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A APPENDIX

A.1 PRELIMINARIES

A.1.1 NEURAL NETWORKS

Let us summarize all basic notations used in the NNs as follows:

1. Matrices are denoted by bold uppercase letters. For example, A 2 Rm⇥n is a real matrix of size
m⇥ n and A| denotes the transpose of A. kAkF is the Frobenius norm of the matrix A.

2. Vectors are denoted by bold lowercase letters. For example, v 2 Rn is a column vector of size n.
Furthermore, denote v(i) as the i-th elements of v.

3. For a d-dimensional multi-index ↵ = [↵1,↵2, · · ·↵d] 2 Nd, we denote several related notations
as follows:

(a) |↵| = |↵1|+ |↵2|+ · · ·+ |↵d| ;

(b) x↵ = x
↵1
1 x

↵2
2 · · ·x

↵d
d
, x = [x1, x2, · · · , xd]

| ; (19)

4. Assume n 2 Nn

+, then f(n) = O(g(n)) means that there exists positive C independent of n, f, g
such that f(n)  Cg(n) when all entries of n go to +1.

5. Define �(x) = max{0, x} and �s(x) = (1�s)Id(x)+s�(x) for s > 0. Two-layer NN structures
are defined by:

�sp(x;✓) :=
1

p
m

mX

k=1

ak�sp(!
|
k
x). (20)

6.

RS,sp(✓) :=
1

2n

nX

i=1

|f(xi)� �sp(xi;✓)|
2
, (21)

it is assumed that the sequence {xi}
n

i=1 consists of independent and identically distributed (i.i.d.)
random variables. These random variables are uniformly distributed within the hypercube (0, 1)d,
where d is the dimension of the input space.

A.1.2 RADEMACHER COMPLEXITY

In our further analysis, we will rely on the definition of Rademacher complexity and several lemmas
related to it. Rademacher complexity is a fundamental concept in statistical learning theory and
plays a crucial role in analyzing the performance of machine learning algorithms. It quantifies the
complexity of a hypothesis class in terms of its ability to fit random noise in the data.
Definition 1 (Rademacher complexity Anthony et al. (1999)). Given a sample set S =
{z1, z2, . . . , zM} on a domain Z , and a class F of real-valued functions defined on Z , the em-

pirical Rademacher complexity of F in S is defined as

RadS(F) :=
1

M
E⌃M

"
sup
f2F

MX

i=1

⌧if(zi)

#
,

where ⌃M := {⌧1, ⌧2, . . . , ⌧M} are independent random variables drawn from the Rademacher

distribution, i.e., P(⌧i = +1) = P(⌧i = �1) = 1
2 for i = 1, 2, . . . ,M.

Lemma 3 (Rademacher complexity for linear predictors Shalev-Shwartz & Ben-David (2014)). Let

⇥ = {w1, · · · ,wm} 2 Rd
. Let G =

�
g(w) = w>x : kxk1  1

 
be the linear function class with

parameter x whose `
1

norm is bounded by 1 . Then

Rad⇥(G)  max
1km

kwkk1

r
2 log(2d)

m
.

Lemma 4 (Rademacher complexity and generalization gap Shalev-Shwartz & Ben-David (2014)).
Suppose that f in F are non-negative and uniformly bounded, i.e., for any f 2 F and any z 2
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Z, 0  f(z)  B. Then for any � 2 (0, 1), with probability at least 1� � over the choice of n i.i.d.

random samples S = {z1, . . . , zn} ⇢ Z , we have

sup
f2F

�����
1

n

nX

i=1

f (zi)�Ezf(z)

�����  2RadS(F) + 3B

r
log(4/�)

2n
.

A.2 PROOF OF THEOREM 1

Before the proof, we need a lemma in the linear algebra.
Lemma 5. Suppose A and B are strictly positive definite, we have that

�min(A+B) � �min(A) + �min(B). (22)

Proof. Let �a be defined as �min(A) and �b as �min(B). Consequently, we can assert that A+B�

(�a + �b)I possesses positive definiteness. If we designate � as an eigenvalue of A + B, then it
follows that (A+B)x⇤ = �x⇤. This relationship can be expressed as:

(A+B � (�a + �b)I)x⇤ = (�� �a � �b)x⇤. (23)

Consequently, we can deduce that � � �a+�b, which further implies that �min(A+B) � �min(A)+
�min(B).

