).850

Therefore, conditional the history Ht−1 = (f1,∆
′
1, y1, ŷ1, . . . , ft−1,∆

′
t−1, yt−1, ŷt−1) before time851

t, we have852

DKL(P(ft,∆
′
t, yt, ŷt|Ht−1)∥Pi(ft,∆

′
t, yt, ŷt|Ht−1))

=P(Bt ∧ (yt = −1))DKL(P(∆′
t|Ht−1, Bt ∧ (yt = −1))∥Pi(∆

′
t|Ht−1, Bt ∧ (yt = −1)))

=6εP(Bt)DKL(P(∆′
t|Ht−1, Bt ∧ (yt = −1))∥Pi(∆

′
t|Ht−1, Bt ∧ (yt = −1))) , (15)

where the last equality holds due to that yt ∼ Rad(1− 6ε) and does not depend on Bt.853

For any algorithm that can successfully identify i under the data distribution Di with probability 3
4854

for all i ∈ [n], then PDi
(iout = i) ≥ 3

4 and PDj
(iout = i) ≤ 1

4 for all j ̸= i. Recall that Di and D′
i855

are very close when the mixture parameter p is small. Combining with Eq (12), we have856

|Pi(iout = i)−Pj(iout = i)|
≥
∣∣PDi

(iout = i)−PDj
(iout = i)

∣∣− |PDi
(iout = i)−Pi(iout = i)| −

∣∣PDj
(iout = i)−Pj(iout = i)

∣∣
≥1

2
− 1

4
=

1

4
.

Then we have the total variation distance between Pi and Pj857

TV(Pi,Pj) ≥ |Pi(iout = i)−Pj(iout = i)| ≥ 1

4
. (16)

Then we have858

Ei∼Unif([n])

[
TV2(Pi,P(i+1) mod n)

]
≤ 4Ei∼Unif([n])

[
TV2(Pi,P)

]
≤2Ei

[
DKL(P∥Pi)

]
(Pinsker’s ineq)

=2Ei

[
T∑

t=1

DKL(P(ft,∆
′
t, yt, ŷt|Ht−1)∥Pi(ft,∆

′
t, yt, ŷt|Ht−1))

]
(Chain rule)

=12εEi

[
T∑

t=1

P(Bt)DKL(P(∆′
t|Ht−1, Bt ∧ (yt = −1))∥Pi(∆

′
t|Ht−1, Bt ∧ (yt = −1)))

]
(Apply Eq (15))

=
12ε

n

T∑
t=1

P(Bt)

n∑
i=1

DKL(P(∆′
t|Ht−1, Bt ∧ (yt = −1))∥Pi(∆

′
t|Ht−1, Bt ∧ (yt = −1)))

=
12ε

n
Ef1:T∼P

 T∑
t=1

1(Bt)

∑
i:i∈at

DKL(P (at)∥P∈(at, i)) +
∑
i:i/∈at

DKL(P (at)∥P/∈(at))


≤12ε

n

T∑
t=1

Ef1:T∼P

 ∑
i:i∈at

(
1

kt + 1
log(

1

p
) +

2p

kt + 1

)
+
∑
i:i/∈at

n+ 1

n2(kt + 1)


(Apply Eq (13),(14))

≤12ε

n

T∑
t=1

(log(
1

p
) + 2p+ 1)

≤12Tε(log(16n2/ε) + 2)

n
.

25

Combining with Eq (16), we have that there exists a universal constant c such that T ≥ cn
ε(log(n/ε)+1) .859

860

J Proof of Theorem 8861

Proof. We will prove Theorem 8 by constructing an instance of Q and H and then reduce it to a862

linear stochastic bandit problem.863

Construction of Q,H and a set of realizable distributions864

• Consider the input metric space in the shape of a star, where X = {0, 1, . . . , n} and the865

distance function of d(0, i) = 1 and d(i, j) = 2 for all i ̸= j ∈ [n].866

• Let the hypothesis class be a set of singletons over [n], i.e.,H = {21{i} − 1|i ∈ [n]}.867

• We define a collection of distributions {Di|i ∈ [n]} in which Di is realized by 21{i} − 1.868

The data distribution Di put 1 − 3(n − 1)ε on (0, 1,+) and 3ε on (i, 1,−) for all i ̸= i∗.869

