
A Proof of Theorem 1

In this section, we provide proof for the disentanglement identifiability of the inferred exogenous
variable. Our proof consists of three main components. It is worth noting that we also use f to
replace fst,at

for simplicity.

Proof. The following are the three steps:

Step I We use the first assumption in Theorem 1 to demonstrate that the observed data distributions
are equivalent to the noiseless distributions. Specifically, suppose that we have two sets of parameters
(f ,T ,λ) and (f̃ , T̃ , λ̃), such that for all pairs (st+1, c) ((s, c) for simplicity), we have:

p̃T ,λ,f ,c(s) = p̃T̃ ,f̃ ,λ̃,c(s) (11)

pθ(s ∣ c) = pθ̃(s ∣ c) (12)

Ô⇒ ∫ pε(s − f(u))pT ,λ(u ∣ c)du = ∫ pε(s − f̃(u))pT̃ ,λ̃(u ∣ c)du (13)

Ô⇒ ∫ pε(s − s)pT ,λ (f−1(s ∣ c)vol (Jf−1(s))ds = ∫ pε(s − s)pT ,λ (f̃
−1(s ∣ c)vol (Jf̃−1(s))ds

(14)

Ô⇒ ∫ pε(s − s)p̃T ,λ,f ,c(s)ds = ∫ pε(s − s)p̃T̃ ,f̃ ,λ̃,c(s)ds (15)

Ô⇒ (p̃T ,λ,f ,c ∗ pε) (s) = (p̃T̃ ,f̃ ,λ̃,c ∗ pε) (s) (16)

Ô⇒ F [p̃T ,λ,f ,c] (ω)φε(ω) = F [p̃T̃ ,f̃ ,λ̃] (ω)φε(ω) (17)

Ô⇒ F [p̃T ,λ,f ,c] (ω) = F [p̃T̃ ,f̃ ,λ̃,c] (ω) (18)

Ô⇒ p̃T ,λ,f ,c(s) = p̃T̃ ,f̃ ,λ,c(s). (19)

where:

• in Equation (14), J denotes the Jacobian, and we make the change of variable s = f(u) on
the left-hand side, and s = f̃(u) on the right-hand side.

• in Equation (15), we introduce

p̃T ,λ,f ,c ≜ pT ,λ (f−1) (s ∣ c)vol (Jf−1(s)) I(s) (20)

• in Equation (16), ∗ denotes the convolution operator.

• in Equation (17), F denotes the Fourier transformation and φε = F [pε].

• in Equation (18), φε(w) is dropped because it is non-zero almost everywhere according to
the first assumption of Theorem 1.

Equation (19) is valid for all (s, c). What is basically says is that for the distributions to be the same
after adding the noise, the noise-free distributions have to be the same. Note that s here is a general
variable, and we are actually dealing with the noise-free probability densities.

Step II Using Equation (20) to substitute Equation (19), we have

pT ,λ (f−1) (s ∣ c)vol (Jf−1(s)) I(s) = pT̃ , λ̃ (f̃
−1) (s ∣ c)vol (Jf̃−1(s)) I(s). (21)

Then, we can apply logarithm on the above equation and substitute pT ,λ with its definition in Equation
(3), and obtain

log vol (Jf−1(s)) logQ (f−1s) − logZ(c) + ⟨T (f−1(s)) ,λ(c)⟩

= log vol (Jf̃−1(s)) log Q̃ (f̃
−1
s) − log Z̃(c) + ⟨T̃ (f̃−1(s)) , λ̃(c)⟩

(22)
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Let c0,⋯, ck be the k + 1 points defined in the fourth assumption of Theorem 1, we can obtain k + 1
equation. By subtracting the first equation from the remaining k equations, we then obtain:

⟨T (f−1(s)) ,λ (cl) −λ (c0)⟩ + log
Z (c0)
Z (cl)

= ⟨T̃ (f̃−1(s)) , λ̃ (cl) − λ̃ (c0)⟩ + log
Z̃ (c0)
Z̃ (cl)

, (23)

where l = 1,⋯, k. Let b ∈ Rk in which bl = log
Z̃(c0)Z(cl)
Z̃(cl)Z(c0) , we have

LTT (f−1(s)) = L̃T̃ (f̃−1(s)) +m (24)

Finally, we multiply both side by L−T and obtain

T (f−1(s)) = AT̃ (f̃−1(s)) +n. (25)

where A = L−TL and n = L−Tm.