Proof of Theorem 1. For the case sp < 1, let’s start by considering the expression for the matrix
K [!]

p where

K [!]
p

= (K [!]
ij,p

)n⇥n =
⇣
E(a,!)a

2
�
0
sp
(!|xi)�

0
sp
(!|xj)xi · xj

⌘

n⇥n

. (24)

Given the derivative of the activation function:

�
0
sp
(x) =

(
1, x > 0
(1� sp), x < 0
0, x = 0

�
0
sp+1

(x) =

(
1, x > 0
(1� sp+1), x < 0
0, x = 0

we have
�
0
sp+1

(x) = �
0
sp
(x) + (sp � sp+1)�(�x) (25)

E(a,!)a
2
�
0
sp+1

(!|xi)�
0
sp+1

(!|xj)xi · xj = E(a,!)a
2
�
0
sp
(!|xi)�

0
sp
(!|xj)xi · xj

�(sp � sp+1)E(a,!)a
2
h
�
0(!|

· (�xi))�
0
sp
(!|xj)(�xi) · xj + �

0
sp
(!|xi)�

0(!|
· (�xj))xi · (�xj)

i

+(sp � sp+1)
2E(a,!)a

2
�
0(!|

· (�xi))�
0(!|

· (�xj))xi · xj . (26)

Furthermore, since

�
0(x) =

�
0
sp
(x)� sp�

0
sp
(�x)

1� s2
p

, (27)

we have

�
0(!|

· (�xi))�
0
sp
(!|xj)(�xi) · xj

=
1

1� s2
p

h
�
0
sp
(!|(�xi))�

0
sp
(!|xj)(�xi)xj + sp�

0
sp
(!|xi)�

0
sp
(!|xj)xixj

i

�
0
sp
(!|xi)�

0(!|(�xj))xi · (�xj)

=
1

1� s2
p

h
�
0
sp
(!|xi)�

0
sp
(!|(�xj))(�xi)xj + sp�

0
sp
(!|xi)�

0
sp
(!|xj)xixj

i
. (28)

Therefore,

K [!]
p+1 =

✓
1 +

2sp(sp+1 � sp)

1� s2
p

◆
K [!]

p
+

sp+1 � sp

1� s2
p

(M [!]
p

+H [!]
p

) + (sp+1 � sp)
2T [!]

M
. (29)
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When sp < 1, with the initial condition s0 = 0, we can establish the following inequalities based
on Assumption 1, where K [!]

0 ,M [!]
0 ,H [!]

0 is strictly positive, and Lemma 5 holds:

�min(K
[!]
1 ) � 0. (30)

The reason why K [!]
0 ,M [!]

0 ,H [!]
0 are positive definite matrices is indeed attributed to the

fact that �
0
0(x) is a constant function. Specifically, for K [!]

0 , it can be represented as
(a(x1,x2, . . . ,xn))|a(x1,x2, . . . ,xn), which is inherently positive definite. Similar propositions
can be derived for M [!]

0 and H [!]
0 based on the same principle.

Now, when 0  sp  sp+1 and sp < 1 and Lemma 5 holds:

�min(K
[!]
p+1) � �min(K

[!]
p

) � 0

due to Eqs. (29,30).

For the case sp � 1, we have that
E(a,!)a

2
�
0
sp+1

(!|xi)�
0
sp+1

(!|xj)xi · xj = E(a,!)a
2
�
0
sp
(!|xi)�

0
sp
(!|xj)xi · xj

�(sp � sp+1)E(a,!)a
2
h
�
0(!|

· (�xi))�
0
sp
(!|xj)(�xi) · xj + �

0
sp
(!|xi)�

0(!|
· (�xj))xi · (�xj)

i

+(sp � sp+1)
2E(a,!)a

2
�
0(!|

· (�xi))�
0(!|

· (�xj))xi · xj . (31)
Furthermore, since

�
0
sp
(x) = �

0(x) + (1� sp)�
0(�x), (32)

we have
�
0(!|

· (�xi))�
0
sp
(!|xj)(�xi) · xj

=�0(!|
· (�xi))�

0(!|xj)(�xi) · xj � (1� sp)�
0(!|

· (�xi))�
0(!|(�xj))(�xi) · (�xj)

�
0
sp
(!|xi)�

0(!|(�xj))xi · (�xj)

=�0(!|
· xi)�

0(!|(�xj))(�xi) · xj � (1� sp)�
0(!|

· (�xi))�
0(!|(�xj))(�xi) · (�xj).