Hence, note that all distributions in {Di|i ∈ [n]} share the same distribution support870

{(0, 1,+)} ∪ {(i, 1,−)|i ∈ [n]}, but have different weights.871

Randomization and improperness of the output fout do not help. Note that algorithms are872

allowed to output a randomized fout and to output fout /∈ H. We will show that randomization and873

improperness of fout don’t make the problem easier. Supposing that the data distribution is Di∗874

for some i∗ ∈ [n], finding a (possibly randomized and improper) fout is not easier than identifying875

i∗. Since our feature space X is finite, we can enumerate all hypotheses not equal to 21{i∗} − 1876

and calculate their strategic population loss as follows. The hypothesis 21∅ − 1 will predict all by877

negative and thus Lstr(21∅ − 1) = 1− 3(n− 1)ε. For any hypothesis predicting 0 by positive, it will878

predict all points in the distribution support by positive and thus incurs strategic loss 3(n− 1)ε. For879

any hypothesis predicting 0 by negative and some i ̸= i∗ by positive, then it will misclassify (i, 1,−)880

and incur strategic loss 3ε. Therefore, for any hypothesis h ̸= 21{i∗} − 1, we have Lstr
Di∗

(h) ≥ 3ε.881

Similar to the proof of Theorem 7, under distribution Di∗ , if we are able to find a (possibly random-882

ized) fout with strategic loss Lstr(fout) ≤ ε. Then Prh∼fout(h = 21{i∗} − 1) ≥ 2
3 . We can identify883

i∗ by checking which realization of fout has probability greater than 2
3 . In the following, we will884

focus on the sample complexity to identify the target function 21{i∗} − 1 or simply i∗. Let iout885

denote the algorithm’s answer to question of “what is i∗?”.886

Smooth the data distribution For technical reasons (appearing later in the analysis), we don’t want887

to analyze distribution {Di|i ∈ [n]} directly as the probability of (i, 1,−) is 0 under distribution Di.888

Instead, for each i ∈ [n], let D′
i = (1− p)Di + pD′′

i be the mixture of Di and D′′
i for some small p,889

where D′′
i = (1− 3(n− 1)ε)1{(0,1,+)} + 3(n− 1)ε1{(i,1,−)}. Specifically,890

D′
i(z) =


1− 3(n− 1)ε for z = (0, 1,+)

3(1− p)ε for z = (j, 1,−),∀j ̸= i

3(n− 1)pε for z = (i, 1,−)

For any data distribution D, let PD be the dynamics of (f1, y1, ŷ1, . . . , fT , yT , ŷT) under D. Accord-891

ing to Lemma 4, by setting p = ε
16n2 , when T ≤ n

ε , we have that for any i, j ∈ [n]892 ∣∣PDi
(iout = j)−PD′

i
(iout = j)

∣∣ ≤ 1

8
. (17)

From now on, we only consider distribution D′
i instead of Di. The readers might have the question893

that why not using D′
i for construction directly. This is because no hypothesis has zero loss under D′

i,894

and thus D′
i does not satisfy realizability requirement.895

Information gain from different choices of ft Note that in each round, the learner picks a ft and896

then only observes ŷt and yt. Here we enumerate choices of ft as follows.897

26

1. ft = 21∅ − 1 predicts all points in X by negative. No matter what i∗ is, we observe ŷt = −898

and yt = 21(xt = 0) − 1. Hence (ŷt, yt) are identically distributed for all i∗ ∈ [n], and899

thus, we cannot learn anything about i∗ from this round.900

2. ft predicts 0 by positive. Then no matter what i∗ is, we have ŷt = + and yt = 1(xt = 0).901

Thus again, we cannot learn anything about i∗.902

3. ft = 21at
− 1 for some non-empty at ⊂ [n]. For rounds with xt = 0, we have ŷt = yt = +903

no matter what i∗ is and thus, we cannot learn anything about i∗. For rounds with yt = −,904

i.e., xt ̸= 0, we will observe ŷt = ft(∆(xt, ft, 1)) = 1(xt ∈ at).905

Hence, we can only extract information with the third type of ft at rounds with xt ̸= 0.906

