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Appendix

A Proof of Proposition[I)in Section 2]
Proof. We use the notation T'| gy, 745)(v) = (T5v)ies(v, 7+b)- Assume that T + b has a DSS with
respect to every v € L?(D)™ in the sense of Deﬁnition and that
ReLU(Tv™) + b) = ReLU(Tv® +b) in D, (A1)
where (1), v(?) € L?(D)™. Since T'+b has a DSS with respect to v(1), we have fori € S(v™), T+b)
0 < ReLU(T;0™ + b;) = ReLU(Tj0® + b;) in D,

which implies that
Tiw® +b; = Tw® + b, in D.
Thus,

v — v e Ker ( (A2)

By assuming , we have fori ¢ S(v(), T),
{x € D|TwW(z) +bi(z) <0} = {z € D| Tiw® (z) + bi(x) < 0}.

T|S(u<1>,T+b)) :

Then, we have
Ti(0® — (0 = o)) (@) + bi(2) = T (2) + by(x) < 0if T ™ (z) + bi(z) <0,
that is,
T (z) + bi(x) < T, (v(l) - v(2)) (z) if Tw® (z) + bi(z) < 0.

In addition,

T, — v®)(2) = Tow® (2) + bi(x) (Tv(z) (z) + bi(x)> = 0if T (z) + b;(z) > 0.

Thus,
oM — 0@ e X (v, T +b). (A3)
Combining (A.2) and (A.3), and (2.1) as v = v1), we conclude that
o — @ =y,

Conversely, assume that there exists a v € L*(D)" such that

Ker (T, ) N X (0.7 +) # {0},
Then there is u # 0 such that

uGKer( )ﬁX(v,T—H)).

T‘S(U,Tﬂo)
Fori € S(v,T + b), we have by u € Ker(T}),

ReLU (T;(v — u) + b;(z)) = ReLU (T;v + b;(x)) .
Fori ¢ S(v,T +b), we have by u € X (v, T + b),

0 ifTv(x)+b;(x) <0
ReLU (Ti(v — u)(z) + bi(x)) = { Tv(x) +(b,;%;; i(f)m(x) + bi(z) >0

= ReLU (T;v(x) + b;(z)) .
Therefore, we conclude that
ReLU (T(v — u) + b) = ReLU (Tv + b) ,
where u # 0, that is, ReLU o(T" + b) is not injective. O
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B Details of Sections 3.1l and

B.1 Proof of Lemmal(ll
Proof. The restriction operator, 7, : L?(D)™ — L2(D)* (¢ < m), acts as follows,
me(a,b) :=b, (a,b) € L*(D)™“ x L*(D)". (B.1)

Since L2(D) is a separable Hilbert space, there exists an orthonormal basis {y, }ren in L2(D). We
denote by

PR = (0,...,0,&,0,...,()) e L*(D)™,
j—th
for k € Nand j € [m — {]. Then, {<P2,j}keN,je[m,g] is an orthonormal sequence in L2(D)™, and
Vo := L*(D)™* x {0}*
= span {¢f), | KN, j € [m— ]}
We define, for a € (0, 1),

ngyj = (0,...,0, (]. 704)@]6,0,...,0, \/af(k_l)(m_g)+j> S L2(D)m, (B.2)
—_———
j—th
with k € Nand j € [m—¢]. We note that {¢f, ; }ren, je[m—¢ is an orthonormal sequence in L?(D)™.
We set
Vo = span{gog’j ’ keN,je [m—E]}. (B.3)

It holds for 0 < o < 1/2 that

HPV&L ~p| <

op

Indeed, foru € L?(D)™ and 0 < a < 1/2,

2
HPVQLU—PVLu‘ = || Pv,u— Pyyull2 pym

0 L2(D)m
2

= Z (u, @g,j)‘Pg,j = (u, @g,j)@g,j

keN,je[m—{] L2(Dym

2

= S (= a)(uy,on)er — (g, 00) 0k

keN,je[m—{] £2(D)

2

+ > oty 1) m—)+)E k1) (m—)+5
keN,je[m—{]

12(D)
2
SQQ Z ZKUJMPI@)P+a22|(um7§k)|2 S4a2Hu”L2(D)ma
j€[m—£] kEN keN
which implies that HPVL ~ Pyl <2
g o

We will show that the operator
PyioT: L*(D)" — L*(D)™,
is injective. Assuming that for a,b € L?(D)",
PyioT(a)= Py oT(b),
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is equivalent to
T(a) = T(b) = Pv,(T(a) — T(b)).

Denoting by Py, (T (a) — T'(b)) = ZkeN,je[m—l] Ch,jPh o
m(T(a)=TO) = Y kil 1)m—0+s-
keN,je[m—L]
From (3.1), we obtain that c; = 0 for all £, j. By injectivity of T', we finally get a = b.

We define Q,, : L?(D)™ — L?(D)™ by
Qo = (PVOLPVQL +(I—- PVOL)(I — PVQL)> (I — (PvOL _ PVQL)2>

By the same argument as in Section 1.4.6|Kato| [2013]], we can show that (), is injective and
Qan; = PVOLQOM

—1/2

that is, Q maps from Ran(Py 1) to
Ran(Py.) C {0} x L*(D)".

It follows that
M0 Qa0 PyroT: L*(D)" — L*(D)"
is injective. O

B.2 Remarks following Lemma ]

Remark 2. An example that satisfies is the neural operator whose L-th layer operator L,
consists of the integral operator K, with continuous kernel function ki, and with continuous
activation function o. Indeed, in this case, we may choose the orthogonal sequence {&; }ren in
L3(D) as a discontinuous functions sequence [1_] so that span{¢; tren N C(D) = {0}. Then, by
Ran(Lr) C C(D)%, the assumption holds.

Remark 3. In the proofofLemma an operator B € L(L?*(D)™, L*(D)"),
B:TQOQD‘OP‘/QL,
appears, where Py 1 is the orthogonal projection onto orthogonal complement V- of Vi, with
Ve 1= span {goi"j ‘ keN,je[m-— K]} c L*(D)™,
in which ¢f; ; is defined for o € (0,1), k € Nand j € [l],

‘P?,J = <07 cey 07 (1 - O‘)QOIW Oa ) Oa \/af(kl)(mf)+]> .

j—th

Here, {py }ken is an orthonormal basis in L*(D). Futhermore, Q. : L?>(D)™ — L?*(D)™ is
defined by

-1/2
Qo = (PVOL Pys+(I—Py)(I — PVGL)) (1 — (Py. - PVOL)Q) :
where PVOL is the orthogonal projection onto orthogonal complement V- of Vo with
Vo := L2(D)™* x {0}*.
The operator @, is well-defined for 0 < o < 1/2 because it holds that

HPVGJ_ - PVOJ_ < 2a.

op

This construction is given by the combination of "Pairs of projections” discussed in|Kato| [2013|
Section 1.4.6] with the idea presented in [Puthawala et al.| |2022b, Lemma 29].

'e.g., step functions whose supports are disjoint for each sequence.
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B.3 Proof of Theorem[l

We begin with
Definition 3. The set of L-layer neural networks mapping from R¢ to RY s

NL(O';Rd,Rd/) = {f : Rd — Rd, f(x) = WLO'(~ "WlU(Wox—Fbo) + by - ")+bL,
W, € Rée+1xde p, ¢ Rée+1 d, € No(do = d, dps1 = d'), € =0, L}

where 0 : R — R is an element-wise nonlinear activation function. For the class of nonlinear
activation functions,

Ay = {a € C(]R)‘Eln € Ny s.t. N, (0; R R) is dense in C(K) for VK C R? compact}

AL = {a € Ao‘U is Borel measurable s.t. sup (@) < oo}
ver 1+ |:E|

BA = {o € AO‘VK c R? compact ,Ye > 0, and VC > diam(K), 3In € N,

3f € Ny (0; R RY) s.t. | f ()

f@)|<C Vo e Rd}.
The set of integral neural operators with L?-integral kernels is
NOL(0; D, din, dout) = {G L L2(D)%n — L2(D)%o
G=Kpi10(KrL+br)oo---o(Ka+by)oogo(Ky+by)o(Ky+by),
Kr € (DY ID)"), Ko f o> [ o) fl)dy
ky € L2(D x D;R%+1%de) p, ¢ L2(D; R%+1),
de €N, do = din, drr2 = dout, £ =0, ..., L+ 2}.