(33)
Therefore,

K [!]
p+1 = K [!]

p
� (1� sp)(sp+1 � sp)(M

[!]
M

+H [!]
M

) + (sp+1 � sp)(sp+1 � sp + 2)T [!]
M

.

When 0  sp  sp+1 and sp � 1, we have that

�min(K
[!]
p+1) � �min(K

[!]
p

) � 0

based on Assumption 1, as well as Lemma 5. Similar results can be derived for the Gram matrices
with respect to the parameter a.

A.3 PROOFS IN t1 ITERATION

Proof of Lemma 1. The proof can be found in (Luo et al., 2021, Lemma 9), for readable, we write
the proof of this lemma here. Since P(|X|  B)  2e�

1
2B

2

if X ⇠ N (0, 1), we set B =q
2 log 2m(d+1)

�
and obtain

P

✓
max
k2[m]

{|ak(0)| , kwk(0)k1} > B

◆
= P

✓
max

k2[m],↵2[d]
{|ak(0)| , |(wk(0))↵|} > B

◆

= P

 
m[

k=1

(|ak(0)| > B)
[
 

d[

↵=1

(|(wk(0))↵| > B)

!!



mX

k=1

P (|ak(0)| > B) +
mX

k=1

dX

↵=1

P (|(wk(0))↵| > B)

 2me
� 1

2B
2

+ 2mde
� 1

2B
2

= 2m(d+ 1)e�
1
2B

2

= �.
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Proof of Lemma 2. Let
G := {a�s1(!

|x),x 2 ⌦} (34)

and we have

|a(0)�s1(!
|(0)x)|  2d log

4m(d+ 1)

�
=: B1 (35)

with probability at least 1� �/2 over the choice of ✓(0). Then we have

sup
x2⌦

�����
1

m

mX

k=1

ak(0)�s1 (wk(0) · x)

�����

= sup
x2⌦

�����
1

m

mX

k=1

(ak(0)�s1 (wk(0) · x) +B1)�
�
E(a,w)a�s1

�
w>x

�
+B1

�
�����

2Rad✓(0)(G) + 12d

✓
log

4m(d+ 1)

�

◆r
2 log(8/�)

m

with probability at least 1�� over the choice of ✓(0). The Rademacher complexity can be estimated
by

Rad✓(0)(G) =
1

m
E⌧

"
sup
x2⌦

mX

k=1

⌧kak(0)� (wk(0) · x)

#


1

m

r
2 log

4m(d+ 1)

�
E⌧

"
sup
x2⌦

mX

k=1

⌧kwk(0) · x

#



r
2 log

4m(d+ 1)

�

r
2d log

4m(d+ 1)

�

p
d

p
m

=
2d log 4m(d+1)

�
p
m

,

where the last inequality is a result of Lemma 1.

Therefore, we have

sup
x2⌦

|�s1(x;✓(0))|  2d log
4m(d+ 1)

�

⇣
2 + 6

p
2 log(8/�)

⌘
(36)

and

RS,s1 (✓(0)) 
1

2


1 + 2d log

4m(d+ 1)

�

⇣
2 + 6

p
2 log(8/�)

⌘�2
. (37)

Next we are going to proof Proposition 1, before that, we need the definition of sub-exponential
random variables and sub-exponential Bernstein’s inequality.
Definition 2 (Vershynin (2018)). A random variable X is sub-exponential if and only if its sub-

exponential norm is finite i.e.

kXk 1 := inf{s > 0 | EX [e|X|/s
 2.] (38)

Furthermore, the chi-square random variable X is a sub-exponential random variable and C ,d :=
kXk 1 .

Lemma 6. Suppose that w ⇠ N (0, Id) , a ⇠ N(0, 1) and given xi,xj 2 ⌦. Then we have

(i) if X := �s1

�
w>xi

�
�s1 (x · xj), then kXk 1  dC ,d.