Reduction to stochastic linear bandits In rounds with ft = 21at−1 for some non-empty at ⊂ [n]907

and xt ̸= 0, our problem is identical to a stochastic linear bandit problem. Let us state our problem908

as Problem 1 and a linear bandit problem as Problem 2. Let A = {0, 1}n \ {0}.909

Problem 1. The environment picks an i∗ ∈ [n]. At each round t, the environment picks xt ∈ {ei|i ∈910

[n]} with P (i) = 1−p
n−1 for i ̸= i∗ and P (i∗) = p and the learner picks an at ∈ A (where we use911

a n-bit string to represent at and at,i = 1 means that at predicts i by positive). Then the learner912

observes ŷt = 1(a⊺t xt > 0) (where we use 0 to represent nagative label).913

Problem 2. The environment picks a linear parameter w∗ ∈ {wi|i ∈ [n]} with wi = 1−p
n−11−(

1−p
n−1−914

p)ei. The arm set is A. For each arm a ∈ A, the reward is i.i.d. from the following distribution:915

rw(a) =

{
−1, w.p. w⊺a ,

0 .
(18)

If the linear parameter w∗ = wi∗ , the optimal arm is ei∗ .916

Claim 1. For any δ > 0, for any algorithm A that identify i∗ correctly with probability 1− δ within917

T rounds for any i∗ ∈ [n] in Problem 1, we can construct another algorithm A′ can also identify the918

optimal arm in any environment with probability 1− δ within T rounds in Problem 2.919

This claim follows directly from the problem descriptions. Given any algorithm A for Problem 1,920

we can construct another algorithm A′ which simulates A. At round t, if A selects predictor at,921

then A′ picks arm the same as at. Then A′ observes a reward rwi∗ (at), which is −1 w.p. wi∗⊺at922

and feed −rwi∗ (at) to A. Since ŷt in Problem 1 is 1 w.p.
∑n

i=1 at,iP (i) = wi∗⊺at, it is distributed923

identically as −rwi∗ (at). Since A will be able to identify i∗ w.p. 1− δ in T rounds, A′ just need to924

output ei∗ as the optimal arm.925

Then any lower bound on T for Problem 2 also lower bounds Problem 1. Hence, we adopt the926

information theoretical framework of proving lower bounds for linear bandits (Theorem 11 by927

Rajaraman et al. (2023)) to prove a lower bound for our problem. In fact, we also apply this928

framework to prove the lower bounds in other settings of this work, including Theorem 7 and929

Theorem 9.930

Lower bound of the information For notation simplicity, for all i ∈ [n], let Pi denote the dynamics931

of (f1, y1, ŷ1, . . . , fT , yT , ŷT) under D′
i and and P denote the dynamics under D = 1

nD
′
i. Let Bt932

denote the event of {ft = 21at − 1 for some non-empty at ⊂ [n]}. As discussed before, for any933

at, conditional on ¬Bt or yt = +1, (xt, yt, ŷt) are identical in all {D′
i|i ∈ [n]}, and therefore, also934

identical in D. We can only obtain information at rounds when Bt ∧ yt = −1 occurs. In such rounds,935

ft is fully determined by history (possibly with external randomness , which does not depend on936

data distribution), yt = −1 and ŷt = −rw(at) with rw(at) sampled from the distribution defined in937

Eq (18).938

For any algorithm that can successfully identify i under the data distribution Di with probability 3
4939

for all i ∈ [n], then PDi
(iout = i) ≥ 3

4 and PDj
(iout = i) ≤ 1

4 for all j ̸= i. Recall that Di and D′
i940

27

are very close when the mixture parameter p is small. Combining with Eq (17), we have941

|Pi(iout = i)−Pj(iout = i)|
≥
∣∣PDi

(iout = i)−PDj
(iout = i)

∣∣− |PDi
(iout = i)−Pi(iout = i)| −

∣∣PDj
(iout = i)−Pj(iout = i)

∣∣
≥1

2
− 1

4
=

1

4
. (19)

Let w = 1
n1. Let kl(q, q′) denote the KL divergence from Ber(q) to Ber(q′). Let Ht−1 =942

(f1, y1, ŷ1, . . . , ft−1, yt−1, ŷt−1) denote the history up to time t− 1. Then we have943

Ei∼Unif([n])

[
TV2(Pi,Pi+1 mod n)

]
≤ 4Ei∼Unif([n])