; B4
D

Proof. Let R > 0 such that
K ¢ Bgr(0),

where Br(0) := {u € L?(D)%n | lull2(pyain < R}. By Theorem 11 of Kovachki et al. [2021b]),
there exists L € N and G € NOL(o; D, d;n, doyt) such that

*(a) -G << B.
SEEHG (a) G(a)’U(D) dour = 27 (B-5)
and B
6@, ., <400 torac DY ooy < B

We write operatoré by
G=Kpy10(Kp+by)oo---o(Ky+by)ooo(Ky+by)o(Ko+bp),
where
R € (DY, LD)" ), Rys £ [ Rt )i
ky € C(D x D;R%+1%) b, ¢ L2(D; R%+1),
de €N, dyp =djp, dp+2 = dout, £=0,..., L+ 2.

We remark that kernel functions k; are continuous because neural operators defined in Kovachki et al.
[2021b]] parameterize the integral kernel function by neural networks, thus,

Ran(G) € C(D)%ut. (B.6)
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517 We define the neural operator H : L2(D)%n — L2(D)%n+dout by
H=Kpry10(Kp+br)oo---o(Ky+by)ooo(Ky+bi)o (Ko+bo),

sts  where K, and by are defined as follows. First, we choose K;,; € L£(L?*(D)%n, L?(D)%n) as a linear
519 injective integral operatorﬂ

s20 (i) When oy € Al N BA is injective,

ey

Ko = ( I%”J > € L(L* (D)%, L*(D)%n+4), by
0

I
7N\
S
N———
m
b(
[V}
—~
=)
~
&
3
+
&

521

522 :
K, = T2 ) e L(LA(D)Fm e L2(D) b ey by = (=) € LA(D)hntden
0] K@ bZ
523
(1<f<1L),
524
525

K. -
Kri = mj NO c £(L2(D)din+dL+l’LQ(D)din+dout)’ by = 0 c L2(D)dm+douz_
O Kry 0
526

527 (ii)) When 01 = ReLU,

Kinj . . O .
fo= ( Ko ) € L(LA(D)"n LA(D)"m+h), - by = ( bo ) € L}(D)*
528
Kinj @) 0]
Ki=| —Kiny O | er(L?D)hnth L2(D)*Hntd2) by = | O | € L*(D)>Hnte,
(@) K b1
529
530 ‘
Kinj Kzng O
K= —Kinj_ Kinj_ 1 | € L(LA(D)*ntde, [2(D)2dintdesry,
o, 'K,
531
0]
be=| O | e L3(D)*ntdsr ) (2<0< L),
by
532
533 X K 0 :
Ky = (-T2 ) € LD D)),
534 '
by = NO € L2(D)dm+dL+1
L bL ’
535 I 0
Kriq = my € ﬁ(L2(D)di¢L+dL+1’L2(D)din+dout)7
536 O Kin

(0] .
bLJrl = < O ) c L2(D)dzn+dout.

sa7  Then, the operator H : L?(D)%» — L2(D)%in*dout hag the form of

Kinj o Kinjoo o Kinjo---000 Kin; o Kinj

G

> in the case of (i).
) in the case of (ii).

H :=
Kinjo---oKin;

G

*For example, if we choose the integral kernel kin; as kinj (7, y) = > _re, Pr(z)Pr(y), then the integral
operator K, with the kernel kiy; is injective where {@}y, is the orthonormal basis in L (D)%~
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553

For the case of (ii), we have used the fact
(1 —-I )OReLUO( _II ) =1.
Thus, in both cases, H is injective.

In the case of (i), as o € AL we obtain the estimate

lo ()l 2oyt < V2IDldinCo + | fll 2y » | € LAHD)7,

Cp :=sup (=)l < o0
z€R 1+ |£E‘

where

Then we evaluate for a € K(C Bgr(0)),
IO P
< |G

+ Kzn OKzn OUOKin' O"'OUOKin" OKin" a in
ey 1Ein © i ; o K@l

< 4M + \/2[D|d; Co Z 1Kl + 1 Kinj o> R =: Ch.

In the case of (ii), we find the estimate, for a € K,
1 (@)l| 2 pytintoour < AM A+ | Kingllop* R < C (B.3)

From (B.6) (especially, Ran 7r1 H ) cc ( )) and Remarkl we can choose an orthogonal sequence
{1 }ken in L?(D) such that (3.1) holds. By applying Lemma LasT = H,n = djn, m = diy, +doyt,
{ = dyys, we find that

G :=mq,,, ©Qa o PyroH : L*(D)%" — L*(D)%,

—_— —
=:B

is injective. Here, Py,. and @), are defined as in Remark|§|; we choose 0 < o << 1 such that

€
<min | ——,1 ] =: €,
o min <1OC’H ) €0
where PVOL is the orthogonal projection onto
L= {0}%n x L2(D)%eur,
By the same argument as in the proof of Theorem 15 in|Puthawala et al|[2022al], we can show that
||I - Qa”op < 460'

Furthermore, since B is a linear operator, B o K is also a linear operator with integral kernel
(Bkry1(-,y)) (z), where k1 (x,y) is the kernel of K7, . This implies that

G € NOy(0;D,din, dout)-

|Pvs = Py,

We get, fora € K,

+(g) — +(a) — Ya) —
I6%(@ = 6@ ooy < |67 (@) =Cl@) .., H[E@-C@ - B
BI)<s

Using (B7) and (B-8), we then obtain

HG(G) B G(a)‘ L2(D)ydout 17apu © H (@) = Ta,, © Qo Py 0 H(a HL2(D)d°m

< [Tt 0 (P = Prs + Py 0 (@) = 7o, 0 Quo Pz o H@)| |,

< [Tt © (P = Py ) 0 H(a)| pocppinns It © U= Q) 0 P 0 H@)| oy,

€
< 5¢o ||H(a)||L2(D)d'in+dout < bR
(B.10)
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Combining and (B.10), we conclude that

Q + —_ E E =
sup [|G(a) = G(@)|| oy < 5+ 5 =

B.4 Remark following Theorem

Remark 4. We make the following observations using Theorem [I}

(i)

(ii)

(iii)

ReLU and Leaky ReLU functions belong to AY N BA due to the fact that {0 €
C(R) | o is not a polynomial} C Ag (see|Pinkus| [[1999)]), and both the ReLU and Leaky
ReLU functions belong to BA (see Lemma C.2 in|Lanthaler et al| [2022]]). We note that
Lemma C.2 in |Lanthaler et al| [2022)] solely established the case for ReLU. However,
it holds true for Leaky ReLU as well since the proof relies on the fact that the function
x +— min(max(z, R), R) can be exactly represented by a two-layer ReLU neural network,
and a two-layer Leaky ReLU neural network can also represent this function. Consequently,
Leaky ReLU is one of example that satisfies (ii) in Theorem ]|

We emphasize that our infinite-dimensional result, Theorem |l| deviates from the finite-
dimensional result. \Puthawala et al.| [|2022a, Theorem 15] assumes that 2d;,, + 1 < dyus
due to the use of Whitney’s theorem. In contrast, Theorem![l|does not assume any conditions
on d;, and d,yy, that is, we are able to avoid invoking Whitney’s theorem by employing
Lemmalll

We provide examples that injective universality does not hold when L*(D)%n and L?(D)%out
are replaced by Réin gnd Rut: Consider the case where d;y, = dpyy = 1and Gt : R -5 R
is defined as G*(x) = sin(x). We can not approximate GT : R — R by an injective
function G : R — Rin the set K = [0, 27] in the L*°-norm. According to the topological
degree theory (see |Cho and Chen)| [2006, Theorem 1.2.6(iii)]), any continuous function
G : R — R which satisfies |G — G | c(j0,2)) < € satisfies the equation on both intervals
I, = (0,7, I = [m,27] deg(G,I;,s) =deg(G*,1I;,s) = 1foralls € [-1+¢,1—¢]
j = 1,2. This implies that G : I; — R obtains the value s € [—1 + ¢, 1 — €] at least once.
Hence, G obtains the values s € [—1 + €,1 — €| at least two times on the interval [0, 27]
and is it thus not injective. It is worth noting that the degree theory exhibits significant

differences between the infinite-dimensional and finite-dimensional cases [[Cho and Chen,
2000]]).