(ii) if X := a
2
�
0
s1

�
w>xi

�
�
0
s1

�
w>xj

�
xi · xj , then kXk 1  dC ,d.

15
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Proof. The proof is similar with (Luo et al., 2021, Lemma 14).

(i) |X|  dkwk
2
2 = dZ and

kXk 1 = inf {s > 0 | EX exp(|X|/s)  2}

= inf
�
s > 0 | Ew exp

����s1
�
w>xi

�
�s1

�
w>xj

��� /s
�
 2
 

 inf
�
s > 0 | Ew exp

�
dkwk

2
2/s
�
 2
 

= inf {s > 0 | EZ exp(d|Z|/s)  2}

= d inf {s > 0 | EZ exp(|Z|/s)  2}

= d
���2(d)

��
 1

 dC ,d

(ii) |X|  d|a|
2
 dZ and kXk 1  dC ,d.

Theorem 3 (sub-exponential Bernstein’s inequality Vershynin (2018)). Suppose that X1, . . . ,Xm

are i.i.d. sub-exponential random variables with EX1 = µ, then for any s � 0 we have

P

 �����
1

m

mX

k=1

Xk � µ

����� � s

!
 2 exp

 
�C0mmin

 
s
2

kX1k
2
 1

,
s

kX1k 1

!!
,

where C0 is an absolute constant.

Proof of Proposition 1. For any " > 0, we define

⌦[a]
ij,p

:=
n
✓(0) |

���G[a]
ij,p

(✓(0))�K
[a]
ij,p

��� 
"

n

o

⌦[!]
ij,p

:=
n
✓(0) |

���G[!]
ij,p

(✓(0))�K
[!]
ij,p

��� 
"

n

o
. (39)

Setting "  ndC ,d, by Theorem 3 and Lemma 6, we have

P(⌦[a]
ij,p

) � 1� 2 exp

✓
�

mC0"
2

n2d2C ,d

◆
,

P(⌦[!]
ij,p

) � 1� 2 exp

✓
�

mC0"
2

n2d2C ,d

◆
. (40)

Therefore, with probability at least
h
1� 2 exp

⇣
�

mC0"
2

n2d2C2
 ,d

⌘i2n2

� 1�4n2 exp
⇣
�

mC0"
2

n2d2C2
 ,d

⌘
over

the choice of ✓(0), we have
���G[a]

1 (✓(0))�K
[a]
1

���
F

 "

���G[p]
1 (✓(0))�K

[p]
1

���
F

 ". (41)

Hence by taking " = �1
4 and � = 4n2 exp

⇣
�

mC0�
2
1

16n2d2C2
 ,d

⌘
, where �1 = min{�a,1,�!,1}

�min (G1 (✓(0))) ��min

⇣
G[a]

1 (✓(0))
⌘
+ �min

⇣
G[!]

1 (✓(0))
⌘

��a,1 + �!,1 �

���G[a]
1 (✓(0))�K

[a]
1

���
F

�

���G[!]
1 (✓(0))�K

[!]
1

���
F

�
3

4
(�a,1 + �!,1). (42)

Proof of Proposition 2. Due to Proposition 1 and the definition of t⇤1, we have that for any � 2 (0, 1)

�min (G1 (✓)) �
1

2
(�a,1 + �!,1) (43)
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with probability at least 1� � over the choice of ✓(0).

As we know

Gij,1 = G
[a]
ij,1+G

[!]
ij,1 =

mX

k=1

rak�s1(xi;✓)·rak�s1(xj ;✓)+
1

m2

mX

k=1

r!k�s1(xi;✓)·r!k�s1(xj ;✓)

(44)
and (

dak(t)
dt = �rakRS,s1(✓) = �

1
n
p
m

P
n

i=1 ei,1�sp

�
w>

k
xi

�

d!k(t)
dt = �rwkRS,s1(✓) = �

1
n
p
m

P
n

i=1 ei,1ai�
0
sp

�
w>

k
xi

�
xi

where ei,1 = |f(xi)� �s1(xi;✓)|.