Step III Now recall the definition of T and the third assumption. We start by evaluating Equation
(25) at k + 1 points of ul, sl and obtain k + 1 equations. Then, we subtract the first equation from the
remaining k + 1 equations:

[T (u1) − T (u0) ,⋯,T (uk) − T (u0)]

=A [T̃ (f̃−1 (s1)) − T̃ (f̃−1 (s0)) ,⋯, T̃ (f̃−1 (sl)) − T̃ (f̃−1 (s0))] . (26)

Next, we only need to show that for u0, there exist k points u1,⋯, uk such that the columns
are linear independent, which can be proven by contradiction. Suppose that there exists no such
ul ∈ {u0,⋯, uk}, then ⟨T (ul) − T (u0) ,λ⟩ = 0 and thus T (ul) = T (u0) = const. This contradicts
with the assumption that the prior distribution is strongly exponential. Therefore, there must exist
k + 1 points such that the transformation is invertible. Then we have (f ,T ,λ) ∼ (f̃ , T̃ , λ̃).

B Proof of Theorem 2

According to Equation (4), if the family qϕ (u ∣ st, at, st+1, c) is large enough to include
pθ (u ∣ st+1, st, at, c), then by optimizing the loss over its parameter ϕ, we will minimize the KL
term, eventually reaching zero, and the loss will be equal to the log-likelihood.

The conditional VAE, in this case, inherits all the properties of maximum likelihood estimation. In
this particular case, since our identifiability is guaranteed up to equivalence classes, the consistency
of MLE means that we converge to the equivalence class (Theorem 1) of true parameter θ∗ i.e. Under
the condition of infinite data.

C Proof of Theorem 3

Suppose the prediction error of π̂E is e (i.e., ∑ I(aπ̂E
t ≠ at) = e), at is the true action that an expert

take, then the mismatching probability between the observed and predicted results comes from two
parts: (1) The observed result is true, but the prediction is wrong, that is, e(1 − κ). (2) The observed
result is wrong, but the prediction is right, that is (1 − e)κ. Thus, the total mismatching probability is
κ + e(1 − 2κ).
The following proof is based on the reduction to absurdity. We first propose an assumption and then
derive contradicts to invalidate the assumption.

Assumption. Suppose the prediction error of π̂E (i.e., e ) is larger than ϵ. Then, at least one of the
following statements hold:

(1) The empirical mis-matching rate of π̂E is smaller than κ + ϵ(1−2κ)
2

.
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(2) The empirical mis-matching rate of the optimal h∗ ∈H (i.e., the prediction error of h∗ is 0) is
larger than κ + ϵ(1−2κ)

2
.

These statements are easy to understand, since if both of them do not hold, we can conclude that the
empirical loss of π̂E is larger than that of h∗, which does not agree with the ERM definition.

Contradicts. To begin with, we review the uniform convergence properties [27] by the following
lemma:

Lemma 1. LetH be a hypothesis class, then for any ϵ ∈ (0,1) and h ∈H, if the number of training
samples is m, the following formula holds:

P(∣R(h) − R̂(h)∣ > ϵ) < 2∣H∣ exp (−2mϵ2)

where R and R̂ are the expectation and empirical losses, respectively.

For statement (1), since the prediction error of π̂E is larger than ϵ, the expectation loss R(π̂E) is larger
than κ + ϵ(1 − 2κ). If the empirical loss R̂(π̂E) is smaller than κ + ϵ(1−2κ)

2
, then ∣R(π̂E) − R̂(π̂E)∣

should be larger than ϵ(1−2κ)
2

. At the same time, according to Lemma 1, when the sample number m

is larger than
2 log( 2∣H∣

δ )
ϵ2(1−2κ)2 , we have P (∣R(π̂E) − R̂(π̂E)∣ > ϵ(1−2κ)

2
) < δ.