C Details of Section

C.1 Finite rank approximation

We consider linear integral operators K, with L? kernels k;(x, ). Let {¢x }xen be an orthonormal

basis in L?(D). Since {¢k(y)pp(x) }k pen is an orthonormal basis of L?(D x D), integral kernels
ke € L?(D x D;R%+1%de) in integral operators K, € £L(L?(D)%, L?(D)%+1) has the expansion

ko(z,y) = D Cidon(y)ep(a),
k,peN

then integral operators K, € £(L?(D)4¢, L?(D)d+!) take the form

where C,gi)) € Ré+1%de whose (4, j)-th component ¢

Kou(x)= > C) (u, o) pp(), u e LA(D)™,
k,peN

O]

k.p,ij 1S given by

[
cgc.;),ij = (ke,ijs PEPp) L2(Dx D)-

Here, we write (u, ) € Rde,

(u, pr) = ((Ula%)m(z)), e (Udu%)m(p)) .
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We define Ky y € L(L?(D)%, L?(D)%-+1) as the truncated expansion of K, by N finite sum, that
is,
Kynu(z) = Ckpuwk »(@).
kp<N

Then K, vy € L(L%(D)%, L?(D)%+1) is a finite rank operator with rank N. Furthermore, we have
1/2

4
1Ky = Konllo, < 1Ko — Kenllgs = | D Dl I ; (C.)

k,p>N 1,5
which implies that as N — oo,
HKg — KévN”op —0
C.2 Layerwise injectivity

We first revisit layerwise injectivity and bijectivity in the case of the finite rank approximation. Let
Ky : L?*(D)™ — L?*(D)™ be a finite rank operator defined by

Enu(@) = ) Crplup)pp(x), ue L*(D)",
k,p<N

where Cj, , € R™*™ and (u, ¢,) € R™ is given by
(U, @p) = ((u17 @p)[ﬂ(D)) seey (Un, @p)[ﬂ(D)) .

Let by € L?(D)™ be defined by
= Z bppp ()

p<N
in which b, € R™. As analogues of Propositionsand@ we obtain the following characterization.
Proposition 5. (i) The operator

ReLU o( Ky + by) : (span{px }r<n)™ — L*(D)™,
is injective if and only if for every v € (span{¢x }r<n)",
{ue L*(D)" | iy € Ker(Cs,n)} N X (v, Kn +by) N (span{py }r<n)™ = {0}
where S(v, Ky + by) C [m] and X (v, Ky + by ) are defined in Definition 2} and

iy = ((u,0p))yey €RY, Csv = (Ck7’I|S(’U,KN+bN))k q€[N) € RN TR,

(C2)
(ii) Let o be injective. Then the operator
oo (Kn +by) : (span{gr}ren)” = L*(D)™,
is injective if and only if Cy is injective, where
Cy = (C’f’q)k,qe[N] e RNmxNn, (C.3)

Proof. The above statements follow from Propositions I 1| and 2] Iby observing that u € Ker (K ) is

equivalent to (cf. (C:2) and (C.3))

ZCk,pugok =0, < Cpyiny =0.
k,p<N

19



610

611
612

613
614

615

616
617

618

619

620

621

622

623
624
625
626

627

628
629

630

631

633

C.3 Global injectivity

We revisit global injectivity in the case of finite rank approximation. As an analogue of Lemmal[T] we
have the following
Lemma 2. Let N,N' € Nand n,m,¢ € Nwith N'm > N'¢ > 2Nn + 1, and let T : L*(D)" —
L?(D)™ be a finite rank operator with N’ rank, that is,

Ran(T") C (span{epw}te<n)™, (C4)
and Lipschitz continuous, and

T : (span{oy tr<n)" — L*(D)™,

is injective. Then, there exists a finite rank operator B € L(L?(D)™, L?(D)*%) with rank N' such
that

BoT: (span{gi}ran)” — (span{px}rans)’,
is injective.

Proof. From (C.4), T : L?(D)"™ — L?(D)™ has the form of
T(a) = > (T(a), ox)¢k,

k<N’
where (T'(a), 1) € R™. We define T : RN — RN'™ by
T(a) = ((T(a)a ka))ke[N’] € RN m7 ac RNn,

where T'(a) € L?(D)™ is defined by

T(a):=T | Y arpr | € L*(D)™,
k<N

in which a; € R", a = (ay,...,ax) € RV™.

Since T : L2(D)™ — L2(D)™ is Lipschitz continuous, T : RN — RN is also Lipschitz
continuous. As N'm > N'¢ > 2Nn + 1, we can apply Lemma 29 from Puthawala et al.|[2022a]]
with D = N'm, m = N’¢, n = Nn. According to this lemma, there exists a N’¢-dimensional linear
subspace V- in RN such that

<1,

op

HPVL ~ Py

and ’
Py.oT :RN® 5 RN'™

is injective, where V- = {0}V (=0 x RN"?, Furthermore, in the proof of Theorem 15 of |Puthawala
et al.|[2022a]], denoting

! ’
B:=nn0Qo Py ERNZXNm,

we are able to show that ,
BoT:RV" 5 RV

is injective. Here, 7/ : RN'm _y RN'¢
mnre(a,b) :=b, (a,b) € RN (M= 5 RN'¢,
where Q : RY'™ — RN'™ i5 defined by
—1/2
Q:= (PVOLPVL + (I~ Pya)(I - PVL)) (I — (Pys — PVL)Q) .
We define B : L%(D)™ — L%(D)* by

Bu = Z Bk,p(quok)(pp,
k,p<N’
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where By, € R“™ B = (By, )k pe(n)- Then B : L?(D)™ — L*(D)" is a linear finite rank
operator with N’ rank, and
BoT:L*D)" - L*(D)"
is injective because, by the construction, it is equivalent to
BoT:RV" 5 RN

is injective. O

C.4 Proof of Theorem 2]

Definition 4. We define the set of integral neural operators with N rank by
NOL n (05 D, din, dout) == {GN L L2(D)%n — L2(D)%ow
Gy=Krpino(Kpn+brn)oo---o(Kyn+byn)ooo(Kyn+bin)o(Kon+bon),

Kyn € L(LA(D)", L*(D)"+), Ko : f Z C,Eﬂ),(f, ©k)Pp;
kp< N

ben € LA(D; R ), by = > b,
p<N

C}gi)) c RdHle@, bl(f) € derl’ k7p < Na

de €N, do = din, dpro = dowt, =0, .., [+ 2}.
(C.5)

Proof. Let R > 0 such that
K —,C¢— BR(O)a

where Br(0) := {u € L?(D)d%n | lullp2(pytn < R}. As ReLU and Leaky ReLU function

belongs to AL N BA, by Theorem 11 of [Kovachki et al| [2021b], there exists L € N and G €
NOz(o; D, din, dout) such that

up |G (a) = G ( < £ c6
Z‘é%i” @~ C@ .. <3 (C6)
and
~ 2 din
HG(a)‘ sy, < WM fora € (D), allapyi, < R

We write operator G by
é == I?L+1 o ([?L +EL) cg---0 (I?Q +gg) [oNo el (I?1 +gl) o (I?() +g()),

where

Re e LA, DY), e o [ Rl f0)d,

D

ke € L*(D x DyR¥+1%%) b, € L}(D;R%+1),

de €N, dy =dsn, dpyo = dout, £=0,..., L+ 2.
We set Gy € NOy, n/ (03D, din, doyt) such that
ézv/ = I~{L+1,N’O(I?L,N’ +EL,N’)OU e ~0(f~(2,1v/ +52,N')OUO(I~<1,N’ +FELN’)O(EO,N’ +’507N’)v

where IN(LN/ : L2(D)% — L2?(D)%+ is defined by

ayd 0
Kenvu(@) = Y Ol (u,00)¢p(),
k,p<N'’
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0

kp,ij 1S given by

where C,gi)) € Rée+1%de whose (4, j)-th component ¢

y ~
Ci,;,ij = (kl,ijv @k@p)L%DxD)-

Since
2

¢
= g E 1 12 5 0as N — oo
HS k.p.ij ’
k,p>N'+1 4,5

H[’%@ - [’(VVZ)N/

2 ~ ~
< HKz — Ko n
op

there is a large N’ € N such that

<

~ ~ €
sup HG(a) — Gn (a)‘ LDyt = 3

acK

(C.7

Then, we have

sup HéN/(a)‘
acK

G(a)’

<'s é ’ —
syt < 502 |G (a)

<1+4M.

. G ‘
ey 202 | G0

L2(D)dout

We define the operator Hy : L2(D)%in — L2(D)dintdout by

Hyi(a) = ( Hrlay ) - ( Bisiv oo Ky (@ )

where K;,; n : L?(D)%n — L%(D)% is defined by

Kinjnu = Z (u, k) Pk
k<N

As Kinj v (span{ep b n) ™™ — L2(D)% is injective,

out

Hy:: (Span{sﬁk}kSN)dm — (span{@g fr<n)™™ X (Span{s%}kg]v')d ,
is injective. Furthermore, by the same argument (ii) (construction of H) in the proof of Theorem|I]

Hy € NOp n/(05D,din, dout),

din

because both of two-layer ReLU and Leaky ReLLU neural networks can represent the identity map.
Note that above K, v is an orthogonal projection, so that K;,,; yo- - -0 K v = Kinj n. However,
we write above Hy/(a); as Kinjno--0 Ky ~ (@) so that it can be considered as combination of
(L + 2) layers of neural networks.