[
TV2(Pi,P)

]
≤2Ei

[
DKL(P∥Pi)

]
(Pinsker’s ineq)

=2Ei

[
T∑

t=1

DKL(P(ft, yt, ŷt|Ht−1)∥Pi(ft, yt, ŷt|Ht−1))

]
(Chain rule)

=2Ei

[
T∑

t=1

P(Bt ∧ yt = −1)Ea1:T∼P

[
DKL(Ber(⟨w, at⟩)∥Ber(

〈
wi, at

〉
))
]]

=6(n− 1)εEi

[
T∑

t=1

P(Bt)Ea1:T∼P

[
DKL(Ber(⟨w, at⟩)∥Ber(

〈
wi, at

〉
))
]]

=
6(n− 1)ε

n

T∑
t=1

Ea1:T∼P

[
n∑

i=1

DKL(Ber(⟨w, at⟩)∥Ber(
〈
wi, at

〉
))

]

=
6(n− 1)ε

n

T∑
t=1

Ea1:T∼P

 ∑
i:i∈at

kl(
kt
n
,
(kt − 1)(1− p)

n− 1
+ p) +

∑
i:i/∈at

kl(
kt
n
,
kt(1− p)

n− 1
)


=
6(n− 1)ε

n

T∑
t=1

Ea1:T∼P

[
ktkl(

kt
n
,
(kt − 1)(1− p)

n− 1
+ p) + (n− kt)kl(

kt
n
,
kt(1− p)

n− 1
)

]
(20)

If kt = 1, then944

kt · kl(
kt
n
,
(kt − 1)(1− p)

n− 1
+ p) = kl(

1

n
, p) ≤ 1

n
log(

1

p
) ,

and945

(n− kt) · kl(
kt
n
,
kt(1− p)

n− 1
) = (n− 1) · kl(1

n
,
1− p

n− 1
) ≤ 1

(1− p)n(n− 2)
,

where the ineq holds due to kl(q, q′) ≤ (q−q′)2

q′(1−q′) . If kt = n− 1, it is symmetric to the case of kt = 1.946

We have947

kt · kl(
kt
n
,
(kt − 1)(1− p)

n− 1
+ p) = (n− 1)kl(

n− 1

n
,
n− 2

n− 1
+

1

n− 1
p) = (n− 1)kl(

1

n
,
1− p

n− 1
)

≤ 1

(1− p)n(n− 2)
,

and948

(n− kt) · kl(
kt
n
,
kt(1− p)

n− 1
) = kl(

n− 1

n
, 1− p) = kl(

1

n
, p) ≤ 1

n
log(

1

p
) .

If 1 < kt < n− 1, then949

kt · kl(
kt
n
,
(kt − 1)(1− p)

n− 1
+ p) =kt · kl(

kt
n
,
kt − 1

n− 1
+

n− kt
n− 1

p)
(a)

≤ kt · kl(
kt
n
,
kt − 1

n− 1
)

(b)

≤kt ·
(kt

n −
kt−1
n−1)

2

kt−1
n−1 (1−

kt−1
n−1)

= kt ·
n− kt

n2(kt − 1)
≤ kt·

n(kt − 1)
≤ 2

n
,

28

where inequality (a) holds due to that kt−1
n−1 + n−kt

n−1 p ≤
kt

n and kl(q, q′) is monotonically decreasing950

in q′ when q′ ≤ q and inequality (b) adopts kl(q, q′) ≤ (q−q′)2

q′(1−q′) , and951

(n− kt) · kl(
kt
n
,
kt(1− p)

n− 1
) ≤ (n− kt) · kl(

kt
n
,

kt
n− 1

) ≤ kt(n− kt)

n2(n− 1− kt)
≤ 2kt

n2
,

where the first inequality hold due to that kt(1−p)
n−1 ≥ kt

n , and kl(q, q′) is monotonically increasing in952

q′ when q′ ≥ q and the second inequality adopts kl(q, q′) ≤ (q−q′)2

q′(1−q′) . Therefore, we have953

Eq (20) ≤ 6(n− 1)ε

n

T∑
t=1

Ea1:T∼P

[
2

n
log(

1

p
)

]
≤ 12εT log(1/p)

n
.

