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Abstract

Inverse Reinforcement Learning (IRL)—the prob-
lem of learning reward functions from demon-
strations of an expert policy—plays a critical role
in developing intelligent systems. While widely
used in applications, theoretical understandings
of IRL present unique challenges and remain less
developed compared with standard RL. For exam-
ple, it remains open how to do IRL efficiently in
standard offline settings with pre-collected data,
where states are obtained from a behavior pol-
icy (which could be the expert policy itself), and
actions are sampled from the expert policy.

This paper provides the first line of results for
efficient IRL in vanilla offline and online settings
using polynomial samples and runtime. Our al-
gorithms and analyses seamlessly adapt the pes-
simism principle commonly used in offline RL,
and achieve IRL guarantees in stronger metrics
than considered in existing work. We provide
lower bounds showing that our sample complex-
ities are nearly optimal. As an application, we
also show that the learned rewards can transfer
to another target MDP with suitable guarantees
when the target MDP satisfies certain similarity
assumptions with the original (source) MDP.

1. Introduction

Inverse Reinforcement Learning (IRL) aims to recover re-
ward functions from demonstrations of an expert policy (Ng
& Russell, 2000; Abbeel & Ng, 2004), in contrast to stan-
dard reinforcement learning which aims to learn optimal
policies for a given reward function. IRL has applications
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in numerous domains such as robotics (Argall et al., 2009;
Finn et al., 2016), target-driven navigation tasks (Ziebart
et al., 2008; Sadigh et al., 2017; Kuderer et al., 2015; Pan
et al., 2020; Barnes et al., 2023), game Al (Ibarz et al., 2018;
Vinyals et al., 2019), and medical decision-making (Wood-
worth et al., 2018; Hantous et al., 2022). The learned reward
functions in these applications are typically used for replicat-
ing the expert behaviors in similar or varying downstream
environments. Broadly, the problem of learning reward func-
tions from data is of rising importance beyond the scope
of IRL, and is used in procedures such as Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al.,
2017) for aligning large language models (Ouyang et al.,
2022; Bai et al., 2022; OpenAl, 2023; Touvron et al., 2023).

Despite the success of IRL in practical applications (Agar-
wal et al., 2020; Finn et al., 2016; Sadigh et al., 2017; Kud-
erer et al., 2015; Woodworth et al., 2018; Wu et al., 2020;
Ravichandar et al., 2020; Vasquez et al., 2014), theoret-
ical understanding is still in an early stage and presents
several unique challenges, especially when compared with
standard RL (finding optimal policy under a given reward)
where the theory is more established. First, the solution is
inherently non-unique for any IRL problem—For exam-
ple, for any given expert policy, zero reward is always a
feasible solution (making the expert policy optimal under
this reward). A sensible definition of IRL would require
not just recovering a single reward function but instead a
set of feasible rewards (Metelli et al., 2021; Lindner et al.,
2023). Second, theoretical results for IRL is lacking even
for some standard learning settings, such as learning from
an offline dataset of trajectories from the expert policy (akin
to an imitation setting). Finally, as a more nuanced chal-
lenge (but related to both challenges above), so far there
is no commonly agreed performance metric for measur-
ing the distance between the estimated reward set and the
ground truth reward set. Existing performance metrics in
the literature either require strong feedback such as a simula-
tor (Metelli et al., 2021; 2023), or do not require the returned
solution to be aware of the transition dynamics Lindner et al.
(2023) (see Section 3.3 for a discussion). These challenges
motivate the following open question:

Is IRL more difficult than standard RL?
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In this paper, we theoretically study IRL in standard
episodic tabular Markov Decision Processes without Re-
wards (MDP\R’s) under vanilla offline and online learning
settings. Our contributions can be summarized as follows.

* The goal of IRL is to output a set of rewards that ap-
proximate the ground truth set of feasible rewards, i.e.
rewards under which the expert policy is optimal. We
define new metrics for both reward functions and for
IRL using the concept of reward mapping, which can be
viewed as a “generating function” of the (ground truth)
set of feasible rewards (Section 2.1 & 3.1). We show
that our metrics are stronger / more appropriate than
existing metrics in certain aspects (Section 3.3).

* We show that any estimated reward that is similar in
our metric and satisfies monotonicity with respect to the
true reward admits an approximate planning/learning
guarantee (Section 3.2).

* We design an algorithm, REWARD LEARNING WITH
PESsIMISM (RLP) that performs IRL from any given
offline demonstration dataset (Section 4). Our algorithm
returns an estimated reward mapping that is e-close in
our metric and satisfies monotonicity, and requires a
number of episodes that is polynomial in the size of the
MDP as well as the single-policy concentrability coef-
ficient between the evaluation policy and the behavior
policy that generated the states of the offline dataset.
To our best knowledge, this is the first provably sample-
efficient algorithm for IRL in the standard offline setting.

Technically, the algorithm seamlessly adapts the pes-
simism principle from the offline RL literature to achieve
the desired monotonicity and closeness conditions,
demonstrating that IRL is “not much harder than stan-
dard RL” in a certain sense.

* We next design an algorithm REWARD LEARNING
WITH EXPLORATION (RLE), which operates in a nat-
ural online setting where the learner can both actively
explore the environment and query the expert policy,
and achieves IRL guarantee in a stronger metric from
polynomial samples (Section 5). Algorithm RLE builds
on a simple reduction to reward-free exploration (Jin
et al., 2020; Li et al., 2023) and the RLP algorithm.

» We establish sample complexity lower bounds for both
the offline and online settings, showing that our upper
bounds are nearly optimal up to a small factor (Sec-
tion 4.4 & 5.3).

* We extend our results to a transfer learning setting,
where the learned reward mapping is transferred to and
evaluated in a target MDP\R different from the source
MDP\R. We provide guarantees for RLP and RLE un-
der certain similarity assumptions between the source
and target MDP\Rs (Section 6 & Appendix I).

1.1. Related work

Inverse reinforcement learning Inverse reinforcement
learning (IRL) was first proposed by (Ng & Russell, 2000)
and since then significantly developed in various follow-
up approaches such as feature matching (Abbeel & Ng,
2004), maximum margin (Ratliff et al., 2006), maximum en-
tropy (Ziebart et al., 2008), relative entropy (Boularias et al.,
2011), and generative adversarial imitation learning (Ho &
Ermon, 2016). Other notable approaches include Bayesian
IRL (Ramachandran & Amir, 2007) which subsume IRL,
and the reduction method (Brantley et al., 2019).

IRL has been successfully applied in many domains in-
cluding target-driven navigation tasks (Ziebart et al., 2008;
Sadigh et al., 2017; Kuderer et al., 2015; Pan et al., 2020),
robotics (Argall et al., 2009; Finn et al., 2016; Hadfield-
Menell et al., 2016; Kretzschmar et al., 2016; Okal & Arras,
2016; Kumar et al., 2023; Jara-Ettinger, 2019), medical
decision-making (Woodworth et al., 2018; Hantous et al.,
2022; Gong et al., 2023; Yu et al., 2019; Chadi & Mousan-
nif, 2022), and game Al (Finn et al., 2016; Fu et al., 2017;
Qureshi et al., 2018; Brown et al., 2019).

Theoretical understandings of IRL Despite their suc-
cessful applications, theoretical understandings of IRL are
still in an early stage. Prior theoretical work (Ziebart et al.,
2008) considers how to efficiently pick a single reward that
best differentiates the expert policy from other policies in
the learner’s policy class. The IRL with this as the learn-
ing goal has achieved some significant theoretical results
(Swamy et al., 2021; 2022; 2023). Recently, Metelli et al.
(2021) pioneered the investigation of the sample complexity
of reward-set estimation for IRL (a different learning goal
from prior work) under the simulator (generative model)
setting where the learner can directly query feedback from
any (state, action) pair. This work was later extended by
Metelli et al. (2023), who introduced a framework based on
Hausdorff-based metrics for measuring distances between
reward sets, examined relationships between different met-
rics, and provided corresponding lower bounds. However,
their results critically rely on the simulator setting and do not
generalize to more realistic offline/online learning settings.
Dexter et al. (2021) also performed a theoretical analysis
for IRL in the simulator setting with continuous states and
discrete actions.

The recent work of Lindner et al. (2023) considers IRL in
the online setting where the learner can interact with the
MDP\R in an online fashion, which is closely related to our
results for the online setting. Compared with our metric,
their metric is defined for an estimated IRL problem (in-
stead of an estimated reward set). Further, their metric does
not effectively take into account the estimated transitions,
which can lead to a family of counter-exmaples where the
estimated IRL problem achieves perfect recovery under their
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metric, but the induced reward sets are actually far from the
true feasible reward set in our metric (cf. Section 3.3 for
a detailed discussion). Our work improves upon the above
works by introducing new performance metrics for IRL,
and providing new algorithms for standard learning settings
such as offline learning.

Relationship with standard RL theory Our work builds
upon various existing techniques from the sample-efficient
RL literature to design our algorithms and establish our
theoretical results. For the offline setting, our algorithm
and analysis build upon the pessimism principle and the
single-policy concentrability condition commonly used in
offline RL (Kidambi et al., 2020; Jin et al., 2021; Yu et al.,
2020; Kumar et al., 2020; Rashidinejad et al., 2021; Xie
et al., 2021; 2022). For the online setting, we adapt the
reward-free learning algorithm of Li et al. (2023) to find a
policy that achieves a certain concentrability-like condition
with respect to all policies.

We note theoretical results on imitation learning (Abbeel
& Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008;
Levine et al., 2011; Fu et al., 2017; Chang et al., 2021)
and RLHF (Zhu et al., 2023a;b; Wang et al., 2023; Zhan
et al., 2023), which are related to but different from (and do
not imply) our results. Additional related work is discussed
in Appendix A due to the space limit.

2. Preliminaries

Markov Decision Processes without Reward We con-
sider episodic Markov Decision Processes without Reward
(MDP\R), specified by M = (S, A, H,P), where S is
the state space with |S| = S, A is the action space with
|A| = A, H is the horizon length, P = {P} },c[s) where
Pn(|s,a) € A(S) is the transition probability at step h.
Without loss of generality, we assume that the initial state is
deterministically some s; € S.

Reward functions A reward function r : [H] X § X
A — [—1,1] maps a state-action-time step triplet (h, s, a)
to a reward 7, (s,a). Given an MDP\R M and a reward
function r, we denote the MDP induced by M and r as
MuUr. Apolicy 7 = {mp(-|5)}heim),ses. Where m, :
S — A(A) maps a state to an action distribution.

Values and visitation distributions A policy 7 =
(7h) helm)» Where each 7y, (-|s) € A(A) foreach s € S. Let
supp(mh(-|s)) := {a : mp(a]s) > 0} denote the support set
of 7, (+|s). For any policy 7 and any reward function r, we
define the value function V;7(-;7) : S — R at each time step
h € [H] by the expected cumulative reward: V" (s;r) =

E, [Zg:h T (Spryan )| sp = 5] , where E, denotes the

expectation with respect to the random trajectory induced by
7 in the MDP\R, that is, (s1, a1, $2, az, ..., Sm, am ), where

ap ~ mh(sn),rn = Th(Sh,an),Sht1 ~ Pi(-|sn,an).
Similarly, we denote the Q-function at time step h as :
a(s,a;r) = En [Zg:h T (Shryans) | s = s, ap = a}.
For any reward r, the corresponding advantage function
AT(5r) + S x A — R is defined as AJ(s,a;7) =
Q7 (s,a;r) — VT (s;r) and we say a policy is an opti-
mal policy of M U r if Af(s,a;r) < 0 holds for all
(h,s,a) € [H] x S x A'. Additionally, we represent the
set of all optimal policies for M U r as I, ; ,,. and denote
the set of all deterministic policies for M U r as Hf\ffw.

We introduce dj, to denote the state(-action) visitation dis-
tributions associated with policy at time step h € [H]:
d7(s) := P(sp, = s|m) and d}(s,a) := P(s, = s,a, =

a|w). Lastly, we define the operators P, and V}, by
[PrVit1](s,a) = E[Vht1(spe1)|sn = s,an = a] and
(ViViii](s,a) == Var[Vii1(shy1)lsn = s,an = a ap-

plying to any value function V}4; at time step A + 1. In this
paper, we will frequently employ @;L and WA/;L to represent
empirical counterparts of these operators constructed based
on estimated models. For any function f : S — R, define
its infinity norm as || f||oo = sup,cs |f(s)| (and we define
similarly for any f : S x A — R).

2.1. Inverse Reinforcement Learning

An Inverse Reinforcement Learning (IRL) problem is de-
noted as a pair (M, 7%), where M is an MDP\R and 7©
is a policy called the expert policy. We say a reward r is a
feasible reward for (M, 7F) if 7 is an optimal policy of
MUr, ie., AZE(S, a;7) < 0 for all s,a. The goal of IRL
is to interact with (M, 7F), and recover reward function r’s
that are feasible for (M, 7E).

Reward mapping Noting that learning one feasible re-
ward function is trivial (the zero reward r = 0 is feasible
for any 7F), we consider the stronger goal of recovering the
set of all feasible rewards, which can be characterized by
an explicit formula by the classical result of Ng & Russell
(2000). Here we restate this result through the concept of a
reward mapping.

Let R = {r : & x A x [H] — R} denote the
set of all possible reward functions, and R‘Eej‘%’ B =
{r € R : r is feasible and |r| < B} denote the set of all
feasible rewards bounded by B for any B > 0. Let
Vi=V; x---xVgand A := A x --- x Ay, where
V) = {Vh € RS [Villoo < H—h+ 1} and A; =
{Ah eREZA | Anlloo < H — b+ 1} denote the set of

all possible “value functions” and “advantage functions”

'This definition of optimal policy requires 7 to be optimal
starting from any time step h and state s € S (not necessarily
visitable ones), which is stronger than the standard definition but
is commonly adopted in the IRL literature (Ng & Russell, 2000).
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respectively.

Definition 1 (Reward mapping). The (ground truth) reward
mapping Z* : V x A — R of an IRL problem (M, ) is
the mapping that maps any (V, A) € V x A to the following
reward function r:

ra(s,a) = [Z7(V, Aln(s, a) = —An(s, ) M
x 1{a ¢ supp (m;(-|5)) } + Va(s) = [PrVis1](s, ),

where we recall that Py, is the transition probability of M
at step h € [H).

With the definition of reward mapping ready, we now restate
the classical result of Ng & Russell (2000), which shows that
the reward mapping Z* generates a set of rewards that is a
superset of Rfe_ail}—the set of all [—1, 1]-bounded feasible

rewards—by ranging over (V, A) € V x A.
Lemma 2 (Reward mapping produces all bounded fea-

sible rewards). The set of rewards #*(V x A) =
{#*(V,A): (V,A) € V x A} induced by #* satisfies

N < T

In words, * always produces feasible rewards bounded in
[-3H,3H), and the set #*(V x A) contains (is a superset
of) all [-1, 1]-bounded feasible rewards.

As IRL is concerned precisely with the recovery of the set
R{e_ail], we consider the recovery of the reward mapping
Z* itself as a natural learning goal—An accurate estima-
tor # ~ #* guarantees %?(V, A) ~ #*(V,A) for any
(V,A) € V x A, and thus imply accurate estimation of
Z%*(V x A) in precise ways which we specify in the sequel.

We will also consider recovering the reward mapping on a
subset © C V x A. We use the following standard definition
of covering numbers to measure the capacity of such ©’s:

Definition 3 (Covering number). The e-covering number of
O C V x Ais defined as

N (63 €) = maxye( N(Vy s €),

where VS = {V), : (V, A) € O} denotes the restriction of
O onto Vy,, and N (Vs; €) is the e-covering number of VS
in ||||co nOrm.

Note that log V' (©; €) < min {log |8], O(Slog(H/e))} by
combining the (trivial) bound for the finite case and the
standard covering number bound for © = V x A (Vershynin,
2018). In addition, the left-hand side may be much smaller
than the right-hand side if © admits additional structure (for

example, if V? lies in a low-dimensional subspace of R®).

3. Performance metrics for IRL
3.1. Metric for IRL

We now define our performance metric for IRL based on
the recovery of reward mapping #*. Fixing any MDP\R
M, we begin by defining our base metric d* (indexed by a
policy 7) and d®" between two rewards.

Definition 4 (Base metric for rewards). We define the met-
ric®> d™ (indexed by any policy ) between any pair of re-
wards r,7 € R as

d™(r,7") == sup Eg,~x|Vi (sn;7) = V7 (sp;7")]. (3)
he[H]

We further define d®"(r,r') := sup.. d" (r,r").

In words, metric d™ compares the rewards r and r’ when
executing 7. Concretely, (3) compares the difference in
the value functions V;7(-;r) and V,"(-;7') averaged over
the visitation distribution s;, ~ 7, which is sensible for our
learning settings as it takes into account the transition struc-
ture of M (compared with other existing metrics based the
sup-distance over all states; cf. Section 3.3). The stronger
metric @' takes the supremum of d™ over all policy 7’s.
We also note that our metric is related to EPIC distance in
Gleave et al. (2020).

We now define our main metric Dg for the recovery of
reward mappings, which simply takes the supremum of d™
between all pairs of rewards induced by the two reward
mappings using the same parameter (V, A) € ©. Here, a
reward mapping represents a mapping from V x A to R".

Definition 5 (Metric for reward mappings). Given any pol-
icy m and any parameter set ©, we define the metric? Dg
between any pair of reward mappings %, %' as

Dg(%#, %) = sup d"(R(V,A),Z (V. A). 4

(V,A)e®
We further define DA (%, %') := sup,, D&(%, %#').

(4) compares two reward mappings & and %’ by measuring
the distance between Z(V, A) and %’ (V, A) using our base
metric and taking the sup over all (V, A) € ©. Another com-
mon choice in the IRL literature is the Hausdorff distance
(based on some base metric) between the two sets Z(V x A)
and Z'(V x A) (Metelli et al., 2021; 2023; Lindner et al.,
2023). We show that (4) is always stronger than the Hauss-
dorff distance in the sense that a metric of the form (4) is
greater or equal to the Hausdorff distance regardless of the
base metric (Lemma D.3), and the inequality can be strict
for some base metric (Lemma D.4).

Technically a semi-metric.
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3.2. Implications for learning with estimated reward

For IRL, a natural desire for a base metric between rewards
is that, a small metric between r and 7 should imply that
learning (planning) using reward 7 in M should at most
incur a small error when the true reward is r. The following
result shows that our metric d” satisfies such a desiderata.
The proof can be found in Appendix D.5.

Proposition 6 (Planning with estimated reward). Given an
MDP\R M, let v, T be a pair of rewards such that

(a) (Small d™ on near-optimal policy) d™(r,7) < € for
some € near-optimal policy 7 for MDP M U r;

(b) (Monotonicity) (s, a) < ry(s,a) for any (h,s,a) €
[H] x S x A

Then, letting 7@ be any €' near-optimal policy for MDP MUT,
e, Vi*(s1;7) — V" (s1;7) < €, we have

Vi(s1;7) — Vi (sy;r) < e+ € + 2, 5)
i.e. T is also (¢ + € + 2€) near-optimal for M U r.

Proposition 6 ensures that any estimated reward 7 that sat-
isfies (a) small d™ and (b) monotonicity with respect to
the true reward will incur a small error when used in plan-
ning. We emphasize that monotonicity is necessary in order
for (5) to hold, similar to how pessimism is necessary for
near-optimal learning in offline bandits/RL (Jin et al., 2021).
Throughout the rest of the paper, we focus on designing IRL
algorithms that satisfy (a) & (b). These guarantees can then
directly yield planning/learning guarantees as corollaries by
Proposition 6, and we will omit such statements.

3.3. Relationship with existing metrics

Our metrics d™ and d2" differ from several metrics for IRL
used in existing theoretical work, which we discuss here.