For statement (2), the expectation loss of h∗ is κ, i.e., R (h∗) = κ. If the empirical loss R̂ (h∗) is
larger than κ + ϵ(1−2κ)

2
, then ∣ R (h∗)− R̂ (h∗) ∣ should be larger than ϵ(1−2κ)

2
. According to Lemma

1, when the sample number m is larger than
2 log( 2∣H∣

δ )
ϵ2(1−2κ)2 , we have P (∣R (h∗) − R̂ (h∗)∣ > ϵ(1−2κ)

2
) < δ.

As a result, both of the above statements hold with the probability smaller than δ, which implies that
the prediction error of π̂E is smaller than ϵ with the probability larger than 1 − δ.

D Proof of Theorem 4

Lemma 2. (Proposition A.8 of Agarwal et al. [1]). Let z be a discrete random variable that takes
values in {1, . . . , d}, distributed according to q. We write q as a vector where q⃗ = [Pr(z = j)]dj=1.
Assume we have n i.i.d. samples, and that our empirical estimate of q⃗ is [q⃗]j = ∑n

i=1 1 [zi = j] /n.
We have that ∀ϵ > 0 :

Pr (∥q̂ − q⃗∥2 ≥ 1/
√
n + ϵ) ≤ e−nϵ

2

which implies that:
Pr (∥q̂ − q⃗∥1 ≥

√
d(1/
√
n + ϵ)) ≤ e−nϵ

2

Proof. Applying Lemma 2, we have that for considering a fixed st, wp. at least 1 − δ:

∥π(⋅ ∣ st) − πω(⋅ ∣ st)∥1 ≤ h
√
∣A∣ log(1/δ)

n
(27)

where n is the number of expert data used to estimate πω(⋅ ∣ st). Then we apply the union bound
across all states and actions to get that wp. at least 1 − δ:

max
st
∥π(⋅ ∣ st) − πω(⋅ ∣ st)∥1 ≤ h

√
∣S ∣∣A∣ log(∣S ∣/δ)

n
(28)

The result follows by rearranging n and relabeling h.

Remark 1. How much counterfactual expert data can we generate using our OILCA framework?
Supposing we have n independent state action tuples in the expert data, we run the data augmentation
module for m times, which means that we can augment each state to m counterfactual states
and subsequently to m corresponding counterfactual actions. Thus, in total, we can obtain nm

counterfactual tuples–an exponential increase for the previously given expert data. Back to Theorem 4,
this demonstrates that our OILCA can effectively enhance the policy’s generalization ability.
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E Training Details

E.1 Data Generation and Statistics

Toy Environment The dimensions of state and action are both 2. For the exogenous variable, we
generate the non-stationary 2D Gaussian data as follows: u∗ ∣ c ∼ N (µ(c),diag (σ2(c))), where
c is the class label. µ1(c) = 0 for all c and µ2(c) = αγ(c), where α ∈ R and γ is a permutation.
The variance σ2(c) is generated randomly and independently across the classes. For the transition
function, we use an MLP to generate the next state st+1, such that st+1 =MLP(st, at, ut+1), where
ut+1 is the sample of u at timestep t + 1. For each class of exogenous variables, we generate 1K
episodes for the data collection (500 steps per episode). Similar to DEEPMIND CONTROL SUITE, we
also define a positive episode if its reward is among the top 20% episodes, and each of these positives
is randomly chosen to constitute DE with 1

10
chance. As a result, we choose 75 episodes in DE and

925 episodes in DU . For the online testing, we can evaluate all the methods on the toy environment
with any kind of distribution of the exogenous variable.