Combining with Eq (19), we have that there exists a universal constant c such that T ≥ cn
ε(log(n/ε)+1) .954

955

K Proof of Theorem 9956

Proof. We will prove Theorem 9 by constructing an instance of Q andH and showing that for any957

learning algorithm, there exists a realizable data distribution s.t. achieving ε loss requires at least958

Ω̃(|H|
ε) samples.959

Construction of Q,H and a set of realizable distributions960

• Let feature vector space X = {0, 1, . . . , n} and let the space of feature-manipulation set961

pairs Q = {(0, {0} ∪ s)|s ⊂ [n]}. That is to say, every agent has the same original feature962

vector x = 0 but has different manipulation ability according to s.963

• Let the hypothesis class be a set of singletons over [n], i.e.,H = {21{i} − 1|i ∈ [n]}.964

• We now define a collection of distributions {Di|i ∈ [n]} in whichDi is realized by 21{i}−1.965

For any i ∈ [n], let Di put probability mass 1 − 6ε on (0,X ,+1) and 6ε uniformly over966

{(0, {0} ∪ sσ,i,−1)|σ ∈ Sn}, where Sn is the set of all permutations over n elements and967

sσ,i := {j|σ−1(j) < σ−1(i)} is the set of elements appearing before i in the permutation968

(σ(1), . . . , σ(n)). In other words, with probability 1− 6ε, we will sample (0,X ,+1) and969

with ε, we will randomly draw a permutation σ ∼ Unif(Sn) and return (0, {0} ∪ sσ,i,−1).970

The data distribution Di is realized by 21{i} − 1 since for negative examples (0, {0} ∪971

sσ,i,−1), we have i /∈ s and for positive examples (0,X ,+1), we have i ∈ X .972

Randomization and improperness of the output fout do not help Note that algorithms are973

allowed to output a randomized fout and to output fout /∈ H. We will show that randomization and974

improperness of fout don’t make the problem easier. That is, supposing that the data distribution975

is Di∗ for some i∗ ∈ [n], finding a (possibly randomized and improper) fout is not easier than976

identifying i∗. Since our feature space X is finite, we can enumerate all hypotheses not equal to977

21{i∗} − 1 and calculate their strategic population loss as follows.978

• 21∅ − 1 predicts all points in X by negative and thus Lstr(21∅ − 1) = 1− 6ε;979

• For any a ⊂ X s.t. 0 ∈ a, 21a − 1 will predict 0 as positive and thus will predict any point980

drawn from Di∗ as positive. Hence Lstr(21a − 1) = 6ε;981

• For any a ⊂ [n] s.t. ∃i ̸= i∗, i ∈ a, we have Lstr(21a − 1) ≥ 3ε. This is due to that when982

y = −1, the probability of drawing a permutation σ with σ−1(i) < σ−1(i∗) is 1
2 . In this983

case, we have i ∈ sσ,i∗ and the prediction of 21a − 1 is +1.984

Under distribution Di∗ , if we are able to find a (possibly randomized) fout with strategic loss985

Lstr(fout) ≤ ε, then we have Lstr(fout) = Eh∼fout [Lstr(h)] ≥ Prh∼fout(h ̸= 21{i∗}− 1) · 3ε. Thus,986

Prh∼fout
(h = 21{i∗} − 1) ≥ 2

3 and then, we can identify i∗ by checking which realization of fout987

29

has probability greater than 2
3 . In the following, we will focus on the sample complexity to identify988

the target function 21{i∗} − 1 or simply i∗. Let iout denote the algorithm’s answer to question of989

“what is i∗?”.990

Smoothing the data distribution For technical reasons (appearing later in the analysis), we991

don’t want to analyze distribution {Di|i ∈ [n]} directly as the probability of ∆t = i∗ is 0 when992

ft(i
∗) = +1. Instead, we consider the mixture of Di and another distribution D′′

i to make the993

probability of ∆t = i∗ be a small positive number. More specifically, let D′
i = (1 − p)Di + pD′′

i ,994

whereD′′
i is defined by drawing (0,X ,+1) with probability 1−6ε and (0, {0, i},−1) with probability995