Lindner et al. (2023) measures the difference between two
reward mappings implicitly by a metric D” (see (23)) be-
tween the two inducing IRL problems (the ground truth
problem (M, ) and the estimated problem (M, 7E) re-
turned by an algorithm). The following result shows that
D" is weaker than our metric Dg' in a strong sense.

Theorem 7 (Relationship with D”; informal). The metric
DY defined in (23) satisfies the following:

(a) (Informal version of Prop. D.1) Under the same setting
as Theorem 11 (in which our algorithm RLE achieves
€ error in Da@”), RLE also achieves € error in D with
the same sample complexity therein.

(b) (Informal version of Prop.D.2) Conversely, there exists
a family of pairs of IRL problems which has distance
0 in the D™ metric but distance 1 in the Dg' metric
between the induced reward mappings.

In a separate thread, the works of Metelli et al. (2021; 2023)
consider IRL under access to a simulator. Their metric be-
tween two reward functions requires the induced value/Q
functions to be close uniformly over all (s,a) € S x A (cf.
Appendix D.2), regardless of whether the state is visitable
by a policy in this particular MDP\R), which is tailored to
the simulator setting and does not applicable to the standard
offline/online settings considered in this work. By contrast,
our metrics d™ and d®" measure the distance between the in-
duced value functions averaged over visitation distributions,
which are more tractable for the offline/online settings.

4. IRL in the offline setting

4.1. Setting

In the offline setting, the learner does not know (M, 7rE),
and only has access to a dataset D = {(sF, al, el) kK:J;I,h:I
consisting of K iid trajectories without reward from M,
where actions are obtained by executing some behavior
policy 7 in M: af ~ 72 (-|sF) for all (k, h), and the expert
feedback e}’s are obtained from the expert policy 7F using
one of the following two options:

E,k
. {ah ~ 7 (-|sh)

““= 1 {a} € supp(nE(-|sF))} in option 2.

in option 1, (10)

Option 1, where the learner directly observes an expert
action a,s’k, is the commonly employed setting in the IRL
literature (Metelli et al., 2021; Lindner et al., 2023; Metelli
et al., 2023). In the special case where 7° = 7F, we can
take ai’k := ak, i.e. no need for additional expert feedback
when the behavior policy coincides with the expert policy.
We also allow option 2, in which eﬁ indicates whether aﬁ
“is an expert action” (belongs to the support of 7E(+[s)). As

we will see, both options suffice for performing IRL.

Additionally, for option 1, we require the following well-

posedness assumption on the expert policy 7F.

Assumption A (Well-posedness). For any A € (0, 1], we
say policy ©& is A-well-posed if

mh(als) > A, (1)

min
(h,s,a):7E (a|s)#0

This assumption is also made by Metelli et al. (2023, As-
sumption D.1), and is necessary for ruling out the edge case
where 7E (a|s) is positive but extremely small for some ac-
tion a € A, in which case a large number of samples is

required to determine 1 {a € supp(w},(+|s))}.

4.2. Algorithm

We now present our algorithm REWARD LEARNING WITH
PESSIMISM (RLP; full description in Algorithm 1) for IRL
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Algorithm 1 REWARD LEARNING WITH PESSIMISM

1: Input: Dataset D = {(sF,af, ef)}
2: for (h,s,a) € [H] x S x Ado

k—1,n—1> parameter set © C V x A, confidence level § > 0, error tolerance € > 0.

3:  Compute the empirical transition kernel Py, the empirical expert policy 7F and the penalty term b%, for all § € © as follows:

™ ’ 1 ’
Bulso = oyt 2 Hemansn) =(sa9)}, ©
(8h,an,8p41)€ED
SEals) = m D (snaan.enyen L{(sn,en) = (s,a)} in option 1, -
m Z(sh ap.ep)ED 1 {(Sh7 Qh, 6}1) (57 a, 1)} in option 2,
. log N (©;¢/H) 1o HlogN(©;¢/H) ¢ log N (©;¢/H )
(o) = Cmin{ [N O Ty oy HlsN©H e floaN©:ctn) )
n(s,) mln{\/ Nb(s,a) V1 wVie1|(s,0) + NE(s,a) V1 +H + Nb(s,a) V1
®)
where the visitation counts Np(s,a) := Dtonanyen L(sn,an) = (s,a)}, Np(s) == Y .caNi(s,a), Nji(s) =
D tonanen) L(snen) = (s,1)}, v :=log (HSA/6) and C' > 0 is an absolute constant.
4: end for R
5: Output: Estimated reward mapping Z defined as follows: For all (V, A) € ©,
BV, Alu(s,0) = =An(s,0) - 1{a & supp(FE([s)) | + Vi(s) = PuVasa](s,0) = Bi.(5, ). ©

in the offline setting. RLP returns an estimated reward
mapping & given any offline dataset D. At a high level,
RLP consists of two main steps:

* (Empirical MDP) We estimate the transition probabil-
ities P, and expert policy 7F by standard empirical
estimates ]P);L and 7F, as in (6) and (7).

* (Pessimism) We compute a bonus function bfL(s, a) for
any 0 = (V,A) € 0O, (h,s,a) € [H xS x A as
in (8). The final estimated reward (and thus the reward
mapping) (9) is defined by the empirical version of the
ground truth reward (1) combined with the negative
bonus —bY (s, a), for every parameter (V, A) € ©.

The specific design of b¢ (s, a) is based on Bernstein’s
inequality, and ensures that with high probability, for all
(h, s, a, ) simultaneously,

b (s,a) > Ap(s,a) x |1 {a ¢ supp (%,E(|s))}
-1 {a ¢ supp (7Th

Combined with the form of the ground truth reward
Z#(V,A) in (1), a standard pessimism argument en-
sures the monotonicity condition [@ (V,A)ln(s,a) <
[Z(V, A)|n(s,a) for all (h,s,a) and all (V, A).

Here, we provide the rationale for introducing the pessimism
principle. Proposition 6 states that any estimated reward
satisfying (a) small distance to true reward under any near-
optimal policy + (b) monotonicity (less or equal to true
reward) ensures that learning with the estimated reward also
gives a near-optimal policy. By Proposition 6, it suffices for

)+ (B = P)Visa](5,0)]-

an IRL algorithm to satisfy both (a) and (b) in order for the
learned reward to be useful. In Algorithm 1, the empirical
estimates ensure (a) and the negative bonus is used in Eq.(9)
to ensure the monotonicity condition while choosing the
right bonus to not harm (a). We also note that Algorithm 1
is computationally efficient.

4.3. Theoretical guarantee

We now state our theoretical guarantee for Algorithm 1. To
measure the quality of the recovered reward mappings, we
will be considering the d™ and Dg metric with 7 = weval
being any given evaluation policy. We assume that 7
satisfies the standard single-policy concentrability condition

with respect to the behavior policy 7°.

eval

Assumption B (Average form single-policy concentrability).
We say 7' satisfies C*-single-policy concentrability with
respect to T if (with the convention 0/0 = 0)

eval

*Z > d;,rb(i a))<0* (12)

H] (s,a)eSxA

Assumption B is standard in the offline RL literature (Jin
et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021),
though we remark that our (12) only requires the average
form, instead of the worst-case form made in (Rashidinejad
et al., 2021; Xie et al., 2021) which requires the distribution
ratio to be bounded for all (h, s, a).

We are now ready to present the guarantee for RLP (Algo-
rithm 1). The proof can be found in Appendix E.2.
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Theorem 8 (Sample complexity of RLP). Let 72 be any
policy that satisfies C* single-policy concentrability (As-
sumption B) with respect to w°. Assume that 7€ is A-well-
posed (Assumption A) if we choose option 1 in (10).

Then for both options, with probability at least 1 — §, RLP
(Algorithm 1) outputs a reward mapping % such that

eval

D5" (%" 2) <& [V, A)] (s.0) < [#"(V. 4)],(5.0)

forall (V,A) € © CV x Aand (h,s,a) € [H] x S x A,
as long as the number of episodes

~(H4SC’* log N/ N H2SC*7]>

K>0
- €2 €

Above, log N := log N'(©;¢/H),  := A1 {option 1},
and O(-) hides polylog(H, S, A, 1/6) factors.

To our best knowledge, Theorem 8 provides the first theo-
retical guarantee for reward-set estimation under the stan-
dard offline setting, showing that RLP achieves the de-
sired monotonicity condition and small Dg distance for
any evaluation policy 7' that satisfies single-policy con-
centrability with respect to 7°. For small enough e, the
sample complexity (number of episodes required) scales
as O(H*SC*log N'/€?), which depends on the number of
states .S, the concentrability coefficient C*, as well as the
log-covering number log A/ which always admits the bound
log N/ < O(S) in the worst case and may be smaller.

Apart from the log ' factor, this rate resembles that
of standard offline RL under single-policy concentrabil-
ity (Rashidinejad et al., 2021; Xie et al., 2021). This is no
coincidence, as our algorithm and proof (for both the Dgeval
bound and the monotonicity condition) can be viewed as
an adaptation of the pessimism technique for all rewards
(#(V, A))(v,a)ce simultaneously, demonstrating that IRL
is “no harder than standard RL” in this setting. We remark
that the~A_1 factor brought by Assumption A appears only
in the O(e~!) burn-in term in the rate when the feedback
{ef},.,, in (10) comes from option 1.

E

eval __

Result for 72" = 7F  In the special case where 7
7€, we establish a slightly stronger result where we can
improve over Theorem 8 by one H factor (H* — H?) in
the main term. The proof uses the specific form of our
Bernstein-like bonus (8) combined with a total variance
argument (Azar et al., 2017; Zhang et al., 2020; Xie et al.,
2021), and can be found in Appendix E.3.

Theorem 9 (Improved sample complexity for 72 = 7F),
Suppose ™' = & which achieves C* single-policy con-
centrability with respect to ° (Assumption B), and in ad-
dition supy, . oyermixsxa |2 (V, A)],(s,a)| < 1 for all
(V, A) € © C V x A. Then under both options in (10), with

probability at least 1 — §, RLP (Algorithm 1) achieves the
same guarantee as in Theorem 8 ( Dgeval (%*, %) < eand

monotonicity), as long as the number of episodes

. 3 * 2 *
K>(’)(H SCzlogN+H SC (A—i—HlogN)).

€ €

Theorem 9 no longer requires well-posedness of 7F (As-
sumption A) in option 1. This happens due to the assumed
concentrability between 7E(= 7®2) and 7°, which can aid
the learning of supp (7} (+|s)) even without well-posedness.

IRL from full expert trajectories An important special
case of Theorem 9 is when 7® further coincides with 7E.
This represents a natural and clean setting where dataset D
consists of full trajectories drawn from the expert policy 7F,
and our goal is to recover a reward mapping with a small
DgE. This case is covered by Theorem 9 by taking C* = 1
and admits a sample complexity O(H3S log '/€2).

4.4. Lower bound

We present an information-theoretic lower bound showing
that the upper bound in Theorem 8 is nearly tight.

Theorem 10 (Informal version of Theorem H.2). For any
(H, S, A e) and any C* > 1, there exists a family of offline
IRL problems where D consists of K episodes, ¢ satisfies
C*-concentrability at most C*, © =V x A, and 7% is A
well-posed with A = 1, such that the following holds.

Suppose any IRL algorithm achieves ngal (2*, @) < e for
every problem in this family with probability at least 2/3,
then we must have K > Q(H?SC* min {S, A}/€*).

For © =V x A, the upper bound in Theorem 8 scales as
O(H*S2C* /€?). Ignoring H and polylogarithmic factors,
Theorem 10 assert that this rate is tight for § < A (so
that min {S, A} = S). The form of this min {S, A} factor
in Theorem 10 is due to certain technicalities in the hard
instance construction; whether this can be improved to an S

factor would be an interesting question for future work.

5. IRL in the online setting

5.1. Setting

We now consider IRL in a natural online learning setting
(also known as “active exploration IRL” (Lindner et al.,
2023)). In each episode, the learner interacts with the IRL
problem (M, wE) as follows: At each h € [H], the learner
receives the state s, € S and chooses their action a;, € A
from an arbitrary policy. The environment then provides the
expert feedback ey, as in (10) (from one of the two options)
and transits to the next state spy1 ~ Pp(:|sp,an). This



Is IRL Harder than Standard RL? A Theoretical Perspective

Algorithm 2 REWARD LEARNING WITH EXPLORATION

AW =

: Input: Parameter set © C V x A, confidence level § > 0, error tolerance € > 0, N, K € Z>o, threshold § = ce H 36343 log w.
: Call Algorithm 3 to play in the environment for N H episodes and obtain an explorative behavior policy °.
: Collect a dataset D = {(sF, ay, eﬁ)}f:’ﬁ{h:l by executing 7 in M.

: Subsampling: subsample D to obtain D™, such that for each (h, s,a) € [H] x S x A, D"™ contains min {J/\fﬁ(& a), Np(s, a)}

sample transitions randomly drawn from D, where N, 2(s,a) and Ny (s, a) are defined by

Nu(s,a) =Y 1 {(shaf) = (s.0)} WB(s,0) = min |5, B [@(5,0)] - fo — Blog
k=1

where dJ (s, a) is specified in Algorithm 3.

K¢ 10HSA

4,2 8N 5 L’ (13

5: Call RLP (Algorithm 1) on dataset D™ with parameters (©, §/10, ¢/10) to compute the recovered reward mapping 7

6: Output: Estimated reward mapping Z%.

setting shares the same expert feedback model (ep) with the
offline setting, and differs in that the learner can interact with
the environment, instead of learning from a fixed dataset
pre-collected by some fixed behavior policy. We note that
classic IRL work does not require assuming the ability to
query the expert online; however, prior work (Lindner et al.,
2023) on reward-set estimation for IRL has considered this
setting.

5.2. Algorithm and guarantee

Our algorithm REWARD LEARNING WITH EXPLORATION
(RLE; Algorithm 2) performs IRL in the online setting by a
simple reduction to reward-free learning and the RLP algo-
rithm. RLE consists of two main steps: (1) Call a reward-
free exploration subroutine (Algorithm 3, building on the
algorithm of Li et al. (2023)) to explore the environment M
and obtain an explorative behavior policy 7° (Line 2); (2)
Collect K episodes of data D using 7°, subsample the data,
and call the RLP algorithm on the subsampled data D™
to obtain the estimated reward mapping 73

We now present the theoretical guarantee of RLE. The proof
can be found in Appendix F.2.

Theorem 11 (Sample complexity of RLE). Suppose 7€ is

A-well-posed (Assumption A) when we receive feedback in
option 1 of (10). Then for the online setting, for sufficiently
small e < H~%(SA)~C, with probability at least 1 — 6,
RLE (Algorithm 2) with N = O(vH9STATK) outputs a
reward mapping R such that

D2 (92*, @) <e [9?(1/, A)} (s,0) < [#°(V. )], (s.0)

forall (V,A) € © and (h,s,a) € [H] x S X A, as long as
the total the number of episodes

K+NH>O0 -

~(H4SA log V' H25An)

€ €

Above, log N := log N'(©;¢/H), n := A~11 {option 1},
and O(-) hides polylog(H, S, A,1/6) factors.

For small enough ¢, RLE requires O(H*SAlog N /e?)
episdoes for finding 2 with D2(%*,#) < e. Com-
pared with the offline setting (Theorem 8), the main differ-
ences here are that the metric is stronger (D2)' versus ngl
therein), and that the concentrability coefficient C* in the
sample complexity is replaced with the number of actions
A. This is because using online interaction, our reward-free
exploration subroutine (Algorithm 3) can find a policy 7®
that achieves a form of “single-policy concentrability” A
with respect to any policy ; see (16).

To our best knowledge, the only existing work that studies
IRL in the same online setting is LindneNr et al. (2023),
who also achieve a sample complexity’ of O(H*S?A/e? +
H?2SAn/e) (for © = V x A) in their performance metric
DT (cf. (23)). However, our metric D3 is stronger than
their D’ and avoids certain indistinguishability issues of
theirs, as we have shown in Theorem 7.

5.3. Lower bound

We also provide a lower bound for IRL in the online setting
in the D3 metric. The rate of the lower bound is similar
to Theorem 10, and ensures that the rate in Theorem 11 is
tight up to H and polylogarithmic factors when S < A.

Theorem 12 (Informal version of Theorem G.2). For any
(H, S, A, ¢), there exists a family of online IRL problems
where © =V x A, and wF is A well-posed with A = 1,
such that the following holds. Suppose any IRL algo-
rithm achieves DA (%*, %) < ¢ for every problem in this
family with probability at least 2/3, then we must have
K > Q(H3SAmin {S, A}/e?).

3Extracted from the proof of Lindner et al. (2023, Theorem 8)
and taking into account the uniform convergence over }V x A and
dependence on 7 = A™'1 {option 1}; cf. Appendix D.1.
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6. Transfer learning

As a further application, we consider a transfer learning
setting, where rewards learned in a source MDP\R are
transferred to a target MDP\R (possibly different from
the source MDP\R). Inspired by the single-policy concen-
trability assumption, we define two concepts called weak-
transferability and transferability (Definition 1.1 & 1.2) that
measure the similarity between two MDP\R’s.

We show that when the target MDP\R exhibits a small week-
transferability (transferability) with respect to the source
MDP\R, our algorithms RLP and RLE can perform IRL
with sample complexity polynomial in these transferabil-
ity coefficients and other problem parameters (Theorem 1.3
& 1.4), and provide guarantees for performing RL algorithms
with the learned rewards in the target environments (Corol-
lary 1.5 & 1.6). We defer the detailed setups and results to
Appendix I due to the space limit.

7. Conclusion

This paper designs the first provably sample-efficient algo-
rithm for inverse reinforcement learning (IRL) in the offline
setting. Our algorithms and analyses seamlessly adapt the
pessimism principle in standard offline RL, and we also
extend it to an online setting by a simple reduction aided
by reward-free exploration. We believe our work opens up
many important questions, such as generalization to func-
tion approximation settings and empirical verifications.
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A. Additional related work

Imitation learning A closely related field to IRL is Imitation Learning, which focuses on learning policies from
demonstrations, in contrast to IRL’s emphasis on learning rewards from expert demonstrations (Bain & Sammut, 1995;
Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Pan et al., 2017; Finn et al., 2016). Imitation learning has
been extensively studied in the active setting (Ross et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017), and theoretical
analyses for Imitation Learning have been provided by Rajaraman et al. (2020); Xu et al. (2020a); Chang et al. (2021). More
recently, the concept of Representation Learning for Imitation Learning has gained considerable attention (Arora et al.,
2020; Nachum & Yang, 2021). While Imitation learning can be implemented by IRL (Abbeel & Ng, 2004; Ratliff et al.,
2006; Ziebart et al., 2008), it is important to note that IRL has wider capabilities than Imitation Learning since the rewards
learned through IRL can be transferred across different environments (Levine et al., 2011; Fu et al., 2017).

Reinforcement learning from human feedback Reinforcement Learning from Human Feedback (RLHF) bears a close
relation to IRL, particularly because the process of learning rewards is a crucial aspect of both approaches (Zhu et al.,
2023a;b; Wang et al., 2023; Zhan et al., 2023). RLHF has been successfully applied in various domains, including robotics
(Jain et al., 2013; Sadigh et al., 2017; Ding et al., 2023) and game playing (Ibarz et al., 2018). Recently, RLHF has attracted
considerable attention due to its remarkable capability to integrate human knowledge with large language models (Ouyang
et al., 2022; OpenAl, 2023). Furthermore, the theoretical foundations of RLHF have been extensively developed in both
tabular and function approximation settings (Zhan et al., 2023; Xu et al., 2020b; Pacchiano et al., 2021; Novoseller et al.,
2020; Zhu et al., 2023a; Wang et al., 2023).