Then finally we get that

d

dt
RS,s1(✓(t)) =

mX

k=1

✓
rakRS,s1(✓)

dak(t)

dt
+r!kRS,s1(✓)

d!k(t)

dt

◆

=�

mX

k=1

(rakRS,s1(✓)rakRS,s1(✓) +r!kRS,s1(✓)r!kRS,s1(✓))

=�
1

n2
eT1 Gij,1(✓(t))e1

�
2

n
�min (G1 (✓))RS,s1(✓(t))

�
1

n
(�a,1 + �!,1)RS,s1(✓(t)). (45)

Therefore,

RS,s1(✓(t))  RS,s1(✓(0)) exp

✓
�

t

n
(�a,1 + �!,1)

◆
. (46)

A.4 PROOFS IN t2 ITERATION

Proof of Theorem 3.3. For any k 2 [m], denote

↵(t) = max
k2[m],s2[0,t]

|ak(s)| , !(t) = max
k2[m],s2[0,t]

kwk(s)k1

and we have
����
dak(t)

dt

����
2

= |rakRS,s1(✓)|
2 =

�����
1

n
p
m

nX

i=1

ei,1�sp

�
w>

k
xi

�
�����

2


2d2(!(t))2RS,s1(✓)

m
. (47)

Similarly, we have that ����
d!k(t)

dt

����
2

1


2d2(↵(t))2RS,s1(✓)

m
.

Due to the Proposition 2, we have

|ak(t)� ak(0)| 

Z
t

0
|rakRS,s1(✓(s))| ds



p
2d

p
m

Z
t

0
!(s)

q
RS,s1(✓(s))ds



p
2d

p
m
!(t)

Z
t

0

q
RS,s1 (✓(0)) exp

⇣
�

s

2n
(�a,1 + �!,1)

⌘
ds


2
p
2nd

p
RS,s1 (✓(0))

p
m(�a,1 + �!,1)

!(t),
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with probability at least 1� �/2 over the choice of ✓(0). Similarly, we have

k!k(t)� !k(0)k1 
2
p
2nd

p
RS,s1 (✓(0))

p
m(�a,1 + �!,1)

↵(t). (48)

Therefore, we have that
↵(t)  ↵(0) +

1
p
m
!(t)

!(t)  !(0) +
1

p
m
↵(t)

where  =
2
p
2nd

p
RS,s1 (✓(0))

�a,1+�!,1
. Therefore, when m � 

2, we have

max{↵(t),!(t)}  2↵(0) + 2!(0).

Based on Lemma 1, with probability at least 1� �/2 over the choice of ✓(0) such that

max
k2[m]

{|ak(0)|, k!k(0)k1} 

r
2 log

4m(d+ 1)

�
. (49)

Therefore, we have

max
k2[m]

{|ak(t)� ak(0)|, k!k(t)� !k(0)k1} 
8
p
2nd

p
RS,s1 (✓(0))

p
m(�a,1 + �!,1)

r
2 log

4m(d+ 1)

�
(50)

with probability at least 1� � over the choice of ✓(0).

Lemma 7. Suppose that ! := !(0) ⇠ N (0, Id) , a = a(0) ⇠ N(0, 1) and given xi,xj 2 ⌦. If

m � max

⇢
16n2

d
2
C ,d

C0�
2

log
4n2

�
,
8n2

d
2
RS,s1 (✓(0))

(�a,1 + �!,1)2

�

then with probability at least 1� � over the choice of ✓(0), we have

(i) if X := �s2

�
!̄>(!)xi

�
�s2

�
!̄>(!) · xj

�
, then kXk 1  2dC ,d +

2d2
 (m)2

log 2 .

(ii) if X := ā(a)2�0
s2

�
!̄>(!)xi

�
�
0
s2

�
!̄>(!)xj

�
xi · xj , then kXk 1  2dC ,d +

2d2
 (m)2

log 2 .

Proof. (i)

|X|  dk!̄(!)k22  2dk!k
2
2 + 2dk!̄(!)� !k

2
2  2d|Z|+ 2d2 (m)2

and
kXk 1 = inf {s > 0 | EX exp(|X|/s)  2}

= inf
�
s > 0 | Ew exp

����s2
�
!̄>(!)xi

�
�s2

�
!̄>(!) · xj

��� /s
�
 2
 

 inf

⇢
s > 0 | Ew exp

✓
2d|Z|+ 2d2 (m)2

s

◆
 2

�

 inf {s > 0 | EZ exp(2d|Z|/s)  2}+ inf

⇢
s > 0 | Ew exp

✓
2d2 (m)2

s

◆
 2

�

= 2d
���2(d)

��
 1

+
2d2 (m)2

log 2

 2dC ,d +
2d2 (m)2

log 2
.