We estimate that for a € L*(D)%, ||| 12 (pya.. < R,

1N (@) g2 (ytin +a0me < LA+ AM + || King | 57 R =: Ci.

Here, we repeat an argument similar to the one in the proof of Lemma 2} Hy: : L?*(D)%~ —
L?(D)%in+dout has the form of

Hyo(a) = | Y (Hn(@)v,en)er, Y (Hyi(a)a, o) 0n
k<N k<N’

where (HN/(G)l, Wk) € Rdin, ([.[N/(a)27 SDk) ¢ R%wut . We define Hy RNdin _y RNdin+N'dout
by

Hy (a) := [((HN'(a)l»sDk))ke[N]v ((HN'(a)Qv‘pk))ke[N’]] € RNVdintN'dout | 5 ¢ RNdin

where Hy:(a) = (Hy/(a)1, Hy(a)) € L2(D)%n+tdout is defined by

HN/(a)l = Hpn/ Z APk S L2(D)di’"7
k<N
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HN/(a)g = Hpy Z APk € Lz(D)d""t,

/
k<N )

where ap, € R%", a = (ay,...,ay) € RN%n, Since Hy/ : L?(D)%n — L2?(D)%n*dout is Lipschitz
continuous, H ./ : RNVdin —y RN dout ig also Lipschitz continuous. As
Ndzn + N/dout > N/dout > 2Nd7,n + 17

we can apply Lemma 29 of [Puthawala et al.| [2022a] with D = Nd;, + N'dows, m = N'dous,
n = Nd;,. According to this lemma, there exists a N'd,,;-dimensional linear subspace V<, in
RNdin+N"dout such that

HPVL ~ Py

€
<min| ——— 1) =
op mm(15CHN’ > €

’
PyroHy - RNdm N RNdm-FN dout’

is injective, where V& = {0}Vdin x RN dout | Furthermore, in the proof of Theorem 15 of |Puthawala
et al.|[2022a], denoting by

and

B .= TN dpur OQOPVJ_,

we can show that ,
BoHy : RV%r — RN doue

.. . . , )
is injective, where myg,,, : RN%intN'dout _y RN dout
. !
TN dout ((1, b) = b, ((l, b) c RNdm X RN dout’

/ / .
and Q : RNdintN'dour _y RNdin+N'dout jg defined by

Q= (PV# Pys+ (I~ Pyo)(I - PVL)) (I — (Py: — PVL)Q) I
By the same argument in proof of Theorem 15 in|Puthawala et al.| [2022a]], we can show that
11 = Qll,,, < 4eo-
We define B : L%(D)dintdout —y [2(D)dout
Bu= Y Byp(u,01)ep
k,p< N’

By, € Rioutx(dintdout) B = (B )g pe(n], then B : L*(D)dintdout — [2(D)dout is a linear
finite rank operator with N’ rank. Then,

Gn' := Bo Hys : L*(D)%» — L*(D)%ut,
is injective because by the construction, it is equivalent to
BoHy, : RNdn s RN dout
is injective. Furthermore, we have
Gn' € NOp n/(0; D, din, dout)-

Indeed, Hy' € NOp ni(0; D, din, dout), B is the linear finite rank operator with N’ rank, and
multiplication of two linear finite rank operators with N’ rank is also a linear finite rank operator with
N’ rank.

Finally, we estimate for a € K,
|’G+(a) — GN’ (Cl) HL2(D)dout

- ¢t @-6@]. ... +|[G@-Cn@] ., H|Ev@-Cr@], . -
[Co)<s C)<s
(C.8)



ss0  Using notation (a, px) € R%", and a = ((a, ¢1)) ey € RV %n, we further estimate for a € K,

|G @) = Gne@)| , ., = Tt v (@) = B o Hio(a) 2
= [l7na,..Hne (a) — B o Hyo(a)ll,

= 7~n'dy,, ©oHn(2) = TNvd,,, © Qo Py o Hy(a)ll,

S HTrN/dout (@] (PVOL — PVL =+ PVL) [¢] HN/(a) — 7TN/dom [¢] Q [¢] PVL [¢] HNI(a)HQ (C9)
< |7t © (Pyg = Pys) o Hy(@)]|+ 17, © (T = Q)0 Pys o Hyv(a),

< 5¢p <

€
[y (@)l :
—_———

=IHyr (@)l 2 pydous <CH

90 where ||-||, is the Euclidean norm. Combining (C.8) and (C.9), we conclude that

€

sup [|G(a) = Cx(@)l| 2 ppas S g +gtg=e

€, ¢
3 3

691 O

s2 D Details of Section 4.1]

63 D.1 Proof of Proposition[3]

64 Proof. Since W is bijective, and o is surjective, it is enough to show that u — Wu + K(u) is
e95 surjective. We observe that for z € L?(D)",

Wu+ K(u) = z,

696 1S equivalent to
H,(u):=-W K@)+ Wtz =u.

697 We will show that H, : L?(D)" — L?(D)" has a fixed point for each z € L?*(D)". By the
e98 Leray-Schauder theorem, see|Gilbarg and Trudinger [2001, Theorem 11.3], H : L?(D) — L?(D)
s99 has a fixed point if the union (J,_,; V) is bounded, where the sets

Vy:i={u€ L*(D): u=\H.(u)}
={uel?D): \'u=H,(u)}
={uecl?D): N'u=WT1'K(u)-W'z},
700 are parametrized by 0 < A < 1.

701 As the map u — au + WK (u) is coercive, there is an r > 0 such that for ||u| 2(py» > 7,

(au + I/V’lK(u),u>L2

(D)™ -1
> "
Talze o > W™ 2|2y

702 Thus, we have that for ||u|| p2(py» > 1

(WK (u) — Wz, u)

L2(D)n
[l 2y
<au + WﬁlK(u), ’UJ>LQ(D)n — <au + Wﬁlz, u>L2(D)n
- H“||2L2(D)n
_ —1
W= zllL2pyn (W2 w) 2o —a>-a>-1
[ull 22Dy ullZ () -
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703 and, hence, for all ||u||z2(py > 70 and A € (0, 1] we have u ¢ V). Thus

U vacB,r).
A€(0,1]

704 Again, by the Leray-Schauder theorem (see|Gilbarg and Trudinger [2001, Theorem 11.3]), H, has a
705 fixed point. O

706 D.2  Examples for Proposition 3]

707 Example 2. We consider the case where n. = 1 and D C R® is a bounded interval. We consider the
708 non-linear integral operator,

K()(w)i= [ ble,y. u(e)ulu)dy. o € D.
D
700 and k(x,y,t) is bounded, that is, there is Cx > 0 such that
|k($7y7t)| < CKa T,y € D? teR.
7o If||Wt Hop is small enough such that

-1
1> W] CklDl,

711 then, for o € (HW‘lﬂop Ck|D|, 1), u — au + WLK(u) is coercive. Indeed, we have for

712 u € L?(D),

<au + W‘lK(u),u>L2(D)

||U||L2(D)

> ofullzaoy — [W |, 1K @)z > (o= [[W],, CxID1) o,

>0
713 For example, we can consider a kernel
J
k(z,y,t) = Z cj(@, y)os(a;(@, y)t + b;(z,y)),
j=1
714  where o5 : R — R is the sigmoid function defined by
1
o) =T
715 There are functions a,b,c € C(D x D) such that
J
D llesllz sy < [IW o, 1D
j=1

716 Example 3. Again, we consider the case wheren = 1 and D C R? is a bounded set. We assume that
717 W € CY(D) satisfies 0 < c; < W(x) < co. For simplicity, we assume that |D| = 1. We consider
718 the non-linear integral operator

K(u)(x) := /Dk(x,y,u(:c))u(y)dy, r €D, (D.1)

719 where

Mk‘

17 Y, t C] € y Owire a](z y)t+b (I y)) (D.2)

Jj=1
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in which oire : R — R is the wavelet function defined by

Tuwire(t) = Im (e“le™"),

and aj,bj,c; € C(D x D) are such that the aj(x,y) are nowhere vanishing functions, that is,
aj(x,y) # 0 forall x,y € D x D.

The next lemma holds for any activation function with exponential decay, including the activation
function oy and settles the key condition for Proposition[3]to hold.