B. Technical tools

Lemma B.1 (Xie et al. (2021)). Suppose N ~ Bin(n, p) where n > 1 and p € [0, 1]. Then with probability at least 1 — 6,
we have

p___ 8log(1/9)
Nv1— n

Theorem B.2 (Metelli et al. (2023)). Let P and Q be probability measures on the same measurable space (0, F), and let
A € F be an arbitrary event. Then,

P(4) + Q(A%) > 3 exp(~Dia(P,Q))

where A€ = Q \ A is the complement of A.

Theorem B.3 (Metelli et al. (2023)). Let Py, Py, ..., Pys be probability measures on the same measurable space (), F),
andlet Ay, ..., Ay € F be a partition of Q). Then,

M 1 M
1 Vi Z~_ D[(L(Pi Po) — 10g 2
= IP)Z AS) > 1 — M =1 ’
M; (47) 2 log M ’

where A® = Q \ A is the complement of A.

C. Useful algorithmic subroutines from prior works

In this section, we give the algorithm procedures of finding behavior policy 7° in Algorithm 2. The algorithm procedures
are directly quoted from Li et al. (2023), with slight modification.

C.1. Algorithm: finding behavior policy 7°

Algorithm 3, a component of Li et al. (2023, Algorithm 1), aims to identify a suitable behavior policy. This is achieved by
estimating the occupancy distribution d™, which is induced by any deterministic policy 7, through a meticulously designed
exploration strategy. At each stage h, Algorithm 3 invokes Algorithm procedure 4 to compute an appropriate exploration
policy, denoted as 7' and subsequently collects N sample trajectories by executing 7®P'°®:" These steps facilitate
the estimation of the occupancy distribution dj , ; for the next stage h + 1. Finally, the behavior policy 7® ~ pyp, is computed
by invoking Algorithm 5.
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Algorithm 3 Subroutine for computing behavior policy (Li et al., 2023)

1: Input: state space S, action space .4, horizon length H, initial state distribution p, target success probability 1 — d,
threshold & = ¢ H3S3 A% log(HSA/9).

2: Draw N i.i.d. initial states s"* "<" p (1 < N), and define the following functions

<n
N o~ ~
Z {s1° = df(s,a) = di(s) - m(als) (14)

for any deterministic policy 7 : [H] x & — A(A) and any (s,a) € S x A.
forh=1,....H—1do
Call Algorithm 4 to compute an exploratlon policy rrexploreh,

n,h _n,h n,h : : explore,h
Draw N independent trajectories {s}" al s+ 821 F1<n< N using policy &P and compute

= 1{Nu(s,a) > £} nh nh '
Py (s |s,a) = max { Vo (s, ), 1}2 { =s,ay :a,sh_H:s}, V(s,a,8') € Sx AxS,

wokhw

n

where Ny, (s, a) = ZN_ 1 {SZ h_ s o ho_ }

n=1

6:  For any deterministic policy 7 : S x [H] — A(A) and any (s,a) € S x A, define

dy oy (s) = (Pu(sl, ), di (), diyi(s,a) = dyyy(s) - mhea(als). (15)
7: end for

- Call Algorithm 5 to compute a behavior policy 7°.
Output: the behavior policy 7°.

o o

We highlight that the behavior policy distribution py, output by Algorithm 3 has following property Li et al. (2023)

~

Z Z Z(i ) S HSA, (16)

he[H] (s,a)eSx A Er/mpy {d” (s, a)]

for any deterministic policy 7 € I19€t,

C.2. Subroutine: computing exploration policy 7e<®lore."

We proceed to describe Algorithm 4, originally proposed in Li et al. (2023, Algorithm 3), which is designed to compute
the desired exploration policy 7*P'"®" At a high level, this algorithm calculates the exploration policy by approximately
solving the subsequent optimization sub-problem, utilizing the Frank-Wolfe algorithm:

1 Aﬂ'
" ~ arg #Ien&a(x) Z log {KH + W]E# [dr (s, a)]|, (17)
(s,a)eSx.A

Here M} = (SU {s*¢}, A, H, ]IADa“g’h, 1), where s, is an augmented state as before, and the reward function is chosen
to be

L € [0,KH], if(s,a,j) eS8 xAx{h};
o] € O KA, () {h} "
0, if s = saug Or j # h.
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Algorithm 4 Subroutine for solving Eq.(17) (Li et al., 2023).
1: Initialize: ;(°) = ¢, for an arbitrary policy Tinix € I, Tinax = |50S Alog(K H)].
2: fort =0,1..., Thax do N
3:  Compute the optimal deterministic policy 7(¥)® of the MDP M} = (S U {sayg}, A, H,P2U8" 1) where r{* is
defined in Eq.(18), and P2ue.! s defined in Eq.(19); let 7(*) be the corresponding optimal deterministic policy of
7P in the original state space.
4:  Compute

ap = —~ , where g(m,d,u) = = .
g(r® d, u®) — 1 (s.0)CEx A 27 +Ereuldl (s, a)]
Here, (/i\g(i, a) is computed via Eq.(14) for h = 1, and Eq.(15) for h > 2.
5. Ifg(r®, d, ) < 25 A then exit for-loop.
6:  Update

S%g(ﬁ(t)7d7#(t)) - 1 I Z ﬁ + d;Lr(S, CL)

p ) = (1 — o) p® +ap 10 .
7: end for
8: Output: the exploration policy 7®®°®" = E__ ) [r] and the weight zi" = p*).

In addition, the augmented probability transition kernel Paue:h is constructed based on P as follows:

= / @ ' f 4 S

Bt (s |s,0) = e 19.a), ' e © forall (s,a,j) € S x A x [h]; (19a)
J 1= esPi(s |s,a), ifs =sa

P8 (s | 5,0) = 1(s = Saug) if 5 = 5,5 Or j > h. (19b)

C.3. Subroutine: computing final behavior policy 7°

We proceed to describe Algorithm 5, originally proposed in Li et al. (2023, Algorithm 2), which is designed to compute the
final behavior policy ® we<Plore: based on the estimated occupancy distributions specified in Algorithm 3. Algorithm 5
follows a similar fashion of Algorithm 4. Algorithm 5 computes the behavior policy by approximately solving the subsequent
optimization sub-problem, utilizing the Frank-Wolfe algorithm:

H

A 1 N

P ~ arg #renAa(%) E E log {KH + Ernp[di(s,a)]| o (20
h=1(s,a)eSxA

Algorithm 5 Subroutine for solving Eq.(20) (Li et al., 2023).

1: Initialize: uﬁo) = On,,, for an arbitrary policy minit € I, Tiyax = [50SAH log(KH)|.

2: fort =0,1..., Thhax do N

3:  Compute the optimal deterministic policy 7()® of the MDP M}, = (S U {Saug}, A, H,P2“8 1,), where 1, is defined
in Eq.(21), and P2u is defined in Eq.(22); let 7(*) be the corresponding optimal deterministic policy of 7(Y)-? in the
original state space.

4:  Compute

1 O 3,01 - A L4dr
a, = sag (T ), a(t:L)Lb ) where gmdm =% Y XA h(f,a)
g(m ™. d,py”) =1 h=1 (s,0)eSx A KH T Brmp [d7 (s, a)]

Here, c?’,{(s, a) is computed via Eq.(14) for h = 1, and Eq.(15) for h > 2.
50 Ifg(r®, d, ul") < 2HSA then exit for-loop. Update
/’Ll()t+1) = (1 — O[t) ,LLE‘) + Oét]_ﬂ.(t) .
6: end for

: Output: the behavior policy 7° = E ()

[7] and the associated weight iy, = 11"

<

e
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Here, M, = (S U {saug}, A, H, @a”g, b ), where Saug 18 an augmented state and the reward function is chosen to be

- LR € [0,KH], if(s,a,h) €S xAx[H]
ﬁ+ﬂi‘"~uét) [dz(s,a)] (21)

0, if (s,a,h) € {saug} x A x [H].

Tb,h(s7 CL) =

In addition, the augmented probability transition kernel P2ue is constructed based on P as follows:

N , E\D ’ f ’
P8(s | 5,a) = w(s |s,a), ifs €5 forall (s,a,h) € S x A x [H]; (22a)
1= csPu(s |s,a), ifs = saug
P2U8(s | Saug, @) = 1(s = Saug) forall (a,h) € A x [H]. (22b)

It’s evident that the augmented state behaves as an absorbing state, associated with zero immediate rewards.

D. Relationship with existing metrics

In Section D.1, we discuss the online IRL performance metric D proposed in Lindner et al. (2023), where we show that
RLE is still efficient under this metric, yet D* fails to distinguish certain pairs of reward mappings (or reward sets) that
exhibit large distances under our metric. In Section D.2, we briefly discuss the existing IRL performance metric d$. used in
the simulator setting (Metelli et al., 2021; 2023). In Section D.3, we provide a comparative analysis of our mapping-based
metric in relation to Hausdorff-based metrics which is widely adopted by previous work (Metelli et al., 2021; 2023; Lindner
et al., 2023). All proofs for this section can be found in Appendix D.4.

D.1. Discussion of existing metric for online IRL

Lindner et al. (2023) considers a performance metric between two IRL problems 7 = (M, 7€) and 7 = (M\ ,7E) instead of
two reward mappings (or reward sets). Their metric D’ is defined as follows:

. (23)

} ) (24)

where the R, R> the set of all feasible rewards set for IRL problems 7, 7, respectively, 7* € Ty T™ € Hj\?u . and
QT (-|M U r) represent the Q-function induced by M U r and 7. Since metric D’ is defined between two IRL problems,
we can’t directly compare D” with our metrics. However, we can prove that our algorithm RLE is capable of achieving the
goal of attaining a small D’ error.

DE(7,7) := max{ sup inf  sup max ’QT* (s1,a; MUT) — Q’l?* (s1,a; MUT)
re€R, TE€ER? 7xcll a

*
MUT

sup inf sup max ‘Q’f* (s1,a; MUT) — QT (s1,a; M UT)
FER: T€RT mrelly . @

Proposition D.1 (RLE achieves small D” error). Denote the ground truth IRL problem as 7 = (M, w%). Let P and
7€ be the estimated expert policy and the estimated transition constructed by RLE (Algorithm 2), respectively. Define

T = (/\//Y , %E), where M be the MDP\R equipped with the transition P. Under the same assumptions and choice of

parameters as in Theorem 11, for the online setting with both options in (10), for sufficiently small ¢ < H=°(SA)~5, with
probability at least 1 — 6, we can ensure D (7,7) < ¢, as long as the total the number of episodes

K+NH>0(—

~<HAS%4+>HQSAn>

€ €

Above, 1) := A~'1 {option 1}, and O(-) hides polylog(H, S, A, 1/8) factors.
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To achieve D (7,7) < e, the sample complexity* of Lindner et al. (2023, Algorithm 1) is

N 4¢2 2
O(H §?A  H SAn>7

2

€ €

which exactly matches the sample complexity of RLE.

On the other hand, the following proposition shows that D’ cannot distinguish certain cases that our D?a” metric can.
Proposition D.2 (Example of problems distinguishable by D' but not DE). Let © =V x A. There exist 7 = (M, 7F)

and T = (/\/l 7TE) such that D*(7,7) = 0 but DA%, %7) > 1 where Z" and %" are reward mappings induced by T
and T respectively using definition (1).

E

In fact, we also have D*(1,7) = 0 whenever n% = 7€ (but M and M may differ arbitrarily, which may induce arbitrary

difference between Z#" and Z7).
D.2. Comparisons with existing metrics used in the simulator setting

Metelli et al. (2023) consider the following metric

d$ (r,7) = (e omax Vic(s;r) — ViF (s; 7). (25)

Notice the max over (h, s) in (25). In words, a small d$. (r,7) requires 7 and 7 to induce similar value functions uniformly
at all states, which is achievable in their simulator setting and not achievable in standard offline/online settings where there
may exist states that are not visitable at all by any policy in this particular MDP\R.

D.3. Comparison with Hausdorff-based metrics

Given a reward mapping Z : V x A +— R', we say a reward set R C R?" is a feasible reward set induced by %, if
R = image(Z). For any given base metric d between rewards, the Hausdorff (pre)metric D" which is given by

DH(R, ﬁ) :=max { sup inf d(r,7), sup inf d(r,7)}.
reRTreER FER reR

The works of Metelli et al. (2021; 2023) consider finding an estimated feasible set R that attains a small D" (R, ﬁ) using a
certain base metric d.

Different from our mapping-based metric (Definition 5), the Hausdorff metric measures only the gap between the two sets
R and R, but cannot measure the gap between rewards for each parameter (V, A) in a paired fashion. Here we show that for
any given base metric d, our mapping-based metric is stronger than the Hausdorff metric.

Lemma D.3 (DM is stronger than D). Given an IRL problem (M, %) and a base metric d : R*" x R — R>o. We
define the corresponding Hausdor(f metric DV for any reward set pair (R, R') by

DM(R,R') = f d , inf d(r,r') ¢,
(R, R max{fggrlgR (r, r)fg%rlgn (7"7")}

and the mapping-based metric D is defined for any reward mapping pair (%, %') by

D%, %)= sup d(R(V,A), % (V,A)),
VEV,AcA

Forany (#,%'), let R = image(Z%) and R’ = image(%#'), then we have

DY R,R") < DM(%#,%#").

*The original sample complexity given in Lindner et al. (2023) is 9} ( i ;S A). This is because, in the proof presented by Lindner

et al. (2023), they didn’t employ the uniform convergence argument. However, the uniform convergence result is necessary for proving
the sample complexity of Lindner et al. (2023, Algorithm 1). As a result, an S factor was lost in the main term, and the burn-in term

o (@) was neglected in their paper.
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We then present the following lemma which demonstrates that for some d, DM is strictly stronger than D",

Lemma D.4 (DM is stronger than D). There exists a base metric d defined on rewards such that for any IRL problem
(M, =B), there exists another IRL problem (M, =E) such that DY(R*, R) = 0, but DM(%*, ) > 1/2, where D" and
DM are the Hausdorﬁ‘ metric and mapping-based metric induced by d, respectively; R* and R are the feasible sets of
(M, =) and (./\/l 7ik), respectively; %#* and 2 are the reward mappings induced by (M, =) and (./\/l 7E), respectively.
D.4. Proofs for Section D

Proof of Proposition D.1. For any 0 = (V, A), we first define the error C¢ (s, a) as follows:

Ch(s,a) :=1b)(s,a) + |An(s,a) - (1{a € supp (m};(-[s)) } — 1 {a € supp (7} (-]s)) })

; (26)

where bfl(s7 a) is defined in Eq.(8). Let 7 and %7 be the ground truth reward mappings induced by 7 and 7. We consider
the concentration event £ defined in Lemma F.2. Conditioning on £, we next prove the following result:

Cl(s,a) > max{‘r;’e(s, a) —r7%(s,a)|,

(B =B Vs | 5,00}, @7

holds for any € V x A and any (h, s,a) € [H] x S x A, where r™? = %7 (V, A), 7% = %7 (V, A).

By Lemma F.2, under event £, we directly have
Ch(s,a) = b (s,0) = |[(Br = Ba ) Vi | (s, ), (28)

holds for any # € V x A and any (h, s,a) € [H] x S x A. For the second part of Eq.(27), by definition of "¢ and r7-?,
we have

7 (s,0) =17 (s,0)| = | = An(s,0) -1 {a # supp (TE(1)) } + Vi(5) = [PuVisa) (5, 0)
+ An(s,a) -1 {a ¢ supp (RE([s)) } — V(s [@hvhﬂ] (s,a)‘
< |An(s,0) - (1 {a & supp (xEC1s)) } — 1 {o & supp (FECL)) 1] + | (B — B ) Vira (s, 0)|
< [Au(s,a) - (1 {a ¢ supp (xE(15)) } — 1 {a ¢ supp (EC15))})] + Vi (s, 0)
= 0%(s,a), (29)
where the last line is by Lemma F.2. Combining Eq.(28) and Eq.(29), we compelete the proof for Eq.(27). When Eq.(27)

holds, by Lindner et al. (2023, Lemma 20), there exists a policy 7l (see the proof of Lindner et al. (2023, Lemma 20) for
the construction of 7%) such that

DL(r,7) < sup Z Zd )-CY(s,a)

0€V><.Ahe H] s,a

= sup Z Zd” (s,a) ’Ahsa (1 {a¢supp(ﬂh(| )}—1{a¢supp(%5(-|s))})|

BEVXA].LG[ s,a

+ sup Z Zd” s, a) be (s,a), (30)
GEVXAhe[H] s,a

where {dgL ()}h " is the state-action visitation distribution induced by P and 7%. Following the proof of Theorem 11,
€

we can prove that under £

sup ZZd’T s,a) - |An(s,a) - (1{a & supp (r},(:|s)) } — 1 {a ¢ supp (7};(-s)) })| S,
0VXA K (H) sia

sup Z Zd” s,a) - b9 (s,a) < 31

VXA he[H] s,a
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hold, provided that

6 €

4q2 2 _
K>(’)(H AL H SA”), KHZNZ(’)(\/H9S7A7K).

Combining Eq.(30) and Eq.(31), we complete the proof.

Proof of Proposition D.2. To begin with, we prove a stronger result: for any 7 = (M, 7F) and any 7 = (/T/l\ ,7E), if
7 = 7E then DY(r,7) = 0.

Let #7 and %7 be the reward mappings induced by 7 and 7, respectively. For any § = (V, A), we define ™/ = %7(V, A)
and 7% = %7 (V, A). By the construction of reward mappings and the definition of optimal policies, we have that
m € I}, is equivalent to

Ap(s,a)-1{m}(als) =0} =0, V(h, s,a) s.t. mp(als) # 0. (32)

Similarly, 7 € Hj\’iu - , 1s equivalent to
7,

Ap(s,a) - 1{7}(a]s) = 0} = Ay(s,a) - 1 {m}(als) =0} =0, V(h, s,a) s.t. mp(als) # 0. (33)
Hence, we can conclude that IT} ., = IT'-  _ . Notice that 7% = {r™? |0 = (V, A)} and 77’ = ={r"10=(V,A)},
we then have
sup inf  sup max ’Qf* (s1,a; MUT) — QT (s1,a; M UT)
reR, TER: Rrelly,
= sup inf sup max ‘Q’f* (s1,a; MUY — QT (s1,a; M U 1"”9)‘
0c0 0'€O mxcrr o °
Mur?
=sup sup max ‘Q’f* (s1,a; MUY — QT (s1,a; M U TT’G)‘ =0, 34)
bcO el ., ¢
MurT,
where the last line is due to I, | o = Hj@t\uﬁv ,- Follow the same proof of Eq.(34), we have
sup inf  sup maX‘Ql (s1,a; MUT) —QF (s1,a; M UT)‘ =0. (35)

TER 2 reR; o *eIlh

Combining Eq.(34) and Eq.(35), we conclude that D% (7,7) = 0.

We then construct 7 and 7, respectively. We set S = {1,2,...,5}, A={1,2,..., A}, and H > 2. Design the transitions
P and PP as follows:

Pu(ls,a) =1, Pu(2s,a)=1  V(h,s,a) € [H] xS x A. (36)
Let M = (S, A, H,P), M = (S, A, H,P). Define x€ and (V', A) € ¥ x Aby

mE(1]s) = 1, V(h,s) € [H] xS x A
Vi(s) =1{s =1}, A=0, Vh € [H]. (37)

Set 7 = (M, 7E) and 7 = (M, 7E). By the result we proved at first, we have
DE(r,7) =0. (38)
Let 1 be the initial state i.e., P(s; = 1) = 1. By definition of DT, we obtain that

Vi (527 (V, A)) — (mm@mﬂmmwmq
(39)

DR, A7) = d* (%7 (V, A), %" (V. A) ) = Ex |

where the send last equality is due to the construction of P and P. O
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Proof of Lemma D.3. Since R and R’ are induced by % and %', then for any r € R and r’ € R, there exist V, V' € V, A,
A € A such that
=%(V,A), r=%"(V' A".
Then, we have
sup inf d(r,r') = sup inf  d(Z(V,A),# (V' A")
reR"ER VeV,AcAV'eV,A’eA
< sup  d(R(V.A), %V, A) = DR, 7).
VeV,AeA

Similarly, we obtain

sup inf d(r,r’) < D%, %).
r'eRrR’! reR

Hence, we conclude that
D"(R,R") < DM(%,%").