DEEPMIND CONTROL SUITE DEEPMIND CONTROL SUITE (Figure 6) contains a variety of
continuous control tasks involving locomotion and simple manipulation. States consist of joint
angles and velocities, and action spaces vary depending on the task. The episodes are 1000 steps
long, and the environment reward is continuous, with a maximum value of 1 per step. During
the collection of offline data, we apply random Gaussian perturbation to the action outputted by
the policy. This perturbation is specified in the XML configuration file as an integral part of the
environment. Additionally, the distribution of the perturbation differs across different environment
initialization (auxiliary variable c) due to their initialization seeds. In particular, different seeds
correspond to different mean and variance of the Gaussian distribution perturbation via the random
number generator. This approach is employed to introduce uncertainty into the environment [],
thereby aligning with our problem setting. We define an episode as positive if its episodic return is
among the top 20% episodes; each of these positives is randomly chosen to constitute DE with 1

10
chance. We present the details in Table 3.

Task Total DE
Cartpole swingup 40 2
Cheetah run 300 3
Finger turn hard 500 9
Fish swim 200 1
Humanoid run 3000 53
Manipulator insert ball 1500 30
Manipulator insert peg 1500 23
Walker stand 200 4
Walker walk 200 6

Reaching 600 12
Pushing 600 13
Picking 600 15
Pick and Place 600 12
Stacking2 600 11
Towers 600 13
Stacked Blocks 600 13
Creative Stacked Block 600 14
General 600 12

Table 3: Datasets statistics. The total number
of episodes and corresponding number of expert
demonstrations (DE) per task.

Humanoid run Manipulator 
insert ball

Cartpole swing up

Finger turn hardCheetah run

Fish swim

Manipulator
insert peg

Walker stand Walker walk

Figure 6: DEEPMIND CONTROL SUITE is a set
of popular continuous control environments with
tasks of varying difficulties, including locomo-
tion and simple object manipulation.

CAUSALWORLD CAUSALWORLD provides a combinatorial family of such tasks with common
causal structure and underlying factors (including, e.g., robot and object masses, colors, sizes) (Figure
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(a) Pushing (b) Picking (c) Pick and Place (d) Stacking2

(e) Stacked Blocks (f) General (g) CreativeStackedBlocks (h) Towers

Figure 7: Example tasks from the task generators provided in the CAUSALWORLD. The goal shape is
visualized in opaque red, and the blocks are visualized in blue.

7). We conduct the offline dataset collection process by using various online behavior policies. We
collect the mixed dataset by using three kinds of do-interventions (Figure 8) on different environment
features. And we divide the offline dataset into DE and DU , similar to the DEEPMIND CONTROL
SUITE. The detailed statistics about the dataset are presented in Table 3.

E.2 Detailed Descriptions of Baselines

● BC-exp: Behavioral cloning on expert data DE . DE owns higher quality data but fewer quantities
and thus causes serious compounding error problems to the resulting policy.
● BC-all: Behavioral cloning on all dataDall. BC-all can generalize better than BC-exp due to access

to a much larger dataset, but its performance may be negatively impacted by the low-quality data
in Dall.
● ORIL [39]: ORIL learns a reward function and uses it to solve an offline RL problem. It suffers

from high computational costs and the difficulty of performing offline RL under distributional
shifts.
● BCND [26]: BCND is trained on all data, and it reuses another policy learned by BC as the weight

of the original BC objective. Its performance will be worse if the suboptimal data occupies the
major part of the offline dataset.
● LobsDICE [12]: LobsDICE optimizes in the space of state-action stationary distributions and

state-transition stationary distributions rather than in the space of policies.
● DWBC [36]: DWBC is trained on all data. It mainly designs a new IL algorithm, where the

discriminator outputs serve as the weights of the BC loss.