Lemma 3. Assume that |D| = 1 and the activation function o : R — R is continuous. Assume that
there exists My, mg > 0 such that

o(t)] < Mye ™l teR.
lor(

Let aj,bj,c; € C(D x D) be such that a;(z,y) are nowhere vanishing functions. Moreover, let
K : L*(D) — L?(D) be a non-linear integral operator given in (]]zrf[) with a kernel satisfying (D.2),
a>0and0 < cy < W(z) < c1. Then function F : L?>(D) — L*(D), F(u) = au+ W 1K (u)

is coercive.

Proof. As D is compact, there is ag > 0 such that for all j = 1,2,...,.J we have |a;(z,y)| > ao
a.e. and |b;(z,y)| < by a.e. We point out that |o(t)| < M;. Next, let ¢ > 0 be such that

J
_ (6%
(Z [W=ejll L (pxpy) Mie < =, (D.3)

- 4
Jj=1

A > 0,and u € L%(D). We define the sets

Di(N\) ={z € D: |u(x)| > e},
Dy(N\) ={z € D: |u(x)| < e}

Then, for z € Dy()),

J
D IW el (oxpylo (0 (@, y)u(@) + by (2, y)u(w)]

j=1

J
Q
< W les || poo Mieh < =\
_]Z:;II il Lo (D x Dy M1 = 1

After € is chosen as in the above, we choose A\g > max(1, by/(ape)) to be sufficiently large so that
for all [¢t| > )¢ it holds that

J
_ «
Z”W lchLW(DXD) Mlexp(—m0|a0t—b0|)t< Z

Jj=1

Here, we observe that, as A\g > bg/(aoe), we have that for all |t| > e)o, ag|t| — b > 0. Then, when
A > Ao, we have for z € Dy(A),

J
> W el L pxp)

j=1

<

o (asteppute) + ) )

=~ Q
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When u € L?(D) has the norm ||ul[z2(py = A > Ag > 1, we have

/D /D W(z) k(z, y, u(x))u(x)u(y)d:cdy’
J

< [ ([ W tellmentiess — mafaotu(a)] bl ) o)t o)
p \Jp; 5
J
(] S e lotas e hute) + by ) e )l
2 j=1
Q «
< Z"u”L?(D) + Z/\HUHLZ(D)
Q
< 5”“”%2(13)-
Hence,
1
<Oé’LL+W K(U)7U>L2(D) > g”u” ,
lull22(p) = g TIEAm)
and the function u — au + W 1K (u) is coercive. O

D.3  Proof of Proposition[d]

Proof. (Injectivity) Assume that
oc(Wuy + K(uy) +b) = o(Wug + K(ug) + b).

where uy,us € L?(D)". Since o is injective and W : L?(D)® — L?(D)™ is bounded linear
bijective, we have

up + WK (u1) = ug + WK (up) =: 2.
Since the mapping u + z — W ~1 K (u) is contraction (because W~ K is contraction), by the Banach
fixed-point theorem, the mapping u + z — W1 K (u) admit a unique fixed-point in L2( D)™, which
implies that u; = us.

(Surjectivity) Since o is surjective, it is enough to show that u — Wu + K (u) + b is surjective.
Let z € L?(D)™. Since the mapping u — W1z — W=1b — W1 K (u) is contraction, by Banach
fixed-point theorem, there is u* € L?*(D)™ such that

wW=Wle—W - WK (@u) <= Wu'+K@u*)+b=z

O
D.4 Examples for Proposition 4]
Example 4. We consider the case of n = 1, and D C [0, £]%. We consider Volterra operators
K(u)(@) = [ b,y ula),u)u(o)d.
where x = (z1,...,2q) andy = (y1,. .., Ya). We recall that K is a Volterra operator if
k(z,y,t,s) #0 = y; <z, forallj=1,2,...,d. (D.4)

In particular, when D = (a,b) C R is an interval, the Volterra operators are of the form

K@) = [ kloy,ute) uty))ut)dy

and if x is considered as a time variable, the Volterra operators are causal in the sense that the value
of K(u)(x) at the time x depends only on u(y) at the times y < x.
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Assume that k(x,y,t,s) € C(D x D x R x R) is bounded and uniformly Lipschitz smooth in the t
and s variables, that is, k € C(D x D; C%Y(R x R)).

Next, we consider the non-linear operator F : L?(D) — L*(D),
F(u) =u+ K(u). (D.5)

Assume that u,w € L*(D) are such that u + K (u) = w + K(w), so that w —u = K (u) — K (w).
Next, we will show that then u = w. We denote and D(z1) = D N ([0, z1] x [0, £]%~1) and

”kHC(EXE;CO»l(RXR)) = sup [|k(z,y," )l cor mxr)
z,yeD
Hk||L°°(D><D><]R><R) = sup |k(x,y,s,t)|.
z,yeD,s,teR

Then for x € D(z1) the Volterra property of the kernel implies that
|u(z z)| </ k(z,y, u(z), uly))uly) — k(z, y, w(z), w(y))w(y)|dy
< / by, (), u(y))uly) — Ky, w(e), uly)u(y)ldy
D(z1)
[ (o), uy)uty) — ke, wla) w () ulw)ldy
D(z1)

+ / ke 1, w0(), w(y))uly) — (e, g, w(z), w(y))w(y)|dy
D(z1)

<2||k||c(DxD001(RxR))HU—wHL2(D(z1))HU||L2 D(z1))
|kl Lo (Dx DxRxR) U — Wl L2(D(21)) VD (21)],

so that for all 0 < z1 </,

flu— w||L2(D(z1

/ ( / / 1p(a)lu(z (x)|2dxddxd_1...da:2>dx1

< Zlgd_1 (2|k||C(D><D;CO’1(]R><R)) Ju— w||L2(D(z1)) HUHLz(D(Zl))
2
bl (0 Doy i — w||L2(D(ZIW|D<zl>|)

2
< «21”171 (”k”C(DX[);cO,l(RxR))||U|L2(D) + ||kHLoo(D><D><]R><]R) V |D|) Hu - wH%Z(D(zl))'

Thus, when z1 is so small that

2
2! (Hkllcww;cw(mn))IIU|L2<D) + 1Ell oo (D Dxrx) m) =h

we find that ||u — w| r2(p(z,)) = 0, that is, uw(x) — w(z) = 0 for v € D(z1). Using the same
arguments as above, we see for all k € N that that if u = w in D(kz,) then w = win D((k + 1)z1).
Using induction, we see that u = w in D. Hence, the operator u — F(u) is injective in L?(D).

Example 5. We consider derivatives of Volterra operators in the domain D C [0,/]%. Let K :
L?(D) — L*(D) be a non-linear operator

K (u) = /D Kz, 9, uly)yuly)dy, D6)

where k(z,y,t) satisfies (D-4), is bounded, and k € C(D x D;C%1(R x R)). Let F : L*(D) —
L?(D) be

Fi(u) =u+ K(u). (D.7)
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Then the Fréchet derivative of K at ug € L?(D) to the direction w € L*(D) is

Dy (w) = w(e) + [ Fae.puo))wly)dy, D.8)
D
where
0
kl(xvyauﬂ(y)) = Uo(y)ak(l’,y,t) +k(£,y,u0(y)), (D9)
t=uo(z)

is a Volterra opertor satisfying

ki(z,y,t) #0 = y; <z; forallj=1,2,...,d (D.10)

As seen in Example[d} the operator DF\|,, : L*(D) — L?(D) is injective.

E Details of Section 4.2l

In this appendix, we prove Theorem [3] We recall that in that theorem, we consider the case when
n =1, D C Ris a bounded interval, and the operator F} is of the form

F (u)(z) = W(@)u(z) + /D Kz, g, uly) u(y)dy,

where W € C1(D) satisfies 0 < ¢; < W(x) < cq, the function (z,y,s) — k(z,y,s) is in
C3(D x D x R), and that in D x D x R its three derivatives and the derivatives of W are all
uniformly bounded by c, that is,

”k”Ci*(ﬁxﬁxR) < co, HWHcl(ﬁ) < ¢o. (E.1)

We recall that the identical embedding H'(D) — L>°(D) is bounded and compact by Sobolev’s
embedding theorem.

As we will consider kernels k(x, y, ug(y)), we will consider the non-linear operator F mainly as an
operator in a Sobolev space H!(D).

The Frechet derivative of F at ug to direction w, denoted by A, ,w = DF|,,(w) is given by

Ao = W(aula) + [ ko walw)uidy + [

The condition (E-I) implies that

w0) D oy wol) )y, (B2)

F,: HY(D) — HY(D), (E.3)
is a locally Lipsichitz smooth function and that the operator

Ay, : HY(D) - HY(D),
given in (E-2), is defined for all ug € C'(D) as a bounded linear operator.