(ii) |X|  d|a|
2
 2d|Z|+ 2d2 (m)2 and kXk 1  2dC ,d +

2d2
 (m)2

log 2 .

To enhance simplicity and maintain consistent notation, we define:

C ,d,2 := 2C ,d +
2d (m)2

log 2
. (51)
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Proof of Proposition 4.

k̄
[a]
2 (x,x0) :=E!�s2

�
!̄>(!)x

�
�s2

�
!̄>(!) · x0�

k̄
[!]
2 (x,x0) :=E(a,!)ā(a)

2
�
0
s2

�
!̄>(!)x

�
�
0
s2

�
!̄>(!)x0�x · x0

. (52)

The Gram matrices, denoted as K̄ [a]
2 and K̄ [!]

2 , corresponding to an infinite-width two-layer net-
work with the activation function �s2 , can be expressed as follows:

K̄
[a]
ij,2 = k̄

[a]
2 (xi,xj), K̄

[a]
2 = (K̄ [a]

ij,2)n⇥n,

K̄
[!]
ij,2 = k̄

[!]
2 (xi,xj), K̄

[!]
p

= (K̄ [!]
ij,2)n⇥n. (53)

The proof can be divided into two main parts. The first part, seeks to establish that the difference
between K [a]

2 + K [!]
2 and K̄ [a]

2 + K̄ [!]
2 is small. In this case, the proof draws upon Proposition

3, which underscores the potential for the error in k✓(0) � ✓(t⇤)k1 to be highly negligible when
m assumes a large value. The second part aims to demonstrate that the disparity between G(✓(t⇤1))

and K̄ [a]
2 + K̄ [!]

2 is minimal. This particular proof relies on the application of sub-exponential
Bernstein’s inequality as outlined in Vershynin (2018) (Theorem 3).

First of all, we prove that the difference between K [a]
2 +K [!]

2 and K̄ [a]
2 + K̄ [!]

2 is small. Due to
���k̄[a]2 (x,x0)� k

[a]
2 (x,x0)

��� E!

���s2
�
!̄>(!)x

�
�s2

�
!̄>(!)x0�

� �s2 (!x)�s2 (! · x0)
��

2dk!̄>(!(0))� !(0)k1k!(0)k1

2d (m)

r
2 log

4m(d+ 1)

�
(54)

with probability at least 1� � over the choice of ✓(0). Therefore,

kK [a]
2 � K̄ [a]

2 kF  2n (m)

r
2 log

4m(d+ 1)

�
. (55)

Similarly, we can obtain that

kK [!]
2 � K̄ [!]

2 kF  2n (m)

r
2 log

4m(d+ 1)

�
. (56)

Set  (m)  min{�a,2,�!,2}

16n
q

2 log 4m(d+1)
�

, i.e.

m � n
4
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p
2d
p
RS,s1 (✓(0))

(�a,1 + �!,1)min{�a,2,�!,2}
2 log

4m(d+ 1)

�

!
,

we have
kK [a]

2 � K̄ [a]
2 kF , kK

[!]
2 � K̄ [!]

2 kF 
1

8
min{�a,2,�!,2}.

Furthermore, by sub-exponential Bernstein’s inequality as outlined in Vershynin (2018) (Theorem
3), for any " > 0, we define

⌦[a]
ij,2 :=

n
✓(0) |

���G[a]
ij,2(✓(0))� K̄

[a]
ij,2

��� 
"

n

o

⌦[!]
ij,2 :=

n
✓(0) |

���G[!]
ij,2(✓(0))� K̄

[!]
ij,2

��� 
"

n

o
. (57)

Setting "  ndC ,d,2, by Theorem 3 and Lemma 6, we have

P(⌦[a]
ij,2) � 1� 2 exp

✓
�

mC0"
2

n2d2C ,d,2

◆
,

P(⌦[!]
ij,2) � 1� 2 exp

✓
�

mC0"
2

n2d2C ,d,2

◆
. (58)
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Therefore, with probability at least
h
1� 2 exp