6ε. When p is extremely small, we will never sample from D′′
i when time horizon T is not too large996

and therefore, the algorithm behaves the same under D′
i and Di. For any data distribution D, let PD997

be the dynamics of (x1, f1,∆1, y1, ŷ1, . . . , xT , fT ,∆T , yT , ŷT) under D. According to Lemma 4,998

by setting p = ε
16n2 , when T ≤ n

ε , we have that for any i, j ∈ [n]999 ∣∣PDi
(iout = j)−PD′

i
(iout = j)

∣∣ ≤ 1

8
. (21)

From now on, we only consider distribution D′
i instead of Di. The readers might have the question1000

that why not using D′
i for construction directly. This is because no hypothesis has zero loss under D′

i,1001

and thus D′
i does not satisfy realizability requirement.1002

Information gain from different choices of ft In each round of interaction, the learner picks1003

a predictor ft, which can be out of H. Suppose that the target function is 21{i∗} − 1 . Here we1004

enumerate all choices of ft and discuss how much we can learn from each choice.1005

• ft = 21∅ − 1 predicts all points in X by negative. No matter what i∗ is, we will observe1006

∆t = xt = 0, yt ∼ Rad(1− 6ε), ŷt = −1. They are identically distributed for any i∗ ∈ [n]1007

and thus we cannot tell any information of i∗ from this round.1008

• ft = 21at
− 1 for some at ⊂ X s.t. 0 ∈ at. Then no matter what i∗ is, we will observe1009

∆t = xt = 0, yt ∼ Rad(1 − 6ε), ŷt = +1. Again, we cannot tell any information of i∗1010

from this round.1011

• ft = 21at − 1 for some some non-empty at ⊂ [n]. For rounds with yt = +1, we have1012

xt = 0, ŷt = +1 and ∆t = ∆(0, ft,X) ∼ Unif(at), which still do not depend on i∗. For1013

rounds with yt = −1, if the drawn example (0, {0} ∪ s,−1) satisfies that s ∩ at ̸= ∅, the1014

we would observe ∆t ∈ at and ŷt = +1. At least we could tell that 1{∆t} is not the target1015

function. Otherwise, we would observe ∆t = xt = 0 and ŷt = −1.1016

Therefore, we can only gain some information about i∗ at rounds in which ft = 21at − 1 for some1017

non-empty at ⊂ [n] and yt = −1. In such rounds, under distribution D′
i∗ , the distribution of ∆t is1018

described as follows. Let kt = |at| denote the cardinality of at. Recall that agent (0, {0} ∪ s,−1)1019

breaks ties randomly when choosing ∆t if there are multiple elements in at ∩ s. Here are two cases:1020

i∗ ∈ at and i∗ /∈ at.1021

1. The case of i∗ ∈ at: With probability p, we are sampling from D′′
i∗ and then ∆t = i∗.1022

With probability 1− p, we are sampling from Di∗ . Conditional on this, with probability 1
kt

,1023

we sample an agent (0, {0} ∪ sσ,i∗ ,−1) with the permutation σ satisfying that σ−1(i∗) <1024

σ−1(j) for all j ∈ at \ {i∗} and thus, ∆t = 0. With probability 1 − 1
kt

, there exists1025

j ∈ at \ {i∗} s.t. σ−1(j) < σ−1(i∗) and ∆t ̸= 0. Since all j ∈ at \ {i∗} are symmetric,1026

we have Pr(∆t = j) = (1− p)(1− 1
kt
) · 1

kt−1 = 1−p
kt

. Hence, the distribution of ∆t is1027

∆t =


j w.p. 1−p

kt
for j ∈ at, j ̸= i∗

i∗ w.p. p
0 w.p. 1−p

kt
.

We denote this distribution by P∈(at, i
∗).1028

30

2. The case of i∗ /∈ at: With probability p, we are sampling from D′′
i∗ , we have ∆t = xt = 0.1029

With probability 1− p, we are sampling from Di∗ . Conditional on this, with probability of1030
1

kt+1 , σ−1(i∗) < σ−1(j) for all j ∈ at and thus, ∆t = xt = 0. With probability 1− 1
kt+11031

there exists j ∈ at s.t. σ−1(j) < σ−1(i∗) and ∆t ∈ at. Since all j ∈ at are symmetric, we1032

have Pr(∆t = j) = (1− p)(1− 1
kt+1) ·

1
kt

= 1−p
kt+1 . Hence the distribution of ∆t is1033

∆t =

{
j w.p. 1−p

kt+1 for j ∈ at
0 w.p. p+ 1−p

kt+1 .