Proof of Lemma D.4. Fix a (5,a) € S x A, we define metric d by
d(r,r’) := |r1(s,a) — ri(5,a)l. (40)

Give an IRL problem (M, F), let P be the transition dynamics of (M, ). Let s* := argmin, g P;(s|5,a). By the
Pigeonhole Principle, we have IP1 (s*|3,a) < 1/5 < 1/2. We construct transition P’ by

P (s*]s,a) = 1. (41)

Let M = (S, A H,P'), 7% = 7F, and % be the reward mapping induced by (M\, 7E). Forany (V, A) € V x A, we define
(V',A") e V x Aby

VQI(S*) = [PlVQ](Eﬂ a) A= A
{Vé(s) SV e A, T “
Then we have
d(R(V, 0,2V, A)) = \[%’(v, Ay (5,0) — [AV.4)] (5,0)] 43)
= ‘ — Ay(5,a) - 1{a € supp (75 (-]5)) } + Vi(s) — [P1V2](5, a)
— {~A1(5,a) - 1{a € supp (FE(19)) } + Vi(s) — PLVA](5.)} |
= [ V3](5,a) — [P1V2](5, @)
=[V3(s*) — [P1V2](5,a)| = 0 (44)
On the other hand, for any (V’, A’) € V x A, we set (V, A) € V x Aby
Va(s) =V4(s*), seS,
{Vh(s> =Viis) h#2 )
which implies that
[P1V2](5,a) = V3(s*) = [P V5](5, ). (46)
Hence, we have
d(%(v A), BV ) - (5.a) — [@(V, A)] (5, a)‘ 47)

1(5,a) -1 {a € supp (75 (-[5)) } + Vi(s) — [P1V2](5,a)

— {—A/(5,a) 1{6L€supp(7r1 5)}+Vi(s) — [IF’&VQ’}(E,EL)}’
HP/VQ](S a) — [P1Va)(5,a)| =0 (48)
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Combining Eq.(43) and Eq.(47), we have DH(R, 73,) =0.
Next, we lower bound DM (2%, %). First, we define a parameter (V, A) € V x A as follows:

{172(5*) =H-1, I

Vi(s) = 0, (hs)# (257, 0

Then we have

DM(%, %) zd(%(f/,ﬁ),@(f/,ﬁ)) :] P V| (5,a) — [ﬂ»l%} (5,&)’

= [(H = 1)(P1(s*[5,a) = 1) =

where the last line is due to Py (s*|5,a) < 1/2.

D.5. Proof of Proposition 6
Proof of Proposition 6. Since T is an e-optiaml policy in M U 7, we have
¢ +V7(s1;7) > V™ (s1;7).
In the same way, 7 is an €-optiaml policy in M U r, and therefore, we obtain that
e+ V™ (s1;7) > VT (s1;7).
And by 7, (s,a) < rp(s,a) forall (h,s,a) € [H] x S x A, we have
V7 (s1;7) > V™ (s1;7), V7 (s1;r) > VT (s1;7).
Combining Eq.(51), Eq.(52) and Eq.(53), we conclude that
etV (s13r) = + VT (s13r) 2 € + VT (s1:7) 2 VT (s1:7).
Hence, we have
VA (s157) = VA (spir)| S 1€ €+ V(1) = (€ V(s13m) )|+ ¢
S| E4+VT(s137) = VT (s1;7)| + €

<2+ €+ |VT(s1;r) — V™ (s;;7)| < e+ € + 2,

where the first and last line is by triangle inequality and the second is by Eq.(54).

E. Proofs for Section 4

E.1. Some lemmas

(49)

(50)

(S

(52)

(53)

(54)

(55)

Lemma E.1 (Concentration event). Under the assumption of Theorem 8, there exists absolute constant Cy, Cs such that

the concentration event £ holds with probability at least 1 — 6, where

= {(i): H(}ph - I@h)vhﬂ] (s,a)‘ <bl(s,a) YO=(V,A) €0, (hs,a)e[H xS x A,

(ii): i
N V1S Kdp(s,a)

V(h,s,a) € [H] x S x A,

(iii): Ni(s,a) >1 V(s,a) € S x As.t. dgb(s,a) >

21
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- € supp (WE(-S))},

(56)

(57
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where by, (s, a) is defined in Eq.(8), C* is specified in Definition B, and Ny, (s, a),n are given by

1{(sn,en) = (s,a in option 1, Lo tion 1,
N;(S,a) — Zb(sh,,ah,,eh,)ED {( h h) ( )} . /4 - n = A li’l op l.On
Np(s,a) in option 2, 1 inoption 2.

Proof. When Ny (s,a) = 0, then @h(~|s, a) = 0, as a result, claim (i) holds trivially. We then consider the case where

Np(s,a) > 1. For any h € [H]|, we define N, , as an ¢/H-net with respect to || - || norm for VS. By definition of
N(©;¢/H), we have
log |Nen| <logN(©;¢/H).

For fixed ‘~/h+1 € Nent1, (hys,a) € [H] x 8 x A, by the empirical Bernstein inequality (Maurer & Pontil, 2009, Theorem
4), there exists some absolute constant ¢ > 0 such that

SHSA - |Nopi]

i\’hvh_;,_l] (s,a) log 5

[ ] 0] < [

cH 3HSA- |Nepi|

1
+N};(s,a)\/1 o8 o

log N (©;¢/H)i [ ~
S \/C 35},;(5(7 a)e\fl ) [VthH] (s,a) +

cHlog N (©;¢/H).
Np(s,a) V1

with probability at least 1 — §/(3HSA|N,|). Here < hides absolute constants. Taking the union bound over all
Vit1 € Nepy1 and (b, s,a) € [H] x S x A, we know that with probability at least 1 — /3,

[ Bt ] | LA [+ LN

holds simultaneously for all V € N, , and (h, s,a) € [H] x S x A.

For any (V, A) € © and h € [H], there exists a V}, € VS such that ||V, — Vi||so < €/H. Denote (Vi,...,Vy)as V. By
applying the triangle inequality, we deduce that

’ {(Ph — @h)Vh+1} (S, a) S ’ {(@h — ]P)h)f/thl] (S, a)‘ + 2H‘7 — VHOO

< clog N (©;¢/H)e
~ NP(s,a) V1

(o =~ cHlogN(©;¢/H)t ¢
Vi (s.) + S

< \/CIOgN(e; /A :@;LVHJ (s,a) + \/ClOgN(@?E/H)L [@h (‘7”“ - Vh“” ()

Np(s,a) V1 Np(s,a) V1
cHlog N (©;¢/H)t i
Np(s,a) V1 H
clog N (©;e/H)t 1 clogN(©;¢e/H)e2  cHlogN(0;¢/H). €
< V VL ’ T7
_\/ Nf(s,a) V1 [ h ;+1}(s @)+ H?-Np(s,a) V1 * Ni(s,a) V1 tH

_ [clog N(©;€/H)i 1o cHlogN'(©;¢/H)t € clog N(©;¢/H)u
\/ Nb(s,a) V1 {Vth—i-l}(&a)Jr N(s.a) v 1 +H<1+\/ N5, a) v 1 ) (59)

holds with probability at least 1 — ¢/3 for all @ = (V, A) € © and (h, s,a) € [H] x S x A. Here, the second inequality
is by vVa+b < y/a + Vb and the last inequality in is by {\A’h (‘7h+1 — Vh+1)} (s,a) < I‘TZQ On the other hand, by
Vil < H — h + 1, we obtain that

‘ [(Ph — @h)vhﬂ} (s, a)‘ <2(H - h+1)<2H, (60)
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forall V € © and (h, s,a) € [H] x S x A. Recall that, b (s, a) is given by

B . log NV (©;¢/H)e Hlog N (©;¢/H)e
b9 (s,a) = C - min {\/Ng(s,a) U1 [VthH}( a)+ Ni(s,a) v 1

€ log N'(©;¢/H)e
+H<1+ NP(s,a) V1 )’H} ©b

for some absolute constant C'. Combining Eq.(59) and Eq.(60), it turns out that Claims (ii) holds.

For claim (ii), notice that N (s, a) ~ Bin(K, d;{b (s,a)). Applying Lemma B.1 yields that

L 8 oS4,
Nu(s,a) V1~ K-df (snaf) o 8~ Kd'(s.a)

for some absolute constant C', with probability at least 1 — §/(3H S A). Taking the union bound yields claim (ii) over all
(h, s, a) with probability at least 1 — 6/3.

For claim (iii), in option 2, for any (h, s,a) € [H] x S x A such that a € supp (7};(-|s)) and d;{b(s, a) > sz , we have
N{(s,a) ~ Bin (K, d}{b(s, a) - ﬂE(alS)). By direct computing, we obtain that

PINf(s.0) = 0] = (1 - df(s.0) - wE(ale)) < (1~ A-df'(s.0))

5 1/K 5 1/K X K
= (3HSA) +<3HSA) —Adp (s’“)l

IN
7 N
w
T,
b
N—
=
+
[t
|
7N
w
T e
b
SN—
=
=
|
>
S8
>
0
£

_ 5 1/K~K B 5
— \3HSA " 3HSA’

where the second line follows from the well-posedness condition: 7E(a|s) > A and the last inequality is valid since

1K ~
—(5> =1—exp(— log 0 )< — 021 0 <@<A d’r( a),

3HSA K °3HSA K ®3HSA - K
where Cy, and C are absolute constants and the last inequality comes from d;zb (s,a) > C;’(”" = C2‘ . Hence, it holds that
Ni(s,a) > 1,

with probability at least 1 — 6/(3H S A). Taking the union bound over all (h, s,a) € [H| x § x A yields that
Ni(s,a) > 1

holds with probability at least 1 — §/3 for all (s,a) € S X As.t. d;{b(s, a) > Cfg”, (7 (|s)), which implies that
claim (iii) holds.

b K
In option 1, notice that P[N¢(s,a) = 0] = (1 —d; (:a) (g, a)) , with a similar argument, we can prove the claim (iii) in
option 1.

Further, we can conclude that the concentration event £ holds with probability at least 1 — 9. O
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Lemma E.2 (Performance decomposition for RLE). Forany § = (V,A) € ©, let v’ = %*(V, A) and 7° = .@(V, A),
where Z* is the ground truth reward mapping and X is the estimated reward mapping outputted by RLP. On the event
defined in Lemma E.1, for any 6 € © and any h € [H], we have

eva C*HQS L
) s T ST S a5 (s )b (sa),
he[H] (s,a)eSxA

where C* is defined in Assumption B and 1) is specified in Lemma E.1

Proof. Fix atuple (h,s,a) € [H] x S x A. When a ¢ supp (75 (-|s)), by definition of Nf(s, a), we have Nf(s,a) =0
By construction of 7% (a|s) in Algorithm 1, we deduce that 75 (als) = 0, and therefore

11 {a ¢ suppEC1s)} — 1 {a ¢ supp (EC1s))}] = 0 — 0] = 0.
When a € supp (7} (+|s)) and 7" (s,a) < S22 then

11{a ¢ supp (7} (-s)) } — 1 {a ¢ supp (7} (-|s)) }| < 2.

If a € supp (7} (-|s)) and dzb(s, a) > Cf(m, then by concentration event £ (iii), Ny (s,a) > 1 which implies that

7t (als) > 0. Hence, we obtain that

1 {a ¢ supp (EC19))} — 1 {a ¢ supp (<5C190)} | = 1 — 1] =0.
Thus we can conclude that
~ C!
11{a ¢ supp (7;(-[s)) } — 1{a & supp (m};(-]s)) }| < 2- 1{d” (s, )<I2;]L,a6supp(7r,s(~|s))}. (62)
We then bound the |[rf — 77| (s, a)| for all (h, s,a) € [H] x S x A:

(11, = 75, )] = | = An(s,a) - 1{a ¢ supp (TE(15))} + Vis) = [PuVisa(s,)
+ Ap(s,a) - 1{a ¢ supp (7?,'3(.|5))} — Va(s) + [thhﬂ} (s,a) + be(s a)‘

< An(s,a) - |1 {a ¢ supp (75 (|s)) } — 1 {a ¢ supp (m5(-|s)) }| + ‘ [ Py, — Ph)Vh-&-l} (s, a)‘ + by (s, a)

<2H-1 {dzb(s,a) < CIQ;]L

,a € supp (71'5(|8))} + ‘ [(]P’h - IP’h)V;LH} (s,a)’ +bY(s,0)

<2H-1 {dﬁb(&a) < C;{m,a € supp (71'5(|s))} + 209 (s, a), (63)

where the second line follows from the triangle inequality, the third line comes from Eq.(62), the second last line follows
from || Ay |lco < H, the last line comes from the concentration event £ (i). Finally, we give the bound of E e |Vh’fm‘ (s;79)—
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eval

V7" (5;79)|. By definition of the V function, we have

]Eﬂ.eval

Vhﬂ_eval(s; T'G) eval 5, ’ _ Zdﬂeval ‘Vh eval 5 ’1"0) B Vhﬂem(s;?e)‘

= Z MI Z Z vaal (s =s,ap = alsp, =8') - [rh, —7h](s,a)
s'eS

h'>h (s,a)ESX.A

> oy {zd -l =9 |1 )
h'>h (s,a)eSx A (s€S

S Z Z ™ (s,a) - [[rh, =70 (s,0)|
h'>h (s,a)eSxA

(u)

o € supp (s5(15) | + 25,0

<3 Y @sa)- [2H.1{d;;"(s,a) <& £

h'>h (s,a)eSXA

Z Z W(;)dzb(S,a) .1 {dzb(S,a) < C;;?L’a € supp (ﬂ’ELHS))}

7.{.b
he[H] (s,a)eSx.A di; (s (

+ Z Z QdZeval (s, a)bfl(s7 a)

h>1(s,a)ESxA

eval

<2H - sz Z Z d;ﬂb(;aa Z Z 2dfval(s,a)b2(s,a)

he[H] (s,a)eSx.A h>1 (s,a)eSx.A

(533 *H2 ova
p I S S A )

he[H] (s,a)ESx.A

where d;fval(sh/ = s,ap = al|s, = 8) = Pp(sp = s,ap = alsp, = s), (i) is due to d”fval(s,a) =D ses d”eval( ) -

dgfval (sp = s,aps = a|sp, = s), (ii) follows from Eq.(63) and (iii) comes from definition of C*-concentrability. This
completes the proof. O
E.2. Proof of Theorem 8

Proof. By Lemma E.2, we have

v ~ C*H?S eva
I(%* ZABS < 22 om + sup g E dy, I(s,a)bi(s,a). (64)
K 0€o
€[H] (s,a)eSxA

@
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Plugging Eq.(61) into Eq.(64), we obtain that

D=>Y Y " (s,a)bu(s,a)

he[H] (s,a)ESx A

SY Y &k {\/W[Whﬂ]( a) (65)

he[H] (s,a)ESx.A

+
NP(s,a) V1

HlogN(©;¢/H)t € log NV (©;¢/H)e
* Np(s,a) V1 H(l+ )}

- Z Z 0 (s5,a) - \/W;E/H)L[Vhwﬂ](s,a)

b
he[H] (s,a)eSx A N}L(Saa) V1

(La)

PYY s \/WKV Vi) Vi (5,0)

he[H] (s,a)ESx.A

(Lb)

ol Hlog N(©;¢/H)t
+ Z Z dh (87 CL) N}IZ(S, a) V1

he[H] (s,a)ESx.A

(Io)

el 1 log N (©;¢/H)e
Z Y. df (S’“)'<H+\/H2.N5(s,a)v1> (66)

H] (s,a)eSxA

(L)

where the last inequality comes from the triangle inequality. We study the four terms separately.
For the term (I.a), on the concentration event £, we have

SDIEDS df“'(s,a>~\/W;E/thmms,a)

b
he[H] (s,a)eSx.A Np(s,a) V1

Z Z dzem(&a) ) \/W [ViVital(s, a)

he[H] (s,a)ESX.A

71.eval

\/H2 logN O;¢/H). Z > \/d”'i
d}{b (s,a)

H] (s,a)eSxA

H2log N (©;¢/H) a7 (s, reval
< | e O/ > ¥ AV SR

he[H] (s,a)eSx.A he[H] (s,a)ESX.A
(by Cauchy-Schwarz inequality)

(67)

< \/C*H4Slog/\f(@; e/H)
— K )

where the second line comes from concentration event £(ii), the third line is valid since ||V}, 41]|cc < H and the last is by
thw definition of C*-concentrability.
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Next, we study the term (L.b). For any (h, s, a), we have

(70 =) V] 0)

= [(@thH)Q — (PuVis1)? — (Pu(Vig1)? — (]PthH)Q)} (s,a)

< ‘ {(@h - Ph)(Vh+1)2} (s, a)‘ + ’ {(@h +Pp)Vigs - (Py — Ph)VhH] (s, a)‘
< QH‘ [(@h - Ph)(Vthl)} (s, a)‘ + QH‘ {(@h - Ph)Vthl} (s, a)‘

4
- L . (68)
Np(s,a) V1

where the second last inequality is by || Vi, 41]|co < H and the last inequality follows from the Azuma-Hoeffding inequality
By applying Eq.(68), we can obtain the bound for the term (I.b):

= Z Z ™ (s,a) - \/I%MGE/H)[(V;,Vh)VhH}( a)

b
he[H] (s,a)eSx A Ny(s,a) V1
eva 1 N H H4
- Z Z i I(s7a)~ oifj\/(@ re/ 1) = L
he[H] (s,a)eSxA n(s,a) v Np(s,a) V1
7,l_eval HL3/4
= (log N (&5¢/H)'*- >~ > df " (s,a) - — 7
he[H] (s,a)ESx A {N} (s,0) v 1}
. 1/2 eval 1
< (log N (©;¢/H)) " - Z Z dp (s,a)- W
he[H] (s,a)eSx.A
(Ib.1)
2 3/2
. 1/2 reval H L
+ (log N (©;¢/H))' ™ Z Z dp, (&@'W, (69)
he[H] (s,a)eSxA
(Ib.2)
where the last line is from AM-GM inequality. For the term (I.b.1), on the concentration event £, we have
1
I.b.1 1 H)) 12, e _
(Lb.1) = (log N (©:¢/ DD D A GO 7w
he[H] (s,a)ESX.A
ﬂ-eval
< (log N'(©;¢/H))"? . Z Z \/dr (s, )4/ d“b
he[H] (s,a)eSx.A
< (log N'(©;¢/H))"? . 1. Z > M o> dr(s,a)
= ’ K d‘n’ ( ’
H] (s,a)eSx A he[H] (s,a)ESXA
C*HSlog N (0©; e/H)
< \/ = o> dr(s,a)
he[H] (s,a)eSx.A
*H2S1 ce/H
_ \/c S ogKN(@,e/ )’ (70)

where the second line is directly from concentration event £ (%), the third line follows from Cauchy-Schwarz inequality and
the second last line comes from the definition of C*-concentrability. For the term (I.b.2), on the concentration event £, we
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obtain
2,3/2
B ) 1/2 71_eval H L
(Lb2) = (og N(O:e/H)™- 3 D) i (s0) gy
he[H] (s,a)eSx.A

eva H2L5/2

< (log N'(©: ¢ /H))/? - 47" (s,a) - ———

< (logN(O5¢/H)*- >y > df (s.a) Kdj (s, a)

he[H] (s,a)ESX.A

eval

< ogN(@i /2. T2 5 )

he[H] (s,a)€Sx A di’ (s,0)
C*H3Slog N(©;¢/H)i®/?
= i ;
where the second line comes from concentration event £(ii), the third line follows from the definition of C*-concentrability.
Combining Eq.(70) and Eq.(71), the term (I.b) can be bounded as follows:

* 72 . * 173 . 5/2
amgVCHSmN@dm+CHSmN@dmL.