When X is a Banach space, we let Bx(0,R) = {v € X : |lv||x < R} and Bx(0,R) = {v € X :
lv]]x < R} be the open and closed balls in X, respectively.

We consider the Holder spaces C™“(D) and their image in (leaky) ReLU-type functions. Let a > 0
and ,(s) = ReLU(s) — a ReLU(—s). We will consider the image of the closed ball of C*»*(D) in
the map o, that is Ja(Bcl,a(ﬁ)(O, R))={oa09€ C(D): [lgllcram) < R}

We will below assume that for all ug € C'(D) the integral operator satisfies
Ay, : HY(D) — H*(D) is an injective operator. (E.4)

This condition is valid when K (u) is a Volterra operator, see Examples E] and |5} As the integral
operators A, are Fredholm operators having index zero. This implies that the operators (E-4)) are
bijective.
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The inverse operator A, ! : H'(D) — H*(D) can be written as
Ajlv(z) = W (z)v(z) — / o (z, )0 (y)dy, (E.5)
D

where ky,, pku, € C(D x D) and W € C'(D).

We will consider the inverse function of the map Fy ina set Y C 0a(Bci.o(p)(0, R)) that is a

compact subset of the Sobolev space H*(D). To this end, we will cover the set ) with small balls
Bui(py(95,€0). 5 = 1,2,...,J of H'(D), centered at g; = Fy(v;), where v; € H'(D). We will
show that when g € By (p)(g;,2¢e0), that s, g is 2¢1-close to the function g; in H' (D), the inverse
map of F can be written as a limit (Fy'(g), g) = limy, 00 1™ (vj, g) in H'(D)?, where

H, ( u ) _ ( u— A N (Fi(u) = Fi(vy)) + A g — g5) ) _

g g
That is, near g; we can approximate Ffl as a composition H7"™ of 2m layers of neural operators.

To glue the local inverse maps together, we use a partition of unity in the function space ) given by
integral neural operators

B(v,w0) = 71 0 by 0 Gy 00 bz, (VW) Where oy (v,w) = (F), i) (0, 0), ),

71 (v, w) = v maps a pair (v, w) to the first function v, and 7 belongs to a finite index set Z C Z%,
e1 >0andy, € D (¢ = 1,...,4), where s(i,¢) = ige;. Here, F, ¢ 5 (v, w) are integral neural
operators with distributional kernels

Fz,37h(v,w)(x):/Dkz,&h(x,y,v(x),w(y))dy,

where k s.n (2, y, v(2), w(y)) = v(®) L5 1p o4 10)(w(y))d(y — 2), 14 is the indicator function of
aset Aand y — d(y — z) is the Dirac delta distribution at the point z € D. Using these, we can
write the inverse of F; at g € ) as

_ . om e
Fl(g) = lim Z@;’Hj(;) < Jé ) ) ) (E.6)
ez

m—00

-,

where j(i) € {1,2,...,J} are suitably chosen and the limit is taken in the norm topology of H!(D).
This result is summarized by the following theorem, a modified version of Theorem |3| where the

inverse operator F; " in (E.6) have refined the partition of unity ®- so that we use indexes i € Z C Z‘
instead of j € {1,...,J}.

Theorem 4. Assume that F\ satisfies the above assumptions (E) and (E4) and that Fy : H' (D) —
HY(D) is a bijection. Let ) C 0a(Bci.a(p) (0, R)) be a compact subset the Sobolev space HY(D),
where o > 0 and a > 0. Then the inverse of Fy : HY(D) — HY(D) in Y can written as a limit (E.6)
that is, as a limit of integral neural operators.

Observe that Theorem includes the case where ¢« = 1, in which case 0, = Id and ) C

0a(Bera)(0,R)) = Boia(p (0, R)). We note that when o, is a leaky ReLU-function with
parameter a > 0, Theoremcan be applied to compute the inverse of o, o F given by Ffl oo, 1,
where o, ' = 0y/,. Note that the assumption that Y C o, (PCM@)(O, R)) makes it possible to

apply Theorem []in the case when one trains deep neural networks having layers o, o F; and the
parameter a of the leaky ReLU-function is a free parameter which is also trained.

Proof. As the operator F; can be multiplied by function W (x)~1, it is sufficient to consider the case
when W (z) = 1.

Below, we use the fact that, because D C R, Sobolev’s embedding theorem yields that the embedding
HY(D) — C(D) is bounded and there is C's > 0 such that

lullemy < Csllullap)- (E.7)
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sss  For clarity, we denote the norm of C'(D) by ||u|| £ (p)

837 Next we consider the Frechet derivatives of F;. We recall that the 1st Frechet derivative of Fj at ug
sss is the operator A,,,. The 2nd Frechet derivative of F; at ug to directions w; and ws is

D*Filuy(wnwn) = [ 258 vl sy + [ wolw) 5o (.. wo(n)n () walo)dy

A0wmu><m7

839 where
ok k2
Pay) = 25y o) + uo(y) g (5., e (y), E8)
gs0 and
0 0’k k3
%p(:v,y) = QM(x,y,uo(y))+uo(y)m(x,y,uo(y)). (E.9)
841 Thus,

(E.10)

I1D2 Filug (w1, w2) oy < 3IDIM2|lkllca(px pxry (1 + luoll oo (py) [wil| zoe 0y w2l L (-
sa2  When we freeze the function « in kernel k to be ug, we denote
Ko@) = [ ko u@)uo)d.
D

sa3 Lemma 4. For ug,u; € C(D) we have
| Kuy — Kuollz2(py— a1 (D) < |Ellc2(px pxry | D||Jur — uol|Loe (D).
844 and
|Au, = AuollL2(D)y— a1 (D) < 2|lk|lc2(Dx DxR) | DI(1 + [[uo| Lo (py) |1 — wol| oo (py.  (E.11)

845 Proof. Denote

Magota) = [ uols) G ua(s)) ol

ok
Nuostl@) = [ wrlo) 5o g, uao)) o)y,
D u
846 We have
Mu2’0 - Mulv = (Nuz,uzv - NUQ:“IU) + (Nu27u1v - Nulaulv)'

847 By Schur’s test for continuity of integral operators,

1/2
(m/ﬂwm%@)(m/kwm)m>
zeD JD yeD

— ||k||C0(DXDXR)7

IN

| Kuo | L2 (D)~ 12(D)

A

s48  and

(| My, ||L2(D)—>L2(D)

1/2 1/2
<Supj/|uo a:yvuo<>ndy) <Supj/|uo a:y,uo<>Ndx)
x€D yeD

||kH6'1(D><D><R)||u”C(5)7

IA

IN
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s49 and

||KU2 - Kul ||L2(D)—>L2(D)

1/2
< (sup [ ey, —k(x,y,m(y)ndy)
xeD JD
1/2
(sup [ ey uatw) - k(x,y7u1<y>>|dx)
yeD
1/2
< (sup / ||k||01<DxDxR>u2<y>—u1<y>>|dy)
xeD JD
1/2
x(sup / ||k||01<DxDxR>|u2<y>—m(y))dx)
eDJD
2
< ||k|01<DxDxR>(bup / us(y) — >>|dy) (sug / un(y) — un >>|d:c)
ye
1/2
< ||k|01<DxDxR>(|D” g — a2 D>) (Dsg[p)|u2< )—u1<y>>|>
Yy
1/2 1/2
< [IMllerx oz DI llus — wil| 12 oy s — w12 1,
< Eller(px pxr) | Pl|luz — w1l L (py,
gs0 and
||Nu27u2 - Nu2,u1 ||L2(D)—>L2(D)
1/2
< (sug [ 1)k 0) u2<y>k<x,y,u1<y>>|dy)
TE D
1/2
. ( sup [ fua(o)k(r. v, alo) - u2<y>k<x,y,u1<y>>dx)
yeD JD
1/2 1/2
< [Klor oy DI Allsallon oyl — w152 s — w52,y
< lkller(pxpxry| D] - luzllcopyllue — w1l (py,
851 and
||Nu27u1 - Nul,ul ||L2(D)~>L2(D)
1/2
< (sgg / <u2<y>—u1<y>>k<x,y,u1<y>>|dy)
1/2
(sup / (uay) — ))k(ay,ul(y))dm)
yeD
< |kllco(pxpxr) Dl - [|uz — uil| L (),
852  so that
| Mo, — My, || 22(Dy=12(D)
< lkller(pxpxry D1 4 [[uzl|copy)llue — w1l Lo (D).