⇣
�

mC0"
2

n2d2C2
 ,d,2

⌘i2n2

� 1 � 4n2 exp
⇣
�

mC0"
2

n2d2C2
 ,d,2

⌘

over the choice of ✓(0), we have
���G[a]

2 (✓(0))� K̄
[a]
2

���
F

 "

���G[p]
2 (✓(0))� K̄

[p]
2

���
F

 ". (59)

Hence by taking " = 1
8 min{�a,2,�!,2} and � = 4n2 exp

⇣
�

mC0�
2
1

16n2d2C2
 ,d,2

⌘
, we obtain that

�min (G2 (✓(t
⇤
1))) ��min

⇣
G[a]

2 (✓(t⇤1))
⌘
+ �min

⇣
G[!]

2 (✓(t⇤1))
⌘

��a,1 + �!,1 �

���G[a]
2 (✓(t⇤1)� K̄ [a]

2

���
F

�

���G[!]
2 (✓(t⇤1))� K̄ [!]

2

���
F

� kK [a]
2 � K̄ [a]

2 kF � kK [!]
2 � K̄ [!]

2 kF

�
3

4
(�a,2 + �!,2). (60)

Proof of Proposition 5. Due to Proposition 4 and the definition of t⇤2, we have that for any � 2 (0, 1)

�min (G2 (✓(t))) �
1

2
(�a,1 + �!,1) (61)

for any t 2 [t⇤1, t
⇤
2] with probability at least 1� � over the choice of ✓(0).

As we know

Gij,2 = G
[a]
ij,2+G

[!]
ij,2 =

mX

k=1

rak�s2(xi;✓)·rak�s2(xj ;✓)+
1

m2

mX

k=1

r!k�s2(xi;✓)·r!k�s2(xj ;✓)

(62)
and (

dak(t)
dt = �rakRS,s2(✓) = �

1
n
p
m

P
n

i=1 ei,2�sp

�
w>

k
xi

�

d!k(t)
dt = �rwkRS,s2(✓) = �

1
n
p
m

P
n

i=1 ei,2ai�
0
sp

�
w>

k
xi

�
xi

where ei,2 = |f(xi)� �s2(xi;✓)|.

Then finally we get that

d

dt
RS,s2(✓(t)) =

mX

k=1

✓
rakRS,s2(✓)

dak(t)

dt
+r!kRS,s2(✓)

d!k(t)

dt

◆

=�

mX

k=1

(rakRS,s2(✓)rakRS,s2(✓) +r!kRS,s2(✓)r!kRS,s2(✓))

=�
1

n2
eT2 Gij,2(✓(t))e2

�
2

n
�min (G2 (✓))RS,s2(✓(t))

�
1

n
(�a,2 + �!,2)RS,s2(✓(t)). (63)

Therefore,

RS,s2(✓(t))  RS,s2(✓(t
⇤
1)) exp

✓
�
t� t

⇤
1

n
(�a,2 + �!,2)

◆
. (64)
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A.5 EXPERIMENTAL DETAILS FOR THE HRTA

A.5.1 FUNCTION APPROXIMATION USING SUPERVISED LEARNING

Example 1 (Approximating sin(2⇡x)). In the first example, our goal is to approximate the function

sin(2⇡x) within the interval [0, 1] using two-layer neural networks (NNs) and the HRTA. We will

provide a detailed explanation of the training process for the case of s = 0.5, which corresponds to

the homotopy training case. The training process is divided into two steps:

1. In the first step, we employ the following approximation function:

� 1
2
(x;✓) :=

1
p
1000

1000X

k=1

ak� 1
2
(!kx) (65)

to approximate the function sin(2⇡x). Here, � 1
2
(x) = 1

2 Id(x) + 1
2�(x), and the initial values of the

parameters are drawn from a normal distribution ✓ ⇠ N (0, I). We select random sample points

(or grid points) {xi}
100
i=1, which are uniformly distributed in the interval [0, 1]. The loss function in

this step is defined as

R
S,

1
2
(✓) :=

1

200

100X

i=1

|f(xi)� � 1
2
(xi; ✓)|

2
. (66)

Therefore, we employ the Adam optimizer to train this model over 3000 steps to complete the first

step of the process.