(71)

72
% % (72)
For the term (I.c), observe that
(Ic) = (Ib.2)/(HO/?).
Hence, by Eq.(71), we deduce that
*H?S1 ie/H
(Le) < C*H?*Slog N (©;¢/H). (73)

K
For the term (1.d),

eval 1 log N (©;¢/H)e

he[H] (s,a)ESX.A

el log N'(©;¢/H)e
:e—l—e-z Z dj, (S’a)'\/HQ-N};(s,a)\/l

he€[H] (s,a)ESx.A

e Y dpsay . [N O/

2 b
H] (s,a)eSx.A H th (S’a)

log M (©; e/H / ﬂeva, d’Teval (s,a)
H2 K Z Z d dﬂ'b 5 a

he[H] (s,a)eSx.A

log N'(©; ¢/H). . 7™ (s, a)
Sere BT [y %<m%JZ > e

he[H] (s,a)eSx.A he[H] (s,a)eSx.A

SE.(1_’_\/C*Slog]\}/{(@;e/H)L)7 (74)

where the second last line is by Cauchy-Schwarz inequality and the last line is by definition of C*-concentrablity.
Combining Eq.(67), Eq.(72), Eq.(73) and Eq.(74), we deduce that

(1) < (La) + (Ib) + (I.c) + (L.d)

- \/C*H4Slog/\/(@; ¢/H). \/C*H231ogj\/(@; ¢/H) C*H3SlogN(©;¢/H).5/?
< + +

K K K

*x 172 . * .
Lo Slog N'(©;¢/H)u et \/c SlogN(@,e/H)L)
K K

<\/C*H4SlogN(®;e/H)L C*H?S1log N'(©; ¢/ H)i5/?
~ K + K

+ €.
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Finally, plugging into Eq.(64), the final bound is given by

+ €

* 72 * . * T3 . 5/2
DL () < C I}I(Sm N \/c H451oglj(v(@,e/H)L L CH Slog/\[/((@,e/H)L /

The right-hand-side is upper bounded by 2¢ as long as

K>0 o

€ €

~<C*H4Slogj\/(9;e/H) . C*H2Sn>

Here polylog (H, S, A,1/§) are omitted.

E.3. Proof of Theorem 9

In this section, we will consider the case that 7¢@' = 7F. We first introduce the following concentration event which is
slightly different from the concentration event defined in Lemma E.1.

Lemma E.3 (Concentration event ). Under the setting of Theorem 8, there exists an absolute constant Cy, Cs such that the
concentration event £ holds with probability at least 1 — 6§, where

€= {m; ‘ [(n»h - fph)vhﬂ] (s,a)‘ <t (s,a) VO=(V,A) €O, (hsa)e|[H xS xA (75)
.. 1 Clb
: H
(ii) No(sa) V1 < Kdzb(s,af V(h,s,a) € [H] x S x A, (76)
(iii): Ni(s,a) > 1 V(h,s,a) € S x As.t. dy(s,a) > %,a € supp (3 (-[s)) }, (77)

where VY (s, a) is defined in Eq.(8), C* is specified in Definition B, and N (s) is given by

NE (s, a) i Z(shmﬂeh)eD 1{(sp,en) = (s,a)} inoptionl,
b Np(s,a) in option 2,

(78)

d(s,a) == dz:(s) -7E(als) ln 0pl‘l:01’l 1,
dy (s, a) in option 2.

Proof. Repeating the arguments in the proof of Lemma E.1, we can prove that claim (i), (ii) holds with probability at least
1— 28

3" _ _
For claim (iii), for any (h, s, a) € [H]xSx Asuch thata € supp (7f-|s) and dj, (s, a) > %, Nf(s,a) ~ Bin(K,dp(s, a)).
By direct computing, we obtain that

PINE(s,a) = 0] = (1 — dy(s,a))" = ll B <3HaSA)1/K X <3H55A)1/K i Jh(m)] K
(?JJZA) T (3H6$A) - dns;a)

B 5 1/K-K B 5
— \3HSA "~ 3HSA’
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where the last inequality is valid since

5 \M& 5 Cy 5 Cot -
| — =1 = < — — < — <
<3HSA) L - exp(= Kl 83msa) S TR 8 3msa S xS W)

where 5‘2 and Cy are absolute constants. Hence, it holds that
Ni(s,a) > 1,
with probability at least 1 — 6/(3H S A). Taking the union bound over all (h, s,a) € [H| x § x A yields that
Ny (s,a) > 1
holds with probability at least 1 — §/3 for all (h, s,a) € S x As.t. dp(s,a) > C’“ ,a € supp (7F(+|s)), which implies that

claim (iii) holds. Further, we conclude that the concentration event £ holds w1th probablhty at least 1 — 4. O

Proof of Corollary 9. Recall that ¥ = %*(V, A) and 7 = Z(V, A) for any 6 = (V, A) € ©. When 7" = 7€, repeating
the arguments in Lemma E.2, we have following decomposition:

dﬂem (re,v’;@) < oK. Z Z dZE(S,a) 1 {Jh(s’a) < %,a € supp (W}EHS))}

he[H] (s,a)eSxA

+ Z Z 2cheval (s, a)bz(s, a)

he[H] (s,a)ESX.A

< 2H - Z Z d (5,0) dn(s,a)-1 {dh(s,a) < %,a € supp (WE(S))}

he[H] (s,a)€Sx A dp(s,a)

+ 33 2d7 (s, a)b (s, a)

he[H] (s,a)eSx.A

<y oy u EYY ek

helH) (ssarcinn (5@ ER S ea

* T2 :
. _ C*H?SA H SAL Z Z dr™ (s, a)bl (s, a).

he[H] (s,a)eSx.A
where the second last line is valid since

dy’ <s a) dy’ (s) - wE(als)
Z Z Z Z Trb(s) 'WE )

he[H] (s,a)eSx A dn(s,a helH] (s,a)esx.A Th (als

v Ty

seS
ZaeAdh 57CL)
=A-
Z ;5‘ aeAdWb 5 )
<43 5o )
H]seS d )
dr (s,a)
<A- Zh \7> 7
Z H] (s, a);SXA d;{b(s,a)
< C*HSA.
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Similar as Eq.(64), we can decompose Dgeval (Zz*, %7) as follows:

De (%™, @) ———— +sup Z dzm‘(s, a)bl (s, a) (79)

We can decompose terms (I) into four terms (I.a), (I.b), (I.c), and (I.d) as in Eq.(66). Since we don’t use claim (iii) in the
proof of bounding (I.b), (I.c), and (I.d), Eq.(72), Eq.(73) and Eq.(74) still holds on the concentration event £ defined in
Lemma E.3. In the following, we will prove an improved bound of the term (I.a):

-z X 2E<s,a>~\/wwwhvm<s,a>

H) (5,0) €8x A Nb(s,a) V1

e log N'(©;¢/H)e
Z H] (s, a)gS‘x.Ad ( ) . \/I(W)[VthJrl](S a)

\/W Z Z \/d”E (s,a) - [ViViy1](s,a) - Z: Ejg;
h b

he[H] (s,a)ESxA

< EEEE Y S e fibialta) JZ O
n (S, a

he[H] (s,a)eSx.A he[H] (s,a)ESX.A

\/C*HSlogJ\/'( se/H)u Z Z drt(s,a) - [VaViga](s, a) 80)

K
he[H] (s,a)ESxA
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We then give a sharp bound of >, ¢ 77 2= a)esx 4 dgE(s, a) - [VaVhi1] (s, a).

Z S i (s,0) ViVl (s,0)

H] (s,a)€SxA

H
= Z Ee [Var,e [Viy1(sh+1)|sh, an)]

>
Il
—

T
i ZEWE {(Vh+1(5h+1) + 1 (snoan) — Vh(sh))z}

o 2
(Z Vie1 (sht1) + 70 (sh, an) — Vh(sh))>
h=1

+2 Y Ere [(Viga(sner) +7h(sn an) = Valsn)) - (Vg (sw1) + 1% (sh, a7) — Va(sh))]
1<h<h'<H

(111)

=FE e (Vh+1(8h+1) +rZ(sh,ah Vh Sh

—
>
[ T
—

H H

=K e (ZT Sh,ah Z ‘/h+1 3h+1 ‘/h Sh > ]
h=1 h=1
H

2
= EﬂE ( ’I"Z(Sh,ah) - ‘/1(51)> ]
| \h=1

Y Var e <Zr Sh, an ) < H2, (81)
h=1

T

where (i) is by definition of reward mapping r§ (s, a) = — Ay (s,a) - 1 {a € supp (75 (-[s)) } + Vi (s) — [PaVit1)(s, @), (i)
comes from

1 {an ¢ supp (mj(-sn))} =0

for any (sp,an) € supp (d,’f()) , (iii) is valid since

Ere [(Vig1(she1) + 75 (shan) — Vi(sn)) - (Vivg1(Sw41) + 7% (sh ar) — Va(sh))]
= Epe [ (Vi1 (snt1) + 70 (shy an) — Vi(sn)) Egee [V 1 (Snr41) — Vie (sw) + 7 (s, an )| Frga]] =0, (82)

(Fr11) and (iv) is by © € ©. Plugging Eq.(81) into Eq.(80), we deduce that

(La) < \/C*H3510g/\/(®; E/H)L.

= (83)

Combining Eq.(83), Eq.(72), Eq.(73) and Eq.(74), we have
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Algorithm 6 FRAMEWORK FOR OFFLINE INVERSE REINFORCEMENT LEARNING

1: Input: Dataset D collected by executing 7 in M.
2: Recover the transition dynamics P : [H] x S x A — AS and expert policy 7% = {%;EL : S x A(S)} and design the bonus

b:[H|XxSXxAxO —Rxg.
3: Compute Z by
[V, A)ln(s,0) = ~An(s,0) - 1{a & supp(EC1s)) } + Va(s) ~ Buvienal(s, @) — b(s, ) (34)

4: Output: Estimated reward mapping Z.

(I) < (I.a) + (Lb) + (L.c) + (I.d)

<\/C*H3SlogN(@;e/H)L \/C*H251ogN(e;e/H) C*H3Slog N'(©;¢/H)1%/?
S + +
K K K
* 172 . * .
Lol Slog N (©;¢/H) +6.(1+6\/c SlogN(Qe/H)L)
K K

* 73 . e . 5/2

< \/C H Slogl./(\/(@,e/H)L L CH 51ogAI/((@,e/H)L e

Pligging into Eq.(79), the final bound is given by

eva N * 172 * IT3 . * 173 . 5/2
DE™ () < C HKSAL N \/c H Slog}?f(@,e/H)L L CH SlogAI/;(@,e/H)L e

The right-hand-side is upper bounded by 2¢ as long as

. * 73 . * 72
KZO(C H Slogi\/(G,e/H) Lo SA)'

€ €

Here polylog (H, S, A, 1/§) are omitted.

E.4. Framework for offline inverse reinforcement learning

Pessimism As shown in Eq.(84), that estimator reward mapping involves a penalty term bZ(s,a). The reason for

introducing the penalty term b{ (s, a) is to ensure that our reward satisfies the monotonicity condition: [%(V, A)] (s,a) <
h

[@ (v, A)] (s,a), which is crucial for the guarantee of the performance of RL algorithms with learned rewards, as
h

demonstrated in Proposition 6 and Corollary L.5.

Condition E.4 . With probability at least 1 — 5, we have sup(y.i)ce ’ [(Ph —@h)vhﬂ} (s,a)‘ < bY(s,a) and
supp (75 (+|s)) C supp (7 (¢|s)) forall (h,s) € [H] x Sandall (V, A) € ©.

Theorem E.5 (Learning bound for Algorithm 6). Suppose that Condition E.4 holds. With probability at least 1 — 5, we
have [@(V, A)} [(5,0) < [#°(V, A)l (s,a) forall (h,s,0) € [H] x § x A and

Dg“' <%*7@> < sup {H . Z E(s,a)Nd}{wal [1 {(1 € supp (T}E(‘s))’a ¢ supp (%}EI(‘S))}]

0o hel]

+2 ) B e [bi(s,a)]}. (85)

he[H]
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Proof. When supy. 4)ce ‘ [(]P’h — @;L)Vhﬂ] (s,a)‘ < b (s,a) and supp7E(+|s) C supp7E(:|s) holds for all (h,s) €
[H] x S and all (V, A) € © hold, we have

2,1 (5,a) = [ (V. )] (s,0)
= —Au(s,a) [ {a ¢ supp( ( |s ))} -1 {a ¢ supp(w,s(-\s))}] — [(@h — ]P’h)VhH](s,a) — bZ(s,a)

= —Ay(s,0) - 1{a € supp (x5 ([s)),a ¢ supp (7E(15))} ~[(Br — P ) Via](s,0) = b (s,) <0, (86)

<0 <0

where the second line is by supp (7}; (-|s)) C supp (j;(-|s)) and supy. 4)co ‘ [(Ph - @h)VhH} (s, a)) < bY (s, a). Further,
by triangle inequality, we obtain that

[#WV.m)] (s.0) = (2 (V)] (s.0)]

< An(s.a) - 1{a € supp (w§([s)),a ¢ supp (FE(-|s)) } + M(@h — Py ) Vi (s, )| + B4 (5, )

< H-1{a € supp (m};(-|s)),a ¢ supp (75 (-|s)) } + 200 (s, a) (87)
where the last line is due to Aj,(s,a) < H and ‘ (Ph - }P’h> 1) ( ’ bf (s, a). Similar to the proof of Lemma E.2,
we have
eval « > *
RV, A, (V,A)) € 30 B e H 2, h)]h(s,a) @, h)]h(s,a)H. (88)
he[H]

Combining Eq.(87) and Eq.(88), we obtain that

- (@(V, A), %*(V, A)) <H- Z E g )iz [1{a € supp (7} (-|s)), a ¢ supp (75 ("|s)) }]

he[H]
+2 ) B e V(s 0)]. (89)
he[H]
By the definition of Dg“ . (%* @) = SUPgeo a (9?(1/7 A), %*(V, A)), we complete the proof. O

By Theorem E.5, all we need to do is design bfL and learn I@, 7€ from the data to satisfy Condition E.4, thereby obtaining an
IRL algorithm. The crux of the problem lies in the design of bz, P and 7E. In RLP, we employ the pessimism technique
from offline RL, and the construction of bfl and 7F using pessimism in RLP satisfies Condition E.4, as illustrated in the
proof of Theorem 8.

F. Proofs for Section 5
F.1. Full description of REWARD LEARNING WITH EXPLORATION

We propose a meta-algorithm, named REWARD LEARNING WITH EXPLORATION (RLE). The pseudocode of RLE is
presented in Algorithm 2, where the algorithm contains the following three main components:

« Exploring the unknown environment: This segment involves computing a desired behavior policy 7°® = E___ w7l
which takes the form of a finite mixture of deterministic policies. To achieve this, we need to collect N H episodes of
samples. We then execute this policy to gather a total of K episodes worth of samples. Our exploration approach is
based on leveraging the exploration scheme outlined in Li et al. (2023, Algorithm 1). A comprehensive description of
this exploration method is postponed and will be provided in Section C.

 Subsampling: For the sake of theoretical simplicity, we apply subsampling. For each (h, s,a) € [H] x S X A, we
populate the new dataset with min {]V,t{(s, a), Np(s, a)} sample transitions. Here, Z\Af,t;(s, a), as defined in Eq.(13),
acts as a lower bound on the total number of visits to (%, s, a) among these K sample episodes, with high probability.
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* Computing estimated reward mapping: With the previously collected dataset at hand, we then utilize the offline IRL
algorithm RLP to compute the desired reward mapping.

We remark that our algorithm RLE follows a similar approach to that of Li et al. (2023, Algorithm 1). We begin by
computing a desired behavior policy 7°, then proceed to collect data, and finally compute results through the invocation of
an offline algorithm. In contrast to the offline setting, we have the flexibility to select the desired behavior. In the following,
we will observe that the behavior policy 7® exhibits concentrability with any deterministic policy, as shown in Eq.(16). This
property enables us to achieve our learning goal within the online setting.

F.2. Proof of Theorem 11

Lemma F.1 (Li et al. (2023)). Recall that & = ccH?S3 A% log 12254 for some large enough constant c¢ > 0 (see line 3 in
Algorithm 3). Then, with probability at least 1 — , the estimated occupancy distributions specified in Eq.(14) and (15) of
Algorithm 3 satisfy

1 § §

idﬂ&a) ~an <dj(s,a) < 2(72(5, a) + 2ej (s,a) + N (90)

simultaneously for all (h, s,a) € [H] x S x A and all deterministic Markov policy m € 119, provided that

10HSA
KH> N> OxVHSTATE log 2 55 and K > CxHSA 1)
for some large enough constants C,Cx > 0, where, {€] (s,a) € R} satisfies that
2SA 13SAH¢ SA
™ < < det

Z er(s,a) < © T v ~\V@xr Vh e [H],m eIl (92)

(s,a)ESx.A

Notice that Eq.(90) only holds for 7 € I19°t, however, we will show a similar result also holds for any stochastic policy.
For any stochastic policy 7 = E/,[7'] (1 € A(I19°)), the visitation distribution {d7 } can be expressed as

R(5.0) = Epny[d] (5,0)],  V(h,s,0) € [H] x S x A,

. We can define d” as

-~

dr(s,a) =Epy [J;;’(s, a)], V(h,s,a) € [H] x S x A,

where {d;;/} are the estimated occupancy distributions in Algorithm 3.

By Eq.(90), we have

1~ , R /
ST(5,0) — o < d(5,0) = Exre [ (s,)] < 207(5,0) + 2B e (5,0)] + o
1~ , R /
5dn(s,0) - % <df(s,a) =K., [d;; (s, a)] < 2d7(s,a) + 2B, [e;; (s, aﬂ i %
(e (s,a) :=Ery, {eg,(s, a)})
We also have
/ 2SA 13SAH¢ SA
S dea= ¥ Beu[d ] < BE TR g 7
(s,a)ESxA (s,a)ESX.A K N HK
provided Eq.(91).
1OHSA

Different from previous sections, we set ¢ = log ===%
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Lemma F.2 (Concentration event). Suppose Eq.(91). Under the setting of Theorem 11, there exists an absolute constants
C1, Cy > 2 such that the concentration event £ holds with probability at least 1 — §, where

&= {(i): ‘ {(Ph - I@h)vhﬂ} (s,a)‘ <b(s,a) VO=(V,A) €0, (hsa)e[H xS x A,

(ii): %Eg(s, Q) — S < dr(s,a) < 20 (s,a) + 2 (5,0) + > V(h,s,a) € [H] x S x A7 € 1L,

AN
(iii): NP (s,a) < NP(s,a) V(h,s,a) € [H] x S x A,

&
AN

(iv): Ni(s,a) > 1 V(s,a) € S x As.t. Nl(s,a) > max {Can, 1}}

where bl (s, a) is defined in Eq.(8), N(s,a) A};(s, a) is defined in Eq.(13), n are specified in Lemma E.1 and ]\Af,‘;(s, a) is
given by

S ova) o { onnenremen 1) = (5.1} inoption 1,
' Np(s,a) in option 2,

Proof. First, we observe that Claim (i) can be proved to hold with probability at least 1 — §/10 by repeating a similar
argument as in Lemma E.1. By Lemma F.1, Claim (ii) holds with probability at least 1 — §/10. Claim (iii) has been shown
to hold with probability at least 1 — §/10 in the proof of Li et al. (2023, Theorem 2).

Next, we focus on (iv). For claim (iv), in option 1, we have

Ivg(s,a)

]P’(]Vﬁ(s,a) = O) = (1 — WE(CL|S)) < exp (]\Af};(s, a)log (1 — 77))

< g0 )= 9
=P8 THeA ) T AHSA’

for all (h,s,a) € [H] x S x A. The last line is valid since

0 _log(l—n) <l

. N
Nin(s, a)log (1 —n) < Czlog n = SAHSA

holds for sufficiently large constant C'. In option 2, we have
Ni(s,a) = NY(s,a) > max {Cyne, 1} > 1,

for all (h,s,a) € [H] x S x A. This completes the proof.