853 Also, when D, v = %Z’

| Dz © Kuoll£2(D)—12(D)

1/2 1/2
(sup / |Dzk<x,yvuo<y>>|dy) (sup / |Dmk<m7y,uo<y>>|dx)
xe€D JD yeD JD

< ||k||cl(DXDXR)7

IN
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854

855

856

858

859

860

861

862

863

864

865
866

867
868

and

D, o Ky, — Dy o Ky, ||L2(D)HL2(D)

1/2
< (sup / |ka<x,y,u1<y>>—Dmx,y,uo(y)ndy)
xeD JD
1/2
(sup/ |Dyk(x,y,ui (y ))—Dmk(x,y,uo(y)ﬂdx)
yeD
1/2
< (sup / ||k||cz<DxDxR)u1<y>—uO<y>>|dy)
x€D JD
1/2
<o [ ||k||cz<DxDxR>|u1<y>—uo<y>>dx)
epJp
2
S € AL >>|dy) (sug [ 1) ~ >>|da:)
ye
1/2 /
< Wlerwmren (1D ol ) (1D]sup ) ~wa)l)
ye
1/2 1/2
< lklle2(px sy DI lus = woll 5y llur = woll 2 )
< lklle2(oxpxry | Dll|[ur — uol| o (p)-
Thus,
[ Kuollz2(py—m1(D) < ||kllor(DxDxR);
and
[Muoll2(Dy—m1 (D) < lluwollcopylEller(px Dxry,
and
1 Ku, — KuollL2(py—m1 (D) < Elle2(px pxr) [ Dll[ur — uol| Lo (p)-
Similarly,
My, = Mullz2(py»m (D) < lkllc2(pxpxry D1 4 [Juzlcopy) [ur — uol| Lo (Dy-
As A, = K., + M,,, the claim follows. O

As the embedding H'(D) — C(D) is bounded and has norm Cs, Lemma E| implies that for all
R > 0 there is

CrL(R) = 2|kllc2(pxpxry|D|(1 + CsR),
such that the map,
ug — DF|y,, uo € By1(0,R), (E.12)
is a Lipschitz map By (0, R) — L(H' (D), H(D)) with Lipschitz constant C,(R), that is,
|DFi|u, = DFilu,|lg1 ()= a1 (p) < CL(R)|lur — uall g1 (py- (E.13)

As ug — Ay, = DFily, is continuous, the inverse A,' : H'(D) — H'(D) exists for all

ug € C(D), and the embedding H'(D) — C(D) is compact, we have that for all R > 0 there is
Cg(R) > 0 such that

At (py—mr (D) < Cp(R), forallug € Byi(0, R). (E.14)

Let Ry, Ry > 0 be such that Y C By (0, Ry) and X = F;1()) € By (0, Ry). Below, we denote
CL = C’L(QRQ) and CB = C’B(Rz).
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sso Next we consider inverse of I} in ). To this end, let us consider €y > 0, which we choose later to be
7o small enough. As Y C By (0, R) is compact there are a finite number of elements g; = Fy(v;) € Y,
s71 wherev; € X, j =1,2,...,J such that

J
ycC U B(py(95,€0)-
j=1
g7 We observe that for ug, u; € X,
“1_ g1 _ g1 -1
Au1 - AuU - Au1 (Aul - Auo)Auo )
s73 and hence the Lipschitz constant of A~ : uw— A, X — L(HY(D), H'(D)) satisfies
Lip(AT1) < Ca = CRCy, (E.15)

s74  see (E-IT).

875 Let us consider a fixed j and g; € ). When g satisfies

lg = gl (py < 2¢0, (E.16)

g76 the equation

877 is equivalent to the fixed point equation
u=u— A, (Fi(u) = Fi(v))) + 4, (9 — g5),
g7e  that is equivalent to the fixed point equation
H;(u) = u,

e7o  for the function H; : H'(D) — H*(D),

Hj(u) = u— AJ (P (u) = Fi(v))) + A5 (g = 95).

sso Note that H; depends on g, and thus we later denote H; = H ]s? . We observe that
Hj(v) = v + A, (g — g5)- (E.17)
81 Letu,v € By1(0,2Ry). We have
Fi(u) = Fi(v) + Ay(u—v) + By(u—v), [By(u—0)| < Collu—wv]?
ss2  where, see (E.10),
Co = 3|D|"?||k]|cs (px pxry (1 + 2Cs Ry)CE,
883 so that for uy, us € By1(0,2R),
Uy — Ug — A;jl(Fl(ul) — F1(u2))
= ur —uy — A (Fi(w) = Fi(ug)) = (A, = A, (Fi(w) — Fi(ug)),

ss4 and

lur — ug — A} (Fi(u1) — Fi(u2)) | (p)
| A (Buy (1 — u2)) |l 51 ()

< AL a1 ()— 11 (D) 1 Bug (w1 — u2) || ()
< A (D)= 11 () Collur — w23 by,
< CgCollur — uallin py,
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885

886

887

888

889

891

892
893

894
895

896

897

898

and

(A%, = AL (Fi(ur) = Fi(u2) (o)

< AL = A 0y m (o) 1P (1) = Fi(u2)| g oy
< LipEHl(o,zRQ)HHl(D)(Afl)”uQ - UjHLipEHl(o’sz)ﬁHl(D)(Fl)HUQ — 1|l m(p)
< Calluz = vil|(Cp +4CoRe)|[uz — vl (p),

see (E2)), and hence, when ||u — v;|| < r < Ra,
| Hj(u1) — Hj(uz)l| a1 ()

<l —ug — AGHFL (w1) = Fi(u2))]| ()
< lur = ug = A (Fi(wr) = Fi(u2) |l oy + (A, — AL (Fi(un) = Fi(u2)) || (o)
< (Cathllun ~ vl + luz = vl o)) + Ca(Ca + 1CuRe)a = 1) -z = sl
< COgrlug — vt g(py,
where

Cy =2CgCH + CA(CB —|—4CQR2).
‘We now choose

r = min(

1
—  Ry).
20y 2)
‘We consider
1 1

< ——
0= 8Cp 2CH
Then, we have
r >2Cgeo/(1 — Cyr).

Then, we have that Lipg | (0 25,)— 11 (p)(Hj) < a = Cur < 1, and

r> |‘A121||H1(D)—>H1(D)||g = 9iler(py/(1 —a),

and for all u € By (0, Rp) such that lu — v;| < r, we have |A; (g — g;)llm(p) < (1 —a)r.
Then,

1Hj(u) —villarpy < [[Hj(w) — Hj(vj) g1y + 1Hj(v5) — il (p)
< allu = vjllgpy + llvi + A9 = 95) = vill o)
< ar+ 1A, g — gl oy <7

that is, H; maps EHI(D)('UJ', r) to itself. By Banach fixed point theorem, H; : EHI(D)('UJ‘, r) —
By (p)(vy,7) has a fixed point.
Let us denote

H, < Z ) _ ( Hfg(u) ) _ ( u— A, (Fi(u) —Flg(vj))+f45j1(9—9j) )

By the above, when we choose £ to have a value

Lo
S
O™ 80520y’

the map F} has a right inverse map R ; in By (g,, 2€0), that is,
Fl(RJ(g)) =g, forge BHl(gja2€0)7 (E.18)
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912
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915
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919

920
921

922

and by Banach fixed point theorem it is given by the limit

Rji(g) = n}gnoo Wjm, g€ Bui(g;,2¢0), (E.19)

in H'(D), where
wj,0 = Uy, (EZO)
’wj’erl = ng(wj,m) (E21)

We can write for g € By1(g;, 2¢0),

< Ril9) ) = lim H;m< i )
g m—oo g

where the limit takes space in H*(D)? and
HO™ = HyoHj oo H,, (E.22)

is the composition of m operators ;. This implies that R ; can be written as a limit of finite iterations
of neural operators H; (we will consider how the operator A;j ! can be written as a neural operator
below).