2. In the second step, we employ the following approximation function:

�(x;✓) :=
1

p
1000

1000X

k=1

ak�(!kx) (67)

to approximate the function sin(2⇡x). Here the initial values of the parameters are the results in the

first step. The loss function in this step is defined as

RS(✓) :=
1

200

100X

i=1

|f(xi)� �(xi;✓)|
2
. (68)

Therefore, we employ the Adam optimizer to train this model over 13000 steps to complete the

second step of the process and finish the training.

For the purpose of comparison, we employ a traditional method with the following approximation

function:

�(x;✓) :=
1

p
1000

1000X

k=1

ak�(!kx) (69)

to approximate the function sin(2⇡x). Here, the initial values of the parameters are sampled from a

normal distribution ✓ ⇠ N (0, I). We select the same random sample points (or grid points) xi
100
i=1

as used in the HRTA. The loss function in this step is defined as

RS(✓) :=
1

200

100X

i=1

|f(xi)� �(xi; ✓)|
2
. (70)

Therefore, we employ the Adam optimizer to train this model over 16000 steps to complete the

training.

In addition, we conducted experiments with neural networks that were not highly overparameterized,

containing only 200 and 400 nodes. The results are illustrated in the following figures:

Example 2 (Approximating sin(2⇡(x1 + x2 + x3))). The training methods in Example 1 and this

current scenario share the same structure. The only difference is that in this case, all instances of !

and x used in Example 1 have been extended to three dimensions. In Figure 3, we demonstrate that

HRTA is effective in a highly overparameterized scenario, comprising 125 sample points with 1000

nodes. Additionally, we illustrate that HRTA remains effective in a scenario with less overparam-

eterization, involving 400 nodes and 400 sample points. The results are presented below Figure 8.
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Figure 6: Approximation for sin(2⇡x) by NNs
with 200 nodes

Figure 7: Approximation for sin(2⇡x) by NNs
with 400 nodes

Figure 8: Approximation for sin(2⇡(x1 + x2 + x3)) with less overparameterization

A.5.2 SOLVING PARTIAL DIFFERENTIAL EQUATIONS BY DEEP RITZ METHOD YU & E
(2018)

Example 3. In this example, we aim to solve the Poisson equation given by:
⇢
��u(x1, x2) = ⇡

2 [cos(⇡x1) + cos(⇡x2)] in ⌦,
@u

@⌫
= 0 on @⌦,

by homotopy relaxation training methods, where ⌦ is a domain within the interval [0, 1]2. The exact

solution to this equation is denoted as u
⇤(x1, x2) = cos(⇡x1) + cos(⇡x2).

1. In the first step, we employ the following approximation function:

�̄(x;✓) :=
1

p
1000

1000X

k=1

ak�̄(!kx) (71)

to solve Passion equations. Here, �̄(x) = 1
2ReLU

2(x), and the initial values of the parameters are

drawn from a normal distribution ✓ ⇠ N (0, I). We select random sample points (or grid points)

{xi}
400
i=1, which are uniformly distributed in the interval [0, 1]2. As per (Lu et al., 2021, Proposition

1), the loss function in the Deep Ritz method for solving this Poisson equation is indeed given by:

R
S,

1
2
(✓) :=

1

800

400X

i=1

⇥
|u

⇤(xi)� �̄(xi;✓)|
2 + |ru

⇤(xi)�r�̄(xi;✓)|
2
⇤
. (72)
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This loss function captures the discrepancy between the exact solution u
⇤(xi) and the network’s

output �̄(xi;✓), as well as the gradient of the exact solution and the gradient of the network’s

output, for each sampled point xi. Therefore, we employ the Adam optimizer to train this model

over 16000 steps to complete the step.

2. In the second step, we employ the following approximation function:

�̄ 3
2
(x;✓) :=

1
p
1000

1000X

k=1

ak�̄(!kx) (73)

to solve Possion equations. Here the initial values of the parameters are the results in the first step.

The loss function in this step is defined as

RS(✓) :=
1

800

400X

i=1

h
|u

⇤(xi)� �̄ 3
2
(xi;✓)|

2 + |ru
⇤(xi)�r�̄ 3

2
(xi;✓)|

2
i
. (74)

Therefore, we employ the Adam optimizer to train this model over 13000 steps to complete the step.
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