O
F.3. Proof of Theorem 11
Define
-~/ 4 C 3
Tn =14 (5,0) €S x A|Errop, [dg (s,a)] > & HOn+3l 93)
N K
for all h € [H]. Then for (s, a) € I}, we have
~ K o~ K¢
NP(s,a) > ZEW/NM [dh (s, a)] ~“aN 3t > Caone. (94)
By concentration event £ (iv), we have R
Ni(s,a) > 1,
By construction of 7€ in Algorithm 1, we deduce that
11{a € supp (7};(-s)) } — 1 {a € supp (75 (:|s)) }| = 0. 95)
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for all (s,a) € 7y,
With 7, at hand, we can decompose the d” (7"9, ?9) for any 7 and 6 € O as follows:

dﬂ(ﬁ%»ﬂi) < Z d;;(&a) : ’7‘2(87(1) - ?ﬁ(s,a)|
(h,s,a)E[H]xSx A
<Y di(s,a) - rh(s,a) = Fi(s,a)|+ D> > di(s,a)-[r(s,a) = (s, a)], (96)
he[H] (s,a)¢Ly he[H] (s,a)ELy

@ (In

where the first line follows the same argument in the proof of Lemma E.2. We then study the terms (I) and (II) separately.
For the term (I), by the construction of Algorithm 1, we obtain that

Z Z d¥(s,a) - |r?(s,a) — ?G(s,a)‘

he[H] (s,a)¢Tn

= Z Z di(s,a) - ‘ — Ap(s,a)(1{a € supp (7}, (-|s)) } — 1 {a € supp (7};(-[s)) })

he€[H] (s,a)¢ZLy

— {(]P’h — @h)Vh-y-l} (s,a) — bZ(s,a)

Z > dis,0)- {[An(s,a) - (1 {a € supp (7E(1s)) } — 1 {a € supp (e (:[s))})]
helH] (s,a)¢Tn
+ ‘ [(]P’h - @h)Vh+1} (s, a)‘ + b9 (s, a)} (by triangle inequality)
(1)

<H- Z Z d7 (s,a)

he[H] (s,a)¢Tn

(i) - ¢
< H. 77 ™ S
SIS (2 0s.0) + 26505, + 5 )
he[H] (s,0)¢Tn
i - EH?SA \/TSA
< . T
hel[H] (5,0)¢Tn
7 (s, a) o 1 EH2SA HSA
=H- Y Y h —- <]E7r/~m [dh (s,a)} + KH) + VR
helH] (s,a)¢Zn Brrmps |7 (s 7a)} + %7
@) (¢H  4H(Can+ 3) 1) 7 (s, a) EH2SA HSA
< ( b ) Y Y - + +
N r K/ i vz, B |8 (50 + 27 N "
H¢ AH(Con+3) 1 ¢H2SA  [HSA
< [ =5 —_ .
< ( ~ T i + o) HSA+ I
_¢H®SA  H?SAn.  HSA ~ [HSA
Rt T Vo o7)
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where (i) is by || A# oo [|Vi+1 oo, bi(s, a) < H, (ii) comes from concentration £(ii), (iii) comes from Eq.(90), and (iv) is
by definition of Zj,. For the term (I), conditioning on the concentration event £, we have

I) = Z Z dp(s,a) - |T}9L(S7a’> - ?Z(Saa”

he[H] (s,a)€Ln

Z Z dr (s,a) H Py, —]f"h)VhH] (s,a) — b (s,a)

he[H] (s,a)ETy

§22 Z dr(s,a) - bd(s,a)

he[H] (s,a)ETy

< Z Z (4dh (s,a) + 4ej, (s, a)—i—;\])-bz(s,a)
helH] (s,a)€Tn
,SZ Z di(s,a) - bl (s,a) + H - Z Z ( +ehsa)>
H] (s,a)ETh he€[H] (s,a)ELy,
H2 A |H
55 S Z Z di(s,a) - bl (s,a), (98)

he[H] (s,a)ELy

where the second line is by construction of Algorithm 1, the second last line is by bf (s,a) < H, the last follows from (90).
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Further, we decompose the second term of Eq.(98) for any 6 € © by

Z Z 7 (s, a) - bl(s,a)

he[H] (s,a)ETy

Z Z (5, a) - min {\/log/\/@e/H) {VthH}( )+H1C/)\gN(@;6/H)L

b b
he[H] (s,a)ETn N7(s,a) V1 N7 (s,a) V1

€ log N'(©;¢/H)e
+ =11+
H( Nbsa V1 > }

(1) Z Z d’rsa { {\/logj\/'(@e/H)[ th+1]( )H}

b
he[H] (s,a)€Ty, Nj(s,a) V1

N Hlog/\/(@;e/H)L+ € <1+ log/\/(G;e/H)L>}

Nis,apv1i H Ni(s,a) v 1
<Y @ { log (01 ¢/ H)o[sVia | (3. 0) + H | HlogN(6;¢/H):
< (s,a) - :
he[H] (s,a)E€T, Np(s,a)V1+1/H Nb(s,a) V1

N logAJ\/’(G;e/H)L
H NP (s,a) V1
N log N (©; ¢/H) |V, Viy1 | (s,a) + H
LYY disa) AE, |
he[H] (s,a)€Tn KE. {dh (S,a)} +1/H
(I.a)

+Z Z F(s,a)- Hlog N (©;¢/H)e

he[H] (s,a)ETy KEﬂ'/N[Lb {dz/(sa a’):| + 1/H
(ILb)
~ 1 O;¢/H
+ % Z Z di(s,a)- | 1+ og/\/;(/ e/ H)e (99)
he[H] (s,a)ELy KEW’N;L" |:d7}; (S> (l):| + 1/H

(IL.c)

where the (i) is by inequality min {a + b, ¢} < min {a, c} + b (a, b, ¢ > 0), (ii) comes from inequality min {% %} < &tz
and (iii) is valid since

2 KEq o up [321(87(1)} +1/H

holds for all (s, a) € Zj, according to definition of Z. We then study the three terms separately. For the term (IL.a), by the
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Cauchy-Schwarz inequality, we have

1/2

(Ma) << >° N di(s.a) - log N(O:¢/H)[Vi, Vi) (5,a) + H]

he€[H] (s,a)ESx.A

(ILa.1)

R 1/2
" dil (/s, a)
h€[H] (s,a)eSxA KEW/N/,Lb [d;{ (Sa a)} + 1/H
(IL.a.2)
Observe that ||V}41|lcc < H, then the term (IT.a.1) can be upper bounded by
(ILa.1) Z > d(s,a) - log N(©;¢/H)i[V3,Vis1] (s, a) + H]

he[H] (s,a)eSx.A

J [H2log N(©;¢/H).+ H] - Z Z 7 (s,a) = \/H3log N'(©; ¢/H)u. (100)

he[H] (s,a)eSxA

For the term (I.a.2), we have

ma2)= | S Y i (s, a)

he[H] (s,a)eSx A K Expr b {dﬁ (s, G)} +1/H

~

dr(s,a
- e X ¥ ey

he[H] (s,a)eSx.A Eﬂ' ~pb |:d7r (S CL):| + 1/KH

HSA

101
S (101)
which the last line comes from Eq.(16). Combining Eq.(100) and (101), we conclude that
H*SA
II.a) < . 102
(ILa) £/~ (102)
For the term (IL.b), by Eq.(16), we have
~ Hl ©;¢/H
IIb Z Z d;;:(s,a,) Ogﬁ[/( 16/ )L
he[H] (s,a)€S x.A KE o [dZ (Sﬂl)} +1/H
1 ~ Hl O;¢/H
=% Yo D disa)- OAg,N( </ H)
he[H] (s,a)eSx.A Erropp [d}{ (Sﬂl)} +1/KH
H?SAl se/H
5 S Ogé\(/(eﬂ 6/ )l’. (103)
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For the term (Il.c), we have

(ILc) Z S di(sa)- |1+ 1Ogj\£(,@;E/H)L
hE[H] (s,a)€Zy KIEﬂ"Np,b [dz (Sa a)] + 1/H
et % Z / (5,0) d7(s,a) 1ig,N(@;E/H)L
WS 52 KB [d;; (&a)} +1/H

T(s,a)log N'(©;¢/H
<e—|— ZstaJZZ g N (6;¢/H):

he[H] (s,a)€Tn helH) (s,a)eTn KExrmpp {d” (s a)} 1/H

<e(l+ \/SAlogNI((G);e/H)L)’

where the second last line is by the Cauchy-Schwarz inequality and the last line is due to Eq.(101).
Then combining Eq.(98), Eq.(102), Eq.(103), and Eq.(104), we obtain the bound for the term (II)

(I1) < (ILa) + (ILb) + (ILc)

4 . 2 . .
H*SAlog N (©;¢/H). L SAlog N (©;¢/H) . \/SAlogN(G,e/H)L)
K K K

H*SAlog N (©;¢/H)e

K + €,

where the last line is from e < 1. Finally, combining Eq.(97) and (102), we get the final bound

a”(%’* @) = Trs;lepod (ro,70) <I+1I

< EH?SA N H2SAn N \/H4SAlogN(G);e/H)L
~ N K K

Hence, we can guarantee DZ) (%’*, ,@) < 2¢, provided that

€2 €

4 2 ~
K>@(H SAlog N(©;¢/H) | H SA’7>7 KH >N > O(VHSTATE).

Here polylog (H, S, A, 1/§) are omitted.
Suppose that e < H2(SA) 5. We set

~ . 4 . 9
NZO(H957A7K), K:O(H SAlog./Q\/(@,e/H) N H SAn).

€ €

When e < H=?(SA)~%, we have

KH > VEH . & (\/H4SAlogN(® 6/H))

> VEKH-O (H 56 46 A)
>VKH-O ( H957A7)
> (5(\/m)
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Combining Eq.(106) and Eq.(107), we have
KH>N > (5(\/H957A7K). (108)

Then, the total sample complexity is

(109)

2

4 2 1508 1308 A8
K+NH>O<H SAlogN(&:¢/H) | H SAn H5S8Alog N (O;¢/H) \/H S8 A% )

€2 €
When e < H=?(SA)~%, we have

/A : _/13GT AT :
O(H SAlogN(@,e/H)> ZO<H STA logN(@,e/H))

2

€ €

_ 6(\/H26514A14 log NV (©; e/H)2> (log N'(©; ¢/H) > 1)

€2

S \/H15SSA10gN(@; ¢/H)

. (110)

€

and

\ \/

O

O(H2SA77> (H2SA77>
()
()

( /HlsisAs )7 "

where the last line is due to € {0} U [1, 00). Combining Eq.(109), Eq.(110), and Eq.(111), we obtain that

Il
S}

Y
(SN

\ \/

: (112)

€

4 2
K+NH>(9<H SAlog N(6; E/H) H SAn)
€

holds when e < H~9(SA)~6

G. Lower bound in the online setting
G.1. Lower bound of online IRL problems

We focus on the case where © = V x A. In this case log N'(©; ¢/H) = O(S), the upper bound of the sample complexity
of Algorithm 2 becomes O (H*5?A/€?) (we hide the burn-in term).

Similar to the offline setting, we define (e, §)-PAC algorithm for online IRL problems for all €,§ € (0,1) as follows.

Definition G.1. Fix a parameter set ©, we say an online IRL algorithm 2 is a (€, 0)-PAC algorlthmer online IRL problems,
if for any IRL problem (M, %), with probability 1 — &, 2 outputs a reward mapping A such that

D%, %*) < €

Theorem G.2 (Lower bound for online IRL problems). Fix parameter set © =V x A and let A be an (¢, §)-PAC algorithm
for online IRL problems, where 6 < 1/3. Then, there exists an IRL problem (M, 7TE) such that, if H > 4,5 > 130, A > 2,
there exists an absolute constant cy such that the expected sample complexity N is lower bounded by
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coH?SAmin {S, A}

N> .

€
where 0 < e < (H —2)/1024;

Note that when S < A, the lower bound scales with €2 (SQA), matching the S2 A factor dependence observed in the upper
bound (Theorem 11).

G.2. Hard instance construction

Hard Instance Construction Our construction is a modification of the hard instance constructed in the proof of Metelli
et al. (2023, Theorem B.3). We construct the hard instance with 25 + 1 states, A + 1 actions, and 2H + 2 stages for any

H, S, A > 0. (This rescaling only affects S, H by at most a multiplicative constant and thus does not affect our result).
We then define an integer K by

K :=min{S, A}.

c RHSKA

Each MDP M, is indexed by a vector w = (w,&w k) and is specified as follows:

) he[H],i€[K],j€[S],kE[K]

o State space: S = {Ssart; Srooty S1s -+ - 5SS, 51y - -5 35}

* Action space: A = {ag,a1,...,a4}.

L]

Initial state: Sgta,t, that is

P(sl = sstart) =1
¢ Transitions:

— At stage 1, sgare can only transition to itself or s;. The transition probabilities are given by

IP>1(Sst?JLrt | Sstart GO) =1
P1(8; | Sstart, @) = 1 forall i € [K],
P1(s; | Sstart, k) = % forallj € [S], k> K + 1,

— Ateachstage h € {2,..., H + 1}, Sgar can only transition to itself or s;, s; can only transition to absorbing state
5;. The transition probabilities are given by

Ph(sqtart | Sstart ao) =1,

Py, (si | Sstart, @) = 1 foralli € [K],

Pr(s; | Sstart; k) = & forallj € [S], k > K +1,

Py (55| si,a0) = & foralli > K +1, j € [9], (113)
Pr(5; | 56 ax) = ”LS() foralli € [K], j € [S], k € [A],

Pi(5;|5,ar) =1 forall j € [S], k > 0.

— Ateachstage h € {H 4+ 1,...,2H + 2} and S,y can only transition to s; and s; can only transition to absorbing
state 5;. The transition probabilities are given by

]P)h(sz | Sstarts @0) = & for all i € [S],

Pr(s; | Sstart, @i) = 1 fori € [K],

Pr(s; | Sstart; @) = < forallj € [S], k> K +1,
P(5; | sisar) = % foralli € [K], j €[9], k>0,
Prn(555;,a5) =1 foralli € [S], k& > 0.
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» Expert policy: expert policy 7F plays action ag at every stage h € [H| and state s € S. That is

7E (aols) = 1, forallh € 2H 4+ 2], s€ S. (114)

In this case, A can be 1, which means our lower bound is not derived from a large 2(1/A) in our proof. To ensure the
definition of M, is valid, we enforce the following condition:

> =0
JE[S]

forany h € [H], i € [K], k € [A]. We define a vector space WV by

W= S w = (w))jes) € {1,-1}": > w; =0

J€[S]
Let Z denote [H] x [K] x [A], the Eq.(114) is equivalent to
w e Wt
Further, we let P(W) = {IP;W) }he[H] to be the transition kernel of MDP\R M. In addition, Given w € WL weWw

and index a € Z, we use the notation w <~ w to represent vector obtained by replacing a component of w with w. For
example, let w = (wELZ’J’k))
expressed as follows:

helH] i€[K],5€[S],ke[K]> W = (wj)je[g], a = (ha,ia,ja) and W = w < w and then W can be

_(i,5,k) w; (h727k) = (haaiaaka)7
W = 115
h {w,(f IR otherwise. (115)
By Metelli et al. (2023, Lemma E.6), there exists a W C W such that
S _ S
Z(wi—vz) > ry Yo, w € W, lOg|W’ =Tk (116)

1€[n]

Notations. To distinguish with different MDP\Rs, we denote V;" (~; r, IP’(W)) be the value function of 7 in MDP M, U r.
Given two rewards r 1/, we define d' (7, 7/; P(")) to be the @' metric evaluated in M,

d"(r,r;P™) == sup Epw .
m,he[H]

Vi (sp;r, POV)) — V}f(sh;r',P(w))’.

Correspondingly, given a parameter set ©, two reward mappings %, %', we can define D3 (%, %'; PV)) by

D%, %P = sup o (%(v, A), B (V, A); IP(W)>.
(V,A)e®
In the following, we always assume that w € /). We then present the following lemma which shows the difference between
two MDP\Rs M_ o and M_ . foranyw € W and v #w € W.

v Wi

Lemma G.3. Given any w € WI, w#v €W, and index a = (hy,iq, ko) € T, let %’(W&w), 2V be the ground
truth reward mapping induced by M o . M _ a , respectively. Set © =V X A. Forany € € (0,1/2] and any reward
mapping Z : V x A — R, we have

He
16’

7D;C1;I (%(w&w)7%; P(w&w)) + Dgl ({%(W(iv)“%; P(w&v)) >
where €' is specified in Eq.(113).
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Proof. Step 1: Construct the bad parameter (1/°2¢ Ab3d). We construct the bad parameter (V224 APad) € Y x A as
follows:

» We set A%(s,a) = 0 forall (h,s,a) € [2H +2] x S x A.
+ We set VP by

CHA2ZM Wiz if 5 — 5;, h = hy + 2
Vbad (o) . 2 v e ’ 117
W) {O other. (1
Directly by the construction of (VP24 Abd) we obtain that
a _ 2H — h wi—viQ ]{’l,l)i—’l}i2 HS
3 (g Vita(ny - 3 Gl Al B8

ic[S] i€[S]

where the last inequality is due to Eq.(116). We then denote g (wéw) (Vbad | Abad) (W) (Vbad| Abad) gg pbad pbad,
respectively.

Since AP2¢ = 0, any policy 7 € 1T,
M o« U Tbad. v

WU

* . . . . . . bad
o, Urtad II M o, Urbad- More explicitly, any policy is optimal in M_ o U7 and

Step 2: Construct test policies w1, 7wtest:(2), Letr = 22(V*, A"9). Let & € 119" be a optimal policy of M« U7
By Lemma 2, there exist a pair (V, A) € V x A such that

a
w<—w)

rh(s,a) = —Ap(s,a) - 1{a ¢ supp (75 (-|s))} + Vi(s) — {IP’,(L Vh+1] (s,a), (119)

We then construct test policy 7tet(1) by

7T;LESty(l)(afO | Sstart) =1 h<h,—-1

W;e5t7(1)(aia | Sstart) =1 h= ha

W;LeSt’(l)(aka |si,)=1 h=h,+1

W;LeSt’(l) = h>hg+2
which implies that at stage h < h, — 1, 751 always plays ay, at stage hq, 751 plays a;,, then transition to s;,, at
stage h, + 1, 75D plays ay, , then at stage h > h, + 2, 51 is equal to the greedy policy 7€. By construction, we
can conclude that

rtest, (1) wéw rtest, (1) wlw
o (i POy =1 VY POV = V() (120)
the second equality is due to W;LeSt’(l) =t forany h > h, + 2.

Further, we have

test, (1) w@w) test, (1)

75 <sia;r7P<W*“’>>=rha+1<sia,aka>+[PLH Vil <-r,P<W*“’>>} (5., ar,)

= —Ap,11(8i,,a1,) - 1 {aku ¢ supp (W}gza+1(' ‘ Sza))}

Vi (s) - [P£ff1”)vha+z} (102 a5,) + [P,Ej”;”)vw]
= Vi, +1(si,) — gap, (121)

where the first line is by the Bellman equation, the second line is due to Eq.(119) and Eq.(120). Here gap is the advantage
function at (hq + 1,8;,,ax,). i.e, gap = Ap,41(si,,ax,) - 1 {ax, €supp (7§ . (-]si,))}. Then by definition of
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DY (%’(w‘iw) R: }P’(W‘iw)), we can obtain that
D%” (%(w@w) , %7 ]P;(w@w))
> ol (%(w&w) (Vbad) Abad) 7 %(Vbad7 Abad) : P(w&w))

— (Tbad r; P(w&w))

71_test,(l)
hq+1

test, (1)

(S bad P(‘W_w)) Vh o (S;T,P(W&w))‘

Tw

ZE (wr) )

‘Vh e (Siy; rfuad, P(W&“’)) vir te_,_Stl(l) (84,57 P(W&w) )‘
= V21 (si.) = Vha+1(si,) + gapl, (122)

where the second last line is due to Eq.(120) and the last line is by Eq.(121) and mtest:(1) ¢ T, L Urbd =

v ::_stl(l)(& . pbad P(W&w)) = V;?:il(sia)'

g w

W—w

test, (

Next, we construct another test policy 7tst(2) as follows:

W;LeSt (2)(a0 | Sstart) =1 h<hg—1
w;eSt 2)(aza | Sstart) =1 h=hg

ﬂ;eSt @) 7rh h>h,+1.