F Additional Results

F.1 In-distribution Experiments on CAUSALWORLD

To further show the in-distribution performance, we supplement the experiments on CAUSALWORLD,
in which both training and testing are conducted on space A. The results are shown in Table 4. In
most tasks, our OILCA still achieves the highest average episode return, demonstrating our method’s
effectiveness across different scenarios. Especially comparing the results in Table 2 and Table 4, we
can notice that the advantage of OILCA for out-of-distribution generalization is more obvious. This
proves the strong generalization ability of the counterfactual data augmentation module, which makes
the offline imitation learning policy more robust to the data distribution shift. This point is especially
significant in out-of-distribution scenarios, where the data distribution shifts more intensely.
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  do(floor_color=’white’, 
      block_size=0.065, 
      …etc) 

Figure 8: Example of do-interventions on exposed variables in CAUSALWORLD.

Table 4: Results for in-distribution performance on CAUSALWORLD. We report the average return
of episodes (length varies for different tasks) over five random seeds. All the models are trained on
space A and tested on space A to show the in-distribution performance [2]. The best results and
second best results are bold and underlined, respectively.

Task Name BC-exp BC-all ORIL BCND LobsDICE DWBC OILCA

REACHING
353.98
± 11.48

247.60
± 15.99

372.39
± 9.58

358.36
± 15.45

323.43
± 10.13

530.96
± 8.70

986.19
±10.27

PUSHING
331.32
± 6.36

310.62
± 9.21

364.37
± 8.36

335.87
± 9.02

275.38
± 9.93

436.22
± 5.39

579.55
± 12.64

PICKING
394.63
± 12.98

360.28
± 8.98

427.39
± 13.69

381.45
± 8.63

326.97
± 12.31

479.05
± 8.57

648.34
± 8.51

PICK AND PLACE
453.59
± 7.58

355.83
± 8.47

348.34
± 11.63

376.34
± 9.87

287.81
± 10.06

448.89
±12.49

588.87
± 9.29

STACKING2 596.14
± 15.76

435.12
± 12.81

467.11
± 13.19

476.33
± 5.21

378.3
± 7.65

631.75
± 8.54

920.18
± 7.36

TOWERS
723.49
± 15.82

947.96
± 17.56

679.93
± 8.68

680.61
± 8.57

735.79
± 12.23

915.26
± 17.97

1263.94
± 8.98

STACKED BLOCKS
1320.97
± 19.83

947.96
± 25.45

1520.62
± 31.62

1247.96
± 29.14

958.64
± 26.56

2116.51
± 32.97

3210.23
±43.63

CREATIVE STACKED BLOCKS
684.52
± 16.69

593.41
± 26.86

758.04
± 12.70

933.88
± 16.57

601.18
± 19.42

870.29
± 24.56

1476.41
± 25.94

GENERAL
626.15
±20.57

691.37
±17.22

1072.05
±47.26

572.70
±11.28

549.89
±15.31

786.44
±18.52

964.32
± 17.08

F.2 Combinations with Other Base Offline IL Methods

To validate that the effectiveness of our method is not restricted by the base offline IL methods,
we combine the Counterfactual data Augmentation (CA) part with ORIL and BCND, which are
represented as ORIL+CA and BCND+CA, respectively. Also, we conduct corresponding experiments
on the benchmarks in this paper, and the results are shown in Table 5. From the table, we can observe
that the CA module can always help improve policy performance regardless of the base policy choice,
which demonstrates its wide applicability. Besides, referring to the results in Table 5, Table 1, and
Table 2, we can find that ORIL+CA and BCND+CA outperform all methods without CA’s assistance
in most tasks, which implies that the simple counterfactual data augmentation may even work better
than the complicated learning method designs.

F.3 Performance of changing the auxiliary variable c

To show the influence of the different choices of the auxiliary variable c, we conduct additional
experiments on the CAUSALWORLD benchmark. Specially, for the change of c’s choice, we ap-
ply the similar do-interventions to more features (i.e. block color, block mass) and fewer fea-
tures. The performance of our OILCA under different intervened features (different choices of
c) is shown in Table 6. Specially, C = 1 represents feature set stage_friction, C = 2 repre-
sents feature set (stage_friction, floor_friction), C = 3 represents feature set (stage_color,
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Table 5: Results for in-distribution performance on part of tasks in DEEPMIND CONTROL SUITE
and out-of-distribution generalization on part of tasks in CAUSALWORLD. We report the average
return of episodes (length varies for different tasks) over five random seeds. The training and testing
procedures follow those introduced in Section 5. All the results obtained by CA-assisted methods are
bold to highlight the effect of the counterfactual data augmentation module.