AsY C aa(PCM@)(O, R)), there are finite number of points yy € D, £ =1,2,...,{yand &1 > 0
such that the sets
. . . 1 . 1
Z(2177127 s 7ZZ0) = {g eY: (ZZ - 5)51 < g(yf) < (Zf + 5)517 for all é}v
where i1, 42, ..., %, € Z, satisfy the condition

(E.23)
If (Z(il,iz, . .,igo) ﬂy) N BHl(D)(gj,EO) # (Z) then Z(il,ig, e ,Z.go) n y C BHl(D)(gja250)'

To show @ we will below use the mean value theorem for function g = o, o v € ), where
v € CH%(D). First, let us consider the case when the parameter a of the leaky ReLU function o,
is strictly positive. Without loss of generality, we can assume that D = [0, 1] and y, = h{, where
h=1/tyand £ =0,1,..., 4. We consider g € YN Z(i1, 2, ...,is,) C 0a(Bera(p) (0, R)) of
the form g = o, o v. As a is non-zero, the inequality (i, — 2)e1 < g(ye) < (i¢ + 3)e1 is equivalent

t0 01/4((i — 3)e1) < v(ye) < 01/4((ic + %)e1), and thus
01/q(iee1) — A1 < v(ye) < 014 (iee1) + Aen, (E.24)

where A = max(1,a,1/a), thatis, for g = 0,(v) € Z(i1,12,...,1,) the values v(y,) are known
within small errors. By applying mean value theorem on the interval [(¢; — 1)h, ¢1 k] for function v
we see that there is «’ € [(¢1 — 1)h, £1h] such that

dv, ,  v(lih) —v((fy —1)h)
d.]j (x ) - h 9
and thus by (E.24),
dv ’ €1
22 —d -l <24== .
|55 (@) = dpzl <247, (E.25)
where
1 , )
dyy = ﬁ((fl/a(%eﬁl) —01/a((ie — 1)e1)), (E.26)

Observe that these estimates are useful when €1 is much smaller that h. As g = o,0v € Y C
aa(Bcl,a(ﬁ)(O,R)), we have v € BCM@)(O,R), so that g—; € Bco,a(ﬁ)(O,R) satisfies (E-23)
implies that

%(x) —dy ;| < 2/1%1 + Rh®, forallx € [(¢; — 1)h,{1h]. (E.27)
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Moreover, (E24) and v € Bi.a (5 (0, R) imply
|v(x) — 01/q(iee1)| < Ae1 + Rh, (E.28)

forall x € [(¢1 — 1)h, {1h).

Let e = €9/A. When we first choose ¢ to be large enough (so that h = 1/¢; is small) and then £,
to be small enough, we may assume that

1

max(2A% + Rh®, Aey + Rh) < céo. (E.29)

Then for any two functions g,¢' € Y N Z(i1,ia,...,%,) C Ua(Pcm(ﬁ) (0, R)) of the form
g=o0,0v,g9 = 0,00 the inequalities (E:27) and (E:28) imply

dv dv’ 1
@) - @l < e (830)

Cdo 4
1
[v() — ' (2)| < 2.
forallz € D. As v,v" € Bgua(p (0, R), this implies

, 1
lv—v ey < 552
As the embedding C* (D) — H*(D) is continuous and has norm less than 2 on the interval D = [0, 1],
we see that

[v = V'l g1 () < €2,
and thus
g — 9/||H1(5) < Aeg = eq.
Hence, the property (E223) follows.

We next consider the case when the parameter a of the leaky relu function o, is zero. Again, we
assume that D = [0, 1] and y, = h¢, where h = 1/¢y and £ = 0,1, ...,¢;. We consider g € Y N
Z(i1,82, ... ,04) C UG(ECM@)(O, R)) of the form g = o, (v) and an interval [¢1h, (¢14+1)h] C D,
where 1 < /7 < ¢y — 2. We will consider four cases. First, if g does not obtain the value zero on the
interval [¢1h, (€1 + 1)h] the mean value theorem implies that there is =’ € [¢1h, (¢1 + 1)h] such that

%(x') = (') is equal to d = (g(£1h) — g([(¢1 — 1)h))/h. Second, if g does not obtain the value
zero on either of the intervals [(¢; — 1)k, £1h] or [(¢1 + 1)h, (¢1 4+ 2)h], we can use the mean value
theorem to estimate the derivatives of g and v at some point of these intervals similarly to the first case.
Third, if g does not vanish identically on the interval [¢1 h, (¢1+1)h] but it obtains the value zero on the
both intervals [(¢; — 1)h, £1h] and [(¢1 + 1)h, (€1 + 2)h], the function v has two zeros on the interval
[(¢1 — 1)h, (€1 + 2)h] and the mean value theorem implies that there is 2’ € [(/; — 1)h, ({1 + 2)h]
such that g—g(a:’ ) = 0. Fourth, if none of the above cases are valid, g vanishes identically on the
interval [£1h, (¢1 + 1)h]. In all these cases the fact that [|v| 1. (55) < 1 implies that the derivative

of g can be estimated on the whole interval [¢1h, (¢; + 1)h] within a small error. Using these
observations we see for any 2,63 > O thatif y, € D = [dy,d2) C R, ¢ = 1,2,..., 4y are a
sufficiently dense grid in D and &; to be small enough, then the derivatives of any two functions

9,9 € YN Z(ir,iz, ... i4) C 0a(Berap (0, 1)) of the form g = 04(v),g" = 04(v') satisfly

Hg _g/||H1([d1+€3,d2*63]) < €9. As the embedding Cl([dl +e3,do —63]) — Hl([dl +e3,do —63])
is continuous,

loa (@)l (jdy,ds+es)) < Callvllone (@) Ves,

o0 (V)1 E1 ((ds—e5,d2]) < Callvllor.a () VeSS
and £5 and 3 can be chosen to be arbitrarily small, we see that the property (E:23) follows. Thus the
property (E23) is shown in all cases.
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By our assumptions ) C 04(Bci.a(5)(0, R)) and hence g € Y implies that ||g[|o(5) < AR. This
implies that Y N Z (i1, iz, . . ., ig, ) is empty if there is £ such that |ig| > 2AR/e1 + 1. Thus, there is
a finite set Z C Z such that

yclJzi, (E.31)
i€z
ZO)NY #0, forallieZ, (E.32)
where we use notation i = (i1,42,...,is,) € Z*. On the other hand, we have chosen g; € Y

such that By1(py(gj,€0),j = 1,...,J cover Y. This implies that for all i€ Tthereisj=j(i) €

{1,2,...,j} such that there exists g € Z(i) N By1(p)(9;,€0). By (E23), this implies that
Z(i) € Bu(p)(9;), 220). (E.33)

-, -,

Thus, we see that Z (i), icTisa disjoint covering of ), and by (E33), in each set Z(i) N Y, icT
the map g — R, (g) we have constructed a right inverse of the map Fj.

Below, we denote s(f, £) = igeq. Next we construct a partition of unity in ) using maps

Fe (0, w)(z) = /D K (z, 9, 0(2), w(y))dy,

where
kz,s,h(xv Y, U(f), ’lU(y)) = ’U(‘r)l[sféh,er%h) ('lU(y))(S(y - Z)
Then,

(@), if —Lh<w(z)-s<ih
FZ S K = 7 : 1 ’ 7
. (v, w)(x) { 0,  otherwise.

Next, for all i € Z we define the operator ®;: H'(D) x ¥ — H'(D),
(v, w) =m10¢; 0dry 00y, (v,w),
where ¢;, : H'(D) x Y — H'(D) x ) are the maps
P70V, w) = (F, (702, (0, w),0),

and 71 (v, w) = v maps a pair (v, w) to the first function v. It satisfies

o-

K2

(0, w) = v, if — %51 < w(ye) — s(;, 0) < %51 for all ¢,
’ 0, otherwise.

Observe that here s(i, £) = ise; is close to the value 9;( (ye). Now we can write for g € Y/
Fi(9) = Z ;(R;7(9): 9);
iez

with suitably chosen j(i) € {1,2,..., J}.

Let us finally consider A, ! where uo € C(D). Let us denote
~ ok
Kuow - UO(y) ai(xvyvu(_)(y))w(y)dyv
D u
and J,,, = K, + IN(MO be the integral operator with kernel

. ok

]uo('ray) = k(x,y,uo(y)) + Uo(y) %(maZﬁuO(y))
We have

(I+ Juo)il =1I- Juo + JUO(I + Juo)il‘]um
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so that when we write the linear bounded operator
Ayl =T+ Jy,) ' HY(D) - HY(D),

as an integral operator

(L + Jug)to(z) = v+ /D i (2, )0 (),

we have

(I 4 Juy) to(z)
= v(z) — Jyv(zx)

+/D (/D {juo(ac,y’)juo(%y’)ﬂL </Dju0(x,y’)mu0(y’,x')juo(x’,y)dx')}dy/> o(y)dy
= o@)~ [ Gt

where

Fuo (@, 9) = —juo (@) + / G (@5 Vo (95 )y + / / o (@33 Y (' 2V (2 ) d
D D JD

This implies that the operator Agol = (I + Jyu,)" ! is a neural operator, too. Observe that
j’LL() (‘ra y)7al’]uo (l’,y) 6 C(D X D)
This proves Theorem 3] O
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