We denote this distribution by P/∈(at).1034

To measure the information obtained from ∆t, we will use the KL divergence of the distribution1035

of ∆t under the data distribution D′
i∗ from that under a benchmark data distribution. We use the1036

average distribution over {D′
i|i ∈ [n]}, which is denoted by D = 1

n

∑
i∈nD′

i. The sampling process1037

is equivalent to drawing i∗ ∼ Unif([n]) first and then sampling from D′
i∗ . Under D, for any j ∈ at,1038

we have1039

Pr(∆t = j) =Pr(i∗ ∈ at \ {j}) Pr(∆t = j|i∗ ∈ at \ {j}) + Pr(i∗ = j) Pr(∆t = j|i∗ = j)

+ Pr(i∗ /∈ at) Pr(∆t = ej |i∗ /∈ at)

=
kt − 1

n
· 1− p

kt
+

1

n
· p+ n− kt

n
· 1− p

kt + 1
=

(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n
,

and1040

Pr(∆t = 0) = Pr(i∗ ∈ at) Pr(∆t = 0|i∗ ∈ at) + Pr(i∗ /∈ at) Pr(∆t = 0|i∗ /∈ at)

=
kt
n
· 1− p

kt
+

n− kt
n
· (p+ 1− p

kt + 1
) =

(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n
.

Thus, the distribution of ∆t under D is1041

∆t =

{
j w.p. (nkt−1)(1−p)

nkt(kt+1) + p
n for j ∈ at

0 w.p. (n+1)(1−p)
n(kt+1) + (n−kt)p

n .

We denote this distribution by P (at). Next we will compute the KL divergence of P/∈(at) and P∈(at)1042

from P (at). Since p = ε
16n2 ≤ 1

16n2 , we have (nkt−1)(1−p)
nkt(kt+1) + p

n ≤
1−p
kt+1 and (n+1)(1−p)

n(kt+1) + (n−kt)p
n ≤1043

1
kt

+ p. We will also use log(1 + x) ≤ x for x ≥ 0 in the following calculation. For any i∗ ∈ at, we1044

have1045

DKL(P (at)∥P∈(at, i
∗))

=(kt − 1)

(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n

)
log

(
(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n
) · kt

1− p

)
+

(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n

)
log

(
(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n
) · 1

p

)
+

(
(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n

)
log

((
(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n

)
· kt
1− p

)
≤(kt − 1)

(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n

)
log(

1− p

kt + 1
· kt
1− p

) +
1− p

kt + 1
log(1 · 1

p
)

+ (
1

kt
+ p) · log (1 + pkt)

≤0 + 1

kt + 1
log(

1

p
) +

2

kt
· pkt =

1

kt + 1
log(

1

p
) + 2p . (22)

31

For P/∈(at), we have1046

DKL(P (at)∥P/∈(at))

=kt

(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n

)
log

(
(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n
) · kt + 1

1− p

)
+

(
(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n

)
log

((
(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n

)
· 1

p+ 1−p
kt+1

)

≤kt
(
(nkt − 1)(1− p)

nkt(kt + 1)
+

p

n

)
log(

1− p

kt + 1
· kt + 1

1− p
)

+ (
1

kt
+ p) log

((
(n+ 1)(1− p)

n(kt + 1)
+

(n− kt)p

n

)
· 1

p+ 1−p
kt+1

)

=0 + (
1

kt
+ p) log(1 +

1− p(k2t + kt + 1)

n(1 + ktp)
)

≤(1
kt

+ p)
1

n(1 + ktp)
=

1

nkt
. (23)

Lower bound of the information Now we adopt the similar framework used in the proofs1047

of Theorem 7 and 8. For notation simplicity, for all i ∈ [n], let Pi denote the dynamics of1048

(x1, f1,∆1, y1, ŷ1, . . . , xT , fT ,∆T , yT , ŷT) under D′
i and and P denote the dynamics under D.1049

Let Bt denote the event of {ft = 21at
− 1 for some non-empty at ⊂ [n]}. As discussed before,1050

for any at, conditional on ¬Bt or yt = +1, (xt,∆t, yt, ŷt) are identical in all {D′
i|i ∈ [n]}, and1051

therefore, also identical inD. We can only obtain information at rounds when Bt ∧ (yt = −1) occurs.1052