Benchmark Task Name ORIL ORIL+CA BCND BCND+CA DWBC OILCA

DEEPMIND

CONTROL

SUITE

CARTPOLE SWINGUP
221.24
± 14.49

426.79
± 12.09

243.52
± 11.33

452.68
± 12.86

382.55
± 8.95

608.38
± 35.54

CHEETAH RUN
45.08
±9.88

78.44
± 6.95

96.06
± 16.15

158.62
± 8.85

66.87
± 4.60

116.05
± 14.65

FINGER TURN HARD
185.57
± 26.75

227.94
± 15.47

204.67
± 13.18

284.29
± 12.03

243.47
± 17.12

298.73
± 5.11

FISH SWIM
84.90
± 1.96

156.92
± 8.18

153.28
± 19.29

268.56
± 6.03

212.39
± 7.62

290.29
± 10.07

CAUSAL

WORLD

REACHING
339.40
± 12.98

652.21
± 7.05

228.33
± 7.14

582.44
±9.07

479.92
± 18.75

976.60
± 20.13

PUSHING
283.91
± 19.72

367.46
± 6.31

191.23
± 12.64

320.94
± 10.37

298.09
± 14.94

405.08
± 24.03

PICKING
388.15
± 19.21

458.03
±13.95

221.89
± 7.68

486.32
±8.03

366.26
± 8.77

491.09
± 6.44

PICK AND PLACE
270.75
± 14.87

372.18
± 10.74

259.12
± 8.01

393.59
±7.81

349.66
± 7.39

490.24
± 11.69

Table 6: Results for under different choice of c on the CAUSALWORLD benchmark (out-of-
distribution). We report the average return of episodes (length varies for different tasks) over
five random seeds.

Task Name C = 1 C = 2 C = 3 C = 4 C = 5

REACHING 928.62 ± 22.38 957.54 ± 18.39 976.60 ± 20.13 985.25 ± 17.26 1037.12 ± 19.15

PUSHING 389.16 ± 9.43 396.52 ± 17.29 405.08 ± 24.03 426.60 ± 15.37 429.42 ± 12.28

PICKING 462.54 ± 9.08 484.21 ± 11.37 491.09 ± 6.44 522.96 ± 13.27 525.20 ± 12.28

PICK AND PLACE 464.68 ± 10.27 486.74 ± 8.52 490.24 ± 11.69 511.76 ± 9.05 523.46 ± 15.42

STACKING2 794.81 ± 16.50 803.27 ± 13.26 831.82 ± 11.78 867.43 ± 9.82 871.43 ± 18.19

Towers 972.34 ± 12.36 979.23 ± 8.72 994.82 ± 5.76 1027.16 ± 17.25 1029.37 ± 8.06

STACKED BLOCKS 2317.48 ± 74.32 2558.35 ± 42.17 2617.71 ± 88.07 2682.76 ± 69.25 2754.39 ± 82.16

CREATIVE STACKED BLOCKS 1226.72 ± 62.18 1297.20 ± 39.42 1348.49 ± 55.05 1468.65 ± 27.63 1486.51 ± 41.29

GENERAL 868.62 ± 7.65 875.55 ± 19.28 891.14 ± 23.12 926.19 ± 17.34 934.74 ± 16.20

stage_friction, floor_friction), C = 4 represents feature set (stage_color, stage_friction,
floor_friction, block_mass), C = 5 represents feature set (stage_color, stage_friction,
floor_friction, block_color, block_mass).

From the above Table 6, we can find that our OILCA can achieve a consistent performance im-
provement over different baselines under different choices of c. This demonstrates that the empirical
performance of our method is relatively robust to the selection of this variable c. In fact, when
increasing the number of intervened features (the number of c choices), we can observe our model can
achieve better performance. This is because the policy can learn to adapt to more diverse/uncertain
environment configurations during the training phase.