The difference between 7'(2) and 7*:(}) is that at stage ho 72 play the 7§  (s;,) instead of aj,. Similar to
Eq.(120), we have

test, (2) test, (2)

P (s POy =1 VT (s, POVER)) = V(s (123)

where the seconed equality is valid since ﬂ;eSt’(z) =} forany h > hq + 1.

Similar to Eq.(122), we have

DY (0 0), i PvEn)) 2 (0, g PO ) )

test,(2) ww test, (2) ww
> E (w&w) e, Vha-s-l (s; Z;adap( . )) Vh +1 (55T7P( - ))‘
= VT (50828, BOE0)) T s, P E))
= [Vi2d1(si,) = Va1 (i) (124)
where the second last is due to Eq.(123), the last line follows from 7test(2) ¢ I, . Urtad’ VI Tl(z) (84,5702, ]P’(W‘_w)) =
Vipad | (si, ). Combing Eq.(122) and Eq.(124), we have
208 (#0), 2 PO ) 2 [V (s1,) = Vi (si,)| + [Vi(si,) = Vi, (si,) + g2
> gap, (125)

where the second line comes from the triangle inequality.
Step 3: lower bound D3 (f%’(“’&”),f%’; ]P’(Wé”)). We still use the test policy 7test(1) in M e, Since IP’SLWFU) =
]P’,(lwew) for any h > h, + 2, we have
test, (1) ] (w(iv) test, (1) ) (w@w) o = 3
Vi vo (54|, P )=V 1o (5|, P ) = Vh,+2(8:), forall i € [9], (126)

where the second equality comes from Eq.(120).
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By the definition of DZ) (%(W‘i”) R, P(W‘i”)), we have

Dgl <%(w&u)’%; P(w&u))
dall( bad7 r P(w&u))

test, (1) bad test, (1) a
2 F p(v ) e hat1 (70 P(WHJ)) Vi (s, H”(WH’))’
)Vh test, (1) (Sig5T bad ]P’(‘W—U)) Vi, titl(l) (Sia§ T, P(W&U) )‘ (by construction of policy 7Tte5t7(1).)
srtest, (1)
’ f?ail S’La Vh +1 (Sia;T’P(W(_U))‘

(wio)

()
D1V (50.) — s (51 ) — [Ph 2y, 4 (5, ax.)

ha+1

w wév w
=V (s5.) — mh, 11 (80, an, ) — [P;(Zaﬂw)vhﬁ-?} (Si,, 0K, ) — {(]}D’(MH“) _ ]}D}(Lu+1w)> Vha+2] (Si,, Ok, )

> ' _<]P’,(lwr1v hw:v )Vha+2] (Siws )| = |ViR2L1(8i0) = Thos1(Siy, a, ) — []Pi(z:vflw)vhﬁ?] (i0> ak,)

) (by triangle inequality)
@ -<P}(zw—<‘:1v hw—s:w )Vha+2:| (8ias Ok, )| — i?ail (8ia) = Vha+1(si) —|—gap’
> ' -<P£w4:v hwflw >Vh +2] (si0>ak,)| = Vit (5i) = Vi (si)] — gap

where (i) is by the Bellman equation, (ii) is valid since

W(iw
Tha+1(8i,, Ak, ) + {P;(Laﬂ )Vha+2} (Sig, ak, )

= _AhaJrl(SiE, aka) -1 {aka S supp (W}gLa’+1('|Sia))} + Vha+1(3ia>
w@w)

- [PEZEw)Vhﬁz] (Sia>ak,) + {P;(LQH Vmw} (Sia> Ok, ) (by Eq.(119))

= —gap + Vi, +1(8i,)

[(IPSL‘:J:U) - P,gj:lw)> Vha+2} (84, , 0k, )|- We move back to

test,(1) By the construction of 7t¢s%:(1) and the transition probabilities of M, a,,» We have

and (iii) is due to Eq.(124) and Eq.(125). We next analyse

™

test 1 1 d 1 test, (1 Il
Ps (PO = ST Y (s POE) Vi (), Vie IS, (128)
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By definition of D2N(Z(W<) 72, P(" %)) we have

Dall (%(W(iw) R P(w(iw))

test, (1)
ha-2

test, (1)

(S bad P(wew)) Vh o (S;T,P(W@w))‘

) 'IU )

>E

- ]p(“”g“’) rtest, (1)
test, (1)

3 T ) [V ke B s s, BV

i€[S]
14+ €w; B B
=y —5 Vi2do(5:) = Viat2(5:)|
i€[S]
bad — _
> Z Ve ) (55) — Vi 42(51)], (129)
ze[S]

where the last second is by Eq.(128) and the last line comes from €’ € (0, 1/2]. Applying Eq.(129), we obtain that

’ K]P(w&v) - }}D(w&w)) Vha-i-Q} (s, ax, )

!
€
=g > Vhga(s v;)
1€[S]
!
> <. faiQ $i) - (w; —v;)| — Z | ;f’aiQ 51) = Vhat2(50)| - [(wi — v3)] (by triangle inequality)
i€[S) i€[s]
¢ bad (= 2¢’ bad /- _
> 5 D0 Virda(5i) - (wi — i) = o D [Viia(5) = Vaa(5i)|
1€[S] i€[S]
He Il (w<"—'w) (w<"—'w)
> - 2D} (% B P ) (130)

where the second line is by the triangle inequality and the last line comes from Eq.(118)and Eq.(129). Combining Eq.(127)
and Eq.(130), we complete the proof.

O

G.3. Proof of Theorem G.2

Proof of Theorem G.2. Our method is similar to the one used for the proof of Metelli et al. (2023, Theorem B.3). For any
e €(0,1/2], 6 € (0,1), we consider an online algorithm 2l such that for any IRL problem (M, 7E), we have

(M,EDE),m( a”(%* ‘@) ) 21-49, (131)

where ( IP’E) denotes the probability measure induced by executing the algorithm 2l in the IRL problem (M, 7E), %* is
M,mE) A

the ground truth reward mapping and 2 is the estimated reward mapping outputted by executing 2 in (M, 7F). We define
P . —T
the the identification function for any (a,w) € Z x W™ by

®, v = argmin Dg' (%(W&U),@; P(W(i'u))’
veEW

where (") is the ground truth reward mapping induced by (M, 7F). Let v* = ®,, . Forany v # v* € W, by definition
of v*, we have

D (40, 7 B )) < Dl vE), Bl ).
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By applying Lemma G.3, we obtain that

/ a
1:'1[; < D;(a—)ll (@(wev)’@; P(wev)) + 7Da@|l (%(W(—y*),%; P(wky*)) < 8Da@” (%(wev)’%; P(w%v)) )
Next, we set € = % which implies that
Heé
> 16e. 132
16 — Ge (132)

Here, to employ Lemma G.3, we need €’ € (0, 1/2] which is equivalent to 0 < € < H/512. Then, it holds that
DY (%(W&”),Q;P(W&“)) > 2¢ > ¢,
which implies that
{v# By} C {Dg' (,@(W@”),éz@ P(W@W) > e}. (133)
By Eq.(133), we have the following lower bound for the probability
§ > sup P (Da@” (%(W&”),@;P(W&”)) > e)

veny (Mo, ) 2

> sup P v#E P,

1
Z pp— P v @CLW 5 (134)
(W) E(Mw&ﬂﬁ),m( # Pow)
veW
By applying Theorem B.3 with Py = P , Py = P , we have
Y appyine PO gt (M, 0, 7E) 2
! Y w#EPw) =1 ! 1ZD( P P )—log2 (135)
E— v a - — — e y — 10 .
w4 ” log W] \ V] 2= M, 02 (MmO
(M &o,mE) 2 vEW

Our next step is to bound the KL divergence. Using the same scheme in the proof Metelli et al. (2021, Theorem B.3), we
can compute the KL-divergence as follows:

Dxy P
(<Mw&,,m5>,m’ (M, 7).

N
wew w0
= E(ngvﬁa))m [Z Dy (PEL,: - )( | st at),P’gt - )( ‘ Staat))]

t=1
wo w0
< E(MW@U,WE),QL[N}M (Sia’aka)]DKL (P}(Lg ))( | Siaaaka)JP}(la )( | Sia7ak‘a))
< 2(6/)2E(MW@U7WE)1Q[[N}L¢1 (8iq» k, )]s (136)

where N, (s, a) := Zivzl 1 {(h¢, ¢, a¢) = (h,s,a)} for any given (h, s,a) € [H] x S x A and the last inequality comes
from Metelli et al. (2021, Lemma E.4). Combining Eq.(134) and Eq.(135), we have

1 1

>1 - —— | — 2(¢)°E o ey o[ N (8i,, ar, )] —log2
a0 1 2, Bt
for any w. It also holds for any a € T that
1 (1—6)log|W| —log2
] 2 Bty alVho (800 a0)] 2 22 : (137)

vEW
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By summing Eq.(137) over all w, we obtain that

Z% Z |V1V| Z E(Mw&v,ﬂE)’m[Nha(Siavaka)}

a€l ‘W | WGWI vEW
1
=—7 Z ZE(MW,WE),m[Nha (Siq,an,)]
|W | wew? a€l
(1 —6)log |W| — log 2
>HKA . 138
> 2(c')? (138)
Hence, there exists a w4 ¢ WI such that
(1 —6)log |W| —log2
E (s )24 IN] 2 D Bt )2 [N, (51, 01, )] > HECA 2e)?
ac€l
1 —8)log [W| — log 2
— mral 139
131072¢2 ’ (139)
where the last line is by ¢ = 5z&57. By taking § = 1/3, we obtain that
1 —§)log [W| —log 2 2log [W| — 3log2
E N > H K AL =H’KA
(Mupain®) V] 2 131072¢2 393216¢>
H3SKA H3SAmi A
:Q( 52 ):Q( S m;n{S, })7 (140)
€ €
where the last line follows from Eq.(132) and log |[W| > %. O

H. Lower bound in the offline setting
H.1. Lower bound of offline IRL problems

We direct our attention towards the lower bound analysis of the offline IRL problems, particularly in scenarios where
© =V x A. In this case log N (0; ¢/H) is upper-bounded by O(S), and the corresponding upper bound of the sample
complexity becomes O (C*Heizsm)

Following Metelli et al. (2023) we define the (¢, §)-PAC algorithm for offline IRL problems for all €, § € (0,1).

Definition H.1 ((¢, §)-PAC algorithm for offline IRL problems). We say an offline IRL algorithm 2l is an (¢, 0)-PAC algorithm
for offline IRL problems if for any offline IRL problem (M, 7%, 7® 72} and any parameter set ©, with probability 1 — 6,
A outputs a reward mapping X% such that

DI (R, %) < e
Theorem H.2 (Lower bound for offline IRL problems). Fix © =V x A and let 2 be an (¢, )-PAC algorithm for offline

IRL problems, where § < 1/3. Then, there exists an offline IRL problem (M, wE, 7® 7®3) such that, if H,S > 4, A >
2,C* > 2, there exists an absolute constant cq such that the sample complexity N is lower bounded by

2 * 13
N> coH?SC r2n1n{S,A}.

€

where 0 < e < (H — 2)/1024.
The hard instance construction and the proof of Theorem H.2 can be found to Section H.2 and Section H.3, respectively.

Our proof involves a modification of the challenging instance constructed in Metelli et al. (2023). Specifically, when S < A,
the lower bound scales with Q(C*Sg), matching the C*S? factor dependence observed in the upper bound (Theorem 8).
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H.2. Hard instance construction

We consider the MDP\R M, indexed by vector w € WI, defined in Section G. We assume C* > 2. Fix i* €

construct the behavior policy 7 as follows:

72 (ao|Sstart) = 1 foralli € [K]and h € [H — 1],

% (alsstare) = & forall i € [K],
1 (agls;) = 1 for all i # i,
7TH—‘,—I(G’O|51 ) C*a 775)_[+1(a1|8i*) = %,

7 (agl3i) =1 foralli € [S]and h > H + 2.
And evaluation policy 72 is defined by

?Lval(a()'Sstart) =1 forall h € [H — 1}7
Tr%lal(ai* |Sstart) =1,
7% (aglsi) =1  foralli #i*,

™

i (a1]si) =

78 (ag |5 ):1 foralli € [S]and h > H + 2.

I o
For all w € W, we can show that 72" has C*-concentrability in M,

Lemma H.3. Suppose that ¢ € (0,1/2]. For any w € W, it holds that

7‘_e\/al
3 ddwbi() < 3C*(H +2)S.
(h,s,a)€[2H+2]xSx A ( )

Proof. By the construction of behavior policy 7°, we have

eval
Supp ( Z ('a )) g {(Sstart7 a0)7 (Sstartn ak*)? (Si*aal)a (517 CLO), I (557 CLO)}.

Since 72 = 78" for all h € [H — 1], then

b eval

dz (Sstartv CL()) = dz (Sstar‘m CL()) =1
forall h € [H —1].
At stage h = H, we have

b ]_ eval
dWH (Sstartaai*) = ?7 d}‘:[ (Sstartaai*) =1.
At stage h = H + 1, we have
1 7‘_e\/al
dH+1(3z* ar) = O K’ (i a1) = 1.

Atstage h € {H +2,...,2H + 2}, by direct computation, we obtain that

b C*K -1 1+ w oY eval 14 i3
di (5.00) = “mge T g 0 Ew) = ——g—
forall j € [S]. Since 0 < € < 1/2 and C* > 1, we have
i Gany = CE=1 14wt Y
5i,a0) =
h 125270 C*SK C*SK

C*K -1 1 1 1 1

> + R e

C*SK 20*SK S 20K 25
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[K], we

(141)

(142)

(143)

(144)

(145)

(146)

(147)



Is IRL Harder than Standard RL? A Theoretical Perspective

and
(i*.5,1)
eval ]- + 6 wH 1 3
dr " (s, — L < 148
b (s o) = S =25 (148)
forall h > H + 2. By Eq.(147) and (147), we obtain that
d eval
4 (500) 5 (149)
d;br (Sj7 aO)
forall h > H + 2.
Combining Eq.(143), Eq.(144) and Eq.(145), we have
2H 2 eva eva eva
A d" I(Sva) _ dz ‘(Sstartaao) dﬂH I(Sstartaai*)
2 D e 2 gp + 2 (150)
=1 (s,a)eSxA d (S,G) he[H—-1] dh (Sstar‘maO) dH (Sstartuai*)
d eval sie.a dr eval s“a
e MO e asy
dH+1( i*7a1) h>H+276 S] (Szaao)
N dﬂ,eval(g’“ ao)
=H-1+K+C'K + Z 27 (152)
h . dT( (S’La (lo)
1> H+2 €[]
<H-1+K+C*"K+3(H+1)S<C*(2H +2)(25+ 1), (153)
where the last second inequality is by Eq.(149) and the last inequality is by C* > 2. This completes the proof. O

Lemma H.3 demonstrate that 7® and 7' satisfies C*-concentrability (Assumption B) in any M,

Notations. To distinguish with different MDP\Rs, we still use V" (~; r, IP’<W)) to denote the value function of 7 in MDP
M, Ur. Given two rewards r v’ and w € WI, we define d”eval(r, ' P(W)) by:

eval

(sp;, P )) v (sh;r',}P’(w))‘.

d”eval(r,r’;IP(w)) = sup IEWW)‘Vh”
w,he€[H]

eval

Correspondingly, given a parameter set ©, two reward mappings %, %', we define D’Teval (%, %' ;P™) by

eval(% 2 IP(W)) — sup dﬂeval (%(V, A)’%/(M A)7P(W))
(V,A)e®©

In this section, we only consider the case that © = VY x A

Lemma H4. Given any w € WI, w# v €W, andi* € [K]. Let %(W&@:@(X&”) be the ground truth reward
mappings inducedby M_ o . M_ o wherea = (i*, H +1,1) € Z. Set © =V x A. For any rewarding mapping %#
and €' € (0,1/2], we have

Heé

— 16

eval eval

7Dg" (w0 g B ) 4 D" (A0, ) >

Proof. We consider similar construction of bad parameter V24, Ab2d in the Proof of Lemma G.3. To summarize,
(Vl““d7 Abad) is given by

» We set A®2d(s,a) = 0 forall (h,s,a) € 2H +2] x S x A.

+ We set VP by

VP (s) = (154)

CHF2-h wivs) if g — 5, h = H + 2,
0 otherwise.

52



Is IRL Harder than Standard RL? A Theoretical Perspective

Similarly, we define 7224, 7224 and » by

pbad . gp(wétw) (Vbad7Abad)7 rbad %(w@v)(vbad7Abad)7 - %(Vbad’Abad).

w

By definition of %(w&w)’ %(w‘i”), we have

w<i'w W(iv
|7‘2f’,‘}1+1(3i*,a1) — rgf’gl+1(si*,a1)| = ‘ {(Pgﬂ_z ) - PSﬂ-Q ))VH-H] (8i+,a1)

(wi —vi) VRS

/. +2

s
i€[S]

! /
=T w2 e (155)

i€[S]

where the last inequality follows from Eq.(116). By definition of ngal , we have
Dge"al (E@(w&w) , %; ]P;(w&w)) > dﬂ'eval (,rz)ad’ r; P(w&w))
Vweval (S bad P(w<—w)) VH:V;(S r, ]P;( &qv))‘

Tw s

eval ww eval
| VA (st POVER)) - VT (i, POVE))|
1€[S]
> 2S‘VHeval s wad7P(W<—w)) VH:Vj;(S r. ]P)( )) ’ (156)
1€[S]

where the last line is due to ¢’ € (0,1/2]. By construction of 7¢*?', in MDP\R M, o, the visiting probability d’THefl is
given by
71[1T1 (Sz‘mal;P(W&w)) =1

For D7Teva| (%’(W‘i”) R, P(W‘iv)), we also have

Dg” ('@ () 2 P(W&”)) > (rﬁiad, r; ]}D(W@v))

SE (w § VHeJ:al< bad P(w<—v)) _ VHTrer:i(S; r, P(W&v))’

&)
.n-eval

eval Wa’U eval Wa’U
VH+1(S"*7T1} 4 p(wé )) Vit (sisir, p(vé ))‘

= |r2 1 (s a1) — raa(sis, ar)

<_ eval , a eval
=Y B s ) - (VAT BOUE) v e O )))|
1€[S]
> |7”v H+1(51*7a1) TH+1(Si*,a1)|

eval

1+e Vi ﬂ_eval wéo
=Y S VA POy - v (i, POVER))
1€[S]

(157)

7

(wéw)

where the second last line is by the bellman equation and the last line is due to the triangle inequality. Since P, =

]P’(lwew) and 7‘5’51 _ Tbad forall h > H + 2, we have

eval

Va5 POV = Vs (5 POVEW)) v (550 POVER)) = VT (55002 P(WE ) (158)
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Apply Eq.(158) to Eq.(157), we have
fo} e (%(w@v) | R; P(W‘iv)>
> |3 (siea1) = g (sie, an)|
-3 vt BOE)) - VT (R BOVE))|
1€[S]

|T1) H+1(52*7a1) — ra41(8ix, (11)}

eval

1 v; eva a
30 R vt POV D) VT (S BV
i€[S]
2|7“58%+1(Sz*7a1) ris (s, an)|
eval

3 eval waw
- Z VH+2(517 zjdv]P)( = )) VH+2(SZaT IP( ))‘

eval

2 |7°v H+1(Sz*7a1) —rH11(8i,01) } —-3Dg (,@(W‘iw)7%;]zb(w<iw)), (159)

where the last second inequality comes from ¢’ € (0, 1/2] and the last inequality comes from Eq.(156).
We next bound [r224; | (si+, a1) — 741 (si+, a1)| by D <%(w&w)’%; ]P’(“"iw)).
Dgeval (%(W&w) , %7 P(w@w)) Z dTreVa\ (T?Uad, 7'; P(W(iw))

eval eval

>E VAT (5782, BOVE) — VT (s BOVE))|

a
W w
ﬂ-eval

eval eval

VH+1(31*.7‘ bad P(w(—w)) VH+1(SZ* r, P(wf—w))’

T’lli)ac}‘IJrl(S'L* ar) —ra1(si,a1)

w<—w 7_l_eval _ w il w eval
B Z PHJrl (ilsix; a1) - (VH+2(Si§Tlfuad7P( - )) Vi o (5ism, p(wé )))‘
i€[S]

> ‘Tiac}fﬂ(sz* ar) — 7“H+1(3i*7a1)’
1 eva ol eval a
_ Z + € wz VH+; (8“ 7,2] d’ P(w(—w)) VH+; (S“ r ]P)(w<—w) ) ‘
1€[S]

2 |7’w H+1(Si* a1) - TH+1(SZ‘* a1)|

3 eval w eval
- Z NV (5i 700 ,plwé )) Viia(8isr, p(wé ))‘

> |T2)adH+1(51* a1) — ru+1(sis, a1 | - 3D7Teva‘ (%(W&M),%;P(W&M))v (160)

where the last second inequality comes from €’ € (0, 1/2] and the last inequality is by Eq.(156). Eq.(160) is equivalent to

eval

4D5 (%(W‘i“’),%’;[@(“’&“’ ) > ’rw T (sioa1) — T (sic, a1)). (161)

Combining Eq.(159) and Eq.(161), we conclude that

7D7reval (%(w&w)’%; P(w&w)) + Dgeval (%(W&U>7%7 P(W&U))
2 |7“w H+1(Sl* ar) — 7“H+1(5i*’a1)’ + |7’5?1cir+1(5i*,a1) - TH-H(Si*aal)’
Heé

> |T1} H+1( Six, Q1) *rﬁjii]+1(5i*,al)| > 16 (162)
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where the last inequality comes from Eq.(155). This completes the proof.

H.3. Proof for Theorem H.2
Our proof is similar to the proof of Theorem G.2 in Section G.

Proof of Theorem H.2. For any € € (0,1/2], 6 € (0,1), We consider an offline IRL algorithm 2( such that for any IRL
problem (M, 7F), we have

(MEE),QI( 5" (’@* '@) ) >1-9, (163)

where P denotes the probability measure induced by executing the algorithm 2l in the IRL problem (M, 7F), %*

(M,E) 2
is the ground truth reward mapping and % is the estimated reward mapping outputted by executing 2 in (M, 7). Fix
i* € [S], We define the the identification function for any w € W by

P, := argmin ngal (%(W£”)7@; IE"(""&”))7
veW
where a = (i*, H + 1, 1), 2() s the ground truth reward mapping induced by (M o, 7E). Let v* = ®,, . For any
v # v* € W, by definition of v*, we have

eval

pg* (20 ), 2pv)) < D™ (v Zip(v ).

By applying Lemma G.3, we obtain that

! a ~ a eval a i ~ @ x -~ had
Ifg < eeval (%(vw—v)”%; P(w(—v)) + 7Dg) | (%(W(—’U )’%; P(w(—v )) < 8Da|l <%(w<—v)7%; ]P)(w<—v)) .
Next, we set € = 2‘)66 which implies that
H !
1(65 > 16e. (164)

Here, to employ Lemma H.4, we need €’ € (0, 1/2] which is equivalent to 0 < ¢ < H/512. Then, it holds that
D@eval (%(W&“),@; ]P’(w‘i”)> > 2€ > ¢,
which implies that

{v#£ Py} C { " (%(w£”)7t@;?’(wg”)) > e}.

By Eq.(163), we have the following lower bound for the probability

0 > sup P )’Ql(D@eval (%(w‘i”),@; ]P’(“”i”)) > e)

vEW (Mw&v’ﬂE

> sup P v # Py,

e TORNRCT :

S P NCL 165
W WF’U

By applying Theorem B.3 with Py = P , Py = P , we have
HO’WE)’QL (M w&aw T )Ql
! P (v#®y) > 1 1 ZD P P log 2 (166)
v — pe—— s — .
|W| ew Mo mE) A v log (W) |W| o KL M a, 7% (M a 7E)2A &
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Our next step is to bound the KL divergence. Using the same scheme in the proof Metelli et al. (2021, Theorem B.3), we
can compute the KL-divergence as follows:

D P , P
KL((M IR DR (MW&O,WE),Ql)
(W&O)
= E iy, o8, ZDKL hi(- | st;ae), Py, (+]st,at)
w&w w&o
S E(Mw(a—v,‘n'E),Q( [Nhu (Sia7 aka)]DKL (PI(‘I+1 )( | Six, a1)7 P§1+1 )( | Six, al))
< 2(6/)2E(Mw<ﬂ_fv7ws),g[[NH+1(81'*,al)]’ (167)

where Np,(s,a) := Zil 1 {(ht, $¢,a¢) = (h,s,a)} for any given (h,s,a) € [2H + 2] x § x A and the last inequality
comes from Metelli et al. (2021, Lemma E.4). Combining Eq.(165) and (166), we have

1 1

5>1—77 f— 2€/2E a N Si*x,Q —102
> 1 o o 3 2B gy i 0)] o
veW
for any w. It also holds that
(1—6)log|W| — log2
W 2; (Mw@v,wE),Ql[NHH(si*?al)] = 2(e')2 : (168)
ew
Hence, there exists a w"d € W such that
1—9)log|W| — log2
E(M_ a8y 2 [N 41 (800, a1)] = (1= 9)log |, 2' ke (169)
v 2(¢)
By taking § = 1/3, we have
(1 —6)log|W|—1log2 2log|W|— 3log2 H?S
EM_ a8y 2 [N 41 (800, a1)] > 22 = 6(c)? =0 —~ ), (170)
where the last equality follows from ¢ = 226¢ and log |W| > . By construction of 7®, it holds that Nz 41 (s, a1) ~
Bin (K, zi7 ), which implies that
. H2S C*H2SK C*H2S min {5, A}
)2 K )_Q<€2) o(CIsmnisa)
O

I. Transfer learning

In this section, we explore the application of IRL in the context of transfer learning. Specifically, we apply the rewards
learned by Algorithm 1 and Algorithm 2 to do RL in a different environment.

To distinguish different environments, given a transition dynamics P and policy 7, we introduce the following notations:
{dﬁ’”} " represents the visitation probability induced by P and 7, d*>™ signifies the metric d™ evaluated on PP, and
he[H

correspondingly Dg’" denotes the metric Dg evaluated on PP

L.1. Transfer learning between IRL problems

We introduce the transfer learning setting outlined in Metelli et al. (2021), where they consider two IRL problems: (M, 7F)
(the source IRL problem), (M’, (7')F) (the target IRL problem). Here, M, M’ share the same state space and action
space, but different dynamics. Suppose that we can learn the source IRL problem and obtain a solution r. However, r
is not necessarily a solution for (M, (7/)"), hence, in order to facilitate the transfer learning, we enforce the following
assumption.
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Assumption C. Ifr represents a solution to the source IRL problem (M, %), it also stands as a solution to the target IRL
problem (M, (7')7).

Assumption C is also supposed in Metelli et al. (2021). We remark that in numerous practical scenarios, Assumption C may
not be precisely met, but could be approximated: when the two IRL problems are very close® to each other, the solutions to
the two IRL problems exhibit a high degree of similarity..

L.2. Transfer learning between two MDP\ Rs
In this section, we consider a more general setting, where we focus solely on a source IRL problem and a target MDP\R.

We consider two MDP\Rs M = (S, A, H,P) (source MDP\R), M’ = (S, A, H,P’) (the target MDP\R), which share
the same state space and action space, but different dynamics, and an expert policy 7&. Let %* be the ground truth reward
mapping of the IRL problem (M, 7F) and 2 be the estimated reward mapping learned from (M, wF). In this setting, we
evaluate % in M’.

As we see in Section 1, Inverse reinforcement learning (IRL) and behavioral cloning (BC) are highly related. As mentioned
in (Metelli et al., 2021), transfer learning makes IRL more powerful than BC, and a lot of literature has used IRL to do
transfer learning (Syed & Schapire, 2007; Metelli et al., 2021; Abbeel & Ng, 2004; Fu et al., 2017; Levine et al., 2011).

Inspired by the single policy concentrability of policies, we propose the following transferability assumption.

Definition 1.1 (Weak transferability). Given transitions (P,P"), and policies (w,7"), we say (P’, ') is CV""-weakly
transferable from (P, ) if it holds that
d, " (5.a)
sup

= Scwtran.
s,a d;" (s, a)

Definition 1.2 (Transferability). Given source and target transitions P, ', and target policy 7', we say 7' is C""-
transferable from P to P’ if it holds that

) & (s.a
inf sup w < orran,

" se dy7(s,a)

We remark that given a policy 7 and a dynamics (P, P’), transferability measures how hard one can learn the states 7’
frequently goes to in P in a different environment P’ while given a policy pair (7, 7’) and a dynamics pair (P, P’), weak-
transferability measures how hard one learn the states 7 frequently visits in P via policy 7" in . Without transferability, we
can’t obtain information on the policy of interest in the target MDP, which makes transfer learning hard to perform.

L.3. Theoretical guarantee

We then present the main theorems in this section.

Theorem 1.3 (Transfer learning in the offline setting). Suppose (P, 72 is C*"*"-weakly transferable from (P, 1)
(Definition 1.1). In addition, we assume 7€ is well-posed (Definition A) when we receive Jeedback in option 1. Then for both
options, with probability at least 1 — §, RLP (Algorithm 1) outputs a reward mapping % such that

/ 7,l_eval * 5 -~ "
Dy (%, %) < e | RV, A)] (s,0) < [#" (V. A)],(5.0)
forall (V,A) € ©and (h,s,a) € [H] x S x A, as long as the number of episodes

K>0 .

~<H4SthranA10gN N H2SCWtranA,'7)

€ €

Above, log N :=log N'(©;¢/H), 1) := A~*1 {option 1}, and O(-) hides polylog(H, S, A, 1/8) factors.

Theorem 1.4 (Transfer learning in the online setting). Suppose & is well-posed (Definition 11) when we receive feedback in

option 1. Let #* be the ground truth reward mapping of IRL problem (M, w%). Then for the online setting, for sufficiently

SHere, we say (M, wF) and (M’, (")) are very close if the transitions of the two IRL problems are close under certain metric.
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small e < H2(SA)~5, with probability at least 1 — &, RLE (Algorithm 2) with N = (5(\/ H9S7A"K) outputs a reward
mapping X such that

sup D@ A <6 AV A)] (s.0) < [#(V.A), (s,0)

qevalis Cran_transferable from P to P’

Sforall (V,A) € © and (h,s,a) € [H] x S X A, as long as the total the number of episodes

2

€

HscvtranA Ctran H31 N 2 tran
K+NH>(9< ( o) , HSC A").
€

Application: Performing RL algorithms in different environments With Theorem 1.3 and Theorem 1.4 in place, as
a concrete application, we consider utilizing rewards learned by IRL algorithms to execute RL algorithms in a different
environment (M’). The following two corollaries provide guarantees for the performance of learned rewards in executing
RL algorithms in the offline and the online setting, respectively. Both of these corollaries are direct consequences of
Proposition 6.

Corollary L5 (Performing RL algorithms with learned rewards in the offline setting). Fix § = (V, A) € O, let v :=
Z*(V,A) and 7’ = 7 (V, A), where R are recovered reward mapping outputted by Algorithm 1. Suppose that there exists a
policy  such that 7 is €-optimal in MDP M'Ur? and (P!, ) is C’Wtra”-weakly transferable from (P, °) (Definition I.1). Let
7 be an € -optimal policy in M' UT? (learned by some RL algorzthms with 7°). Under the same assumption of Theorem .3,
for both options, we have Vi (s1; M' Ur%) — VT (s1; M' Ur%) < e + € + 2€ as long as the number of episodes

H4scwtranA logN H2scwtranAn)

2

K= 0(

€ €

Above, log N :=log N'(©; ¢/H), n := A~11 {option 1}, and O(-) hides polylog(H, S, A, 1/8) factors.

Corollary 1.6 (Performing RL algorithms with learned rewards in the online setting). Fix § = (V,A) € O, let
r? = #*(V,A) and 7% = @(V, A), where R are recovered reward mapping outputted by Algorithm 2 with
N = 5(\/ H9S7A7K).Suppose that there exists a policy 7 such that  is €- optimal in MDP M’ U r? and 7 is Ct™"-
transferable from P to P’ (Definition 1.2). Let T be an € -optimal policy in M’ U7? (learned by some RL algorlthms with 70),
then for the online setting, for sufficiently small e < H=(SA)~5, we have Vi (s1; M'Ur?) =V (s1; M'Ur?) < e+¢ 426
as long as the number of episodes

HsctranA C«tran H31 N 2 tran
K+NH>O< (C" + HPlogN) | H?SC A").

€2 €

Application: learning IRL problems by transfer learning We return to the topic of transfer learning between IRL
problems. We note that our findings related to transfer learning between MDP\Rs can also be employed in the context of
transfer learning between IRL problems. As the illustrated in Theorem 1.3 and Theorem 1.4, we can efficiently learn a Z
such that the distance Dgeva‘ (.@ , #*) < 2¢, where Z* is the ground truth reward mapping of (M, 7€). By Assumption C,

the rewards induced by Z* are solutions of (./\/t’ , (7! )E), hence the rewards induced by % also approximate the solutions
of (M', (w/)E).

1.4. Proof of Theorem 1.3

Note that under the same assumptions in Theorem 1.3, the concentration event £ defined in Lemma E.1 still holds with 1 — 4.
By the week-transferablity of (72, 7°), we have

/ _eval

Yoy A tcomy B a{d e 40)

P,mb
he[H] (s,a)eSx.A d ( ) he[H] (s,a)ESx.A

< Cwtran Z Z 1 {a c 71_eval } < CWtran g A . (171)
H] (s,a)eSxA
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For any § = (V, A) € ©, define r? = %*(V, A), and 79 = @(V, A). With Eq.(171) at hand, we can repeat the proof of
Lemma E.2, thereby obtaining that

;e OwtranHQSA / __eva
) ST Y Y 4 s (s.a), (a72)
he[H] (s,a)eSx.A

@
holds on the event £. where 1), bY (s, a) are specified in Lemma E.1.
Furthermore, similar to Eq.(66), and through the application of the triangle inequality, we can decompose

/ _eval
P’

Z(s,a)GSX.Adh
7 __eval
M=> > 4" (sabs.a)

he€[H] (s,a)eSx.A

(s,a)bY(s,a) as follows:

log N (©;¢/H)e HlogN(©;¢/H)

< Z Z dr" (s, a) - {\/W [thh-&-l} (s,a)+ Ni(s,a) V1 }

he€[H] (s,a)ESx.A

el € logN(©;¢/H)e
+ Z Z h (Saa)'H<1+ —Ng(s,a)\/l )

he[H] (s,a)eSx.A

< Z Z dI}F;’,weval (s,a) - \/ng(@;G/H)L[VthH](S’a)

b
he[H] (s,a)€Sx A Ny(s,a) V1

(L.a)
log N (©;¢/H)e

+Y > di/’ﬁeva‘(sa a)- \/]\7};(5,@)\/1 K@h - Vh) Vh+1} (s,a)

he[H] (s,a)ESX.A

(I.b)

B/ e Hlog N (©;¢/H)e
+ Z Z dh (S’ a’) N};(&a) v 1

he[H] (s,a)ESX.A

(I'c)

/ peval 1 log N(©;¢/H
e Y & (S’a)'<H+\/I;2g~]\f(}{(s,6c/z)\3b1>' (173)

he[H] (s,a)ESx.A

(1.d)

Thanks to Eq.(171), we can employ a similar argument as in the proof of Eq.(67), Eq.(72), Eq.(73), and Eq.(74), which
allows us to deduce that

wtran [74 E .
(I.a)g\/c H4SAnElog N(©;¢/H)t

K )
wtran f72 . wtran 73 . 5/2
(Lb) < \/C H?SAlog N (©;¢/H) +C H3SAlog N (©;¢/H)t ’
K K
wtran r72 . wtran -
(Lo) < Cveran i SAllc)(gN((%,e/H)L’e_(1+\/C SAloiN(G),e/H)L% 174

Combining Eq.(172), Eq.(173) and Eq.(174), we conclude that

;v R ;e wtranH2 A wtranH4 A E 1 . H
Dg’“ I<%*7%) g |(T9’$9) < C S er\/C SAnElog N (©;¢/H)e
0co K K

Cvtran 138 Anf log N(©; ¢/ H ) 1>/?
+ K

+ e (175)
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The right-hand-side is upper bounded by 2¢ as long as

. wtran rr4 . wtran r72
K> O(c H SAI(;g/\/(@,e/H) L O H SAn)

€ €

Here polylog (H, S, A, 1/§) are omitted.

I.5. Proof of Theorem 1.4

Under the assumptions in Theorem 1.4, the concentration event £ defined in Lemma F.2 still holds with 1 — §. Fix 7 such
that 7 satisfies C*®"-concentrability from IP to . We define

Iy = {(s,a) €S x A|d?,i/’”(s,a) > J§7+e;§(s,a)},

for all h € [H]. Similar to Eq.(96), we have the following decomposition:

drr (ri,?ﬁ) < Z d]i/’”(s,a) . |7"Z(s,a) — ?Z(s,a)!
(h,s,a)E[H]xSx A
< Z Z dil’w(s,a) b (s, a) — ?Z(s,a)‘ + Z Z dﬁ,’ﬁ(s,a) . ’re(s,a) —7(s,a)|, (176)
he[H] (s,a)¢TnUIn he[H] (s,a)eT,UIn
M (11)

where set Zj, is defined in Eq.(93).

We further decompose the term (I) as follows:

1) < Z Z dlil’ﬂ(s,a) . ‘rZ(s,a) —?Z(s,a)’ + Z Z dﬁl’”(s,a) . fr,el(s,a) —?ﬁ(s7a)| . (177)

he[H] (s,a)¢ZLy helH] (s,a)¢Z

(La) (Ib)
By the definition of transferability, there exists a policy 7’ such that
dy " (s,a) < 207y (s, a),

for any (h, s,a) € [H] x & x A. For the term (L.a), we have

ta)=Y 3 Esa) rhsa) -sa <20 S B (sa0)- (s, a) - 7(s,a)] (178)

h/E[H] (S,a)%IhUih (s,a)gEIhufh

Similar to Eq.(97), on the event £, we have

oY @ sa) s - Fsa) < Y diT (s,a) - [rh(s.a) — (s, a)]

h€[H] (s,a)¢ZnUT} he[H] (s,a)¢Tn
H?SA H?SA HSA
g SLSA B, ,
N K K

which allows us to bound the term (I.a) as follows:

tran H2 A tranH2 A HSA
(Lay < EeH754  C & ”+tha“\/%. (179)

N K
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For the term (I.b), on the event £, we have

= Z Z df’”(s,a) [P (s,a) = 7(s,a)|

helH] (s,a)¢In

= Z