In such rounds, we know that xt is always 0, ft is fully determined by history (possibly with external1053

randomness , which does not depend on data distribution), yt = −1 and ŷt is fully determined by ∆t1054

(ŷt = +1 iff. ∆t ̸= 0).1055

Therefore, conditional the history Ht−1 = (x1, f1,∆1, y1, ŷ1, . . . , xt−1, ft−1,∆t−1, yt−1, ŷt−1)1056

before time t, we have1057

DKL(P(xt, ft,∆t, yt, ŷt|Ht−1)∥Pi(xt, ft,∆t, yt, ŷt|Ht−1))

=P(Bt ∧ yt = −1)DKL(P(∆t|Ht−1, Bt ∧ yt = −1)∥Pi(∆t|Ht−1, Bt ∧ yt = −1))
=6εP(Bt)DKL(P(∆t|Ht−1, Bt ∧ yt = −1)∥Pi(∆t|Ht−1, Bt ∧ yt = −1)) , (24)

where the last equality holds due to that yt ∼ Rad(1− 6ε) and does not depend on Bt.1058

For any algorithm that can successfully identify i under the data distribution Di with probability 3
41059

for all i ∈ [n], then PDi
(iout = i) ≥ 3

4 and PDj
(iout = i) ≤ 1

4 for all j ̸= i. Recall that Di and D′
i1060

are very close when the mixture parameter p is small. Combining with Eq (21), we have1061

|Pi(iout = i)−Pj(iout = i)|
≥
∣∣PDi(iout = i)−PDj (iout = i)

∣∣− |PDi(iout = i)−Pi(iout = i)| −
∣∣PDj (iout = i)−Pj(iout = i)

∣∣
≥1

2
− 1

4
=

1

4
.

Then we have the total variation distance between Pi and Pj1062

TV(Pi,Pj) ≥ |Pi(iout = i)−Pj(iout = i)| ≥ 1

4
. (25)

32

Then we have1063

Ei∼Unif([n])

[
TV2(Pi,P(i+1) mod n)

]
≤ 4Ei∼Unif([n])

[
TV2(Pi,P)

]
≤2Ei

[
DKL(P∥Pi)

]
(Pinsker’s ineq)

=2Ei

[
T∑

t=1

DKL(P(xt, ft,∆t, yt, ŷt|Ht−1)∥Pi(xt, ft,∆t, yt, ŷt|Ht−1))

]
(Chain rule)

≤12εEi

[
T∑

t=1

P(Bt)DKL(P(∆t|Ht−1, Bt ∧ yt = −1)∥Pi(∆t|Ht−1, Bt ∧ yt = −1))

]
(Apply Eq (24))

≤12ε

n

T∑
t=1

P(Bt)

n∑
i=1

DKL(P(∆t|Ht−1, Bt ∧ yt = −1)∥Pi(∆t|Ht−1, Bt ∧ yt = −1))

=
12ε

n
Ea1:T∼P

 T∑
t=1

1(Bt)

∑
i:i∈at

DKL(P (at)∥P∈(at)) +
∑
i:i/∈at

DKL(P (at)∥P/∈(at))


≤12ε

n
Ea1:T∼P

 ∑
t:1(Bt)=1

∑
i:i∈at

(
1

kt + 1
log(

1

p
) + 2p

)
+
∑
i:i/∈at

1

nkt

 (Apply Eq (22),(23))

≤12ε

n

T∑
t=1

(log(
1

p
) + 2np+ 1)

≤12Tε(log(16n2/ε) + 2)

n
.

Combining with Eq (25), we have that there exists a universal constant c such that T ≥ cn
ε(log(n/ε)+1) .1064

1065

33

	Introduction
	Model
	Overview of Results
	Ball manipulations
	Setting (x,): Observing xt Before Choosing ft
	Setting (, (x,)): Observing xt After Choosing ft
	Results in the Online Learning Model
	Results in the PAC Learning Model

	Settings (,) and (,)

	Non-ball Manipulations
	Discussion and Open Problems
	Additional Related Work
	Technical Lemmas
	Boosting expected guarantee to high probability guarantee
	Converting mistake bound to PAC bound
	Smooth the distribution

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9