F.4 Influence of the augmented data

In order to prove that the performance will not decay when further improving the DE/DU , we
further increase DE/DU (larger than 1) and conduct the experiments with three tasks in DEEPMIND
CONTROL SUITE of our method OILCA. Moreover, to show the quality of augmented data, we show
the performance gap when increasing expert data proportion using two kinds of augmented data: 1)
sampling with the policy in the online environment for more true expert data (Expert Data), 2) our
counterfactual data augmentation method OILCA (Augmented Data). The experimental results are
shown in Table 7.
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Table 7: Results for the Influence of the augmented data with improving the proportion of augmented
data and comparison to the true expert data in DEEPMIND CONTROL SUITE Benchmark.

Task Name CARTPOLE SWINGUP CHEETAH RUN CARTPOLE SWINGUP

Proportion Augmented Data Expert Data Augmented Data Expert Data Augmented Data Expert Data

10% 430.21 ± 13.20 441.36 ± 12.01 71.85 ± 8.26 74.56 ± 3.29 261.77 ± 14.68 255.62 ± 18.29
30% 463.78 ± 21.95 472.92 ± 7.62 86.44 ± 13.62 82.06 ± 9.36 269.85 ± 13.39 272.18 ± 12.25
50% 502.81 ± 20.76 520.15 ± 15.43 92.60 ± 16.51 89.21 ± 12.98 276.12 ± 9.82 285.48 ± 8.36
70% 557.90 ± 16.62 562.89 ± 20.47 105.57 ± 11.29 111.27 ± 11.56 283.69 ± 12.71 295.83 ± 13.48
90% 589.01 ± 38.29 593.37 ± 16.81 113.12 ± 9.25 118.32 ± 15.27 288.27 ± 7.09 306.26 ± 10.81

100% 608.38 ± 35.54 621.80 ± 9.26 116.05 ± 14.65 128.07 ± 8.31 298.73 ± 5.11 303.51 ± 11.67
200% 596.52 ± 28.37 634.12 ± 18.29 106.39 ± 10.08 132.64 ± 14.24 303.64 ± 12.91 311.70 ± 9.74
300% 612.30 ± 41.25 635.93 ± 25.15 118.51 ± 15.72 125.18 ± 8.73 301.57 ± 8.30 305.42 ± 14.53
500% 601.47 ± 27.82 627.47 ± 22.86 109.96 ± 9.84 129.72 ± 12.34 289.15 ± 15.27 302.15 ± 12.16

1000% 605.81 ± 31.63 629.94 ± 23.28 117.08 ± 7.69 124.80 ± 9.46 295.48 ± 7.84 304.93 ± 11.19

From Table 7, we can find that the performance will converge when the proportion is close to 100%,
and further improving it indeed will not improve the performance obviously. This can be explained
by the results that augmenting too much data can hardly bring additional effective information gain
to the learned policy. Moreover, our augmented counterfactual data behaves slightly worse than
augmentation with true expert data under most proportions, though achieving obvious improvement
over other IL baselines. This shows that the augmented data through our method is high-quality
enough.

F.5 Learning Curves of OILCA

We provide the learning curves of OILCA in Figure 9. In detail, we deploy our trained policy to the
online environment at each epoch and then collect 100 episodes for computing the average episode
return. From the figures, we can observe that the policies can converge after 200 epochs in most tasks.
The fluctuation of the curves mainly comes from the instability of the base offline IL method.

G Limitation Analysis

We simply analyze the limitations of this work in this section. In this paper, we only provide
the theoretical guarantee to the generalization ability of learned policy from the perspective of
the counterfactual samples’ number. Actually, why the samples generated by the counterfactual
augmentation module are more meaningful and can help the learned policy generalize better than
samples obtained by other augmentation methods is also worth exploring theoretically.
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Figure 9: Learning curves of OILCA on 9 tasks of DEEPMIND CONTROL SUITE.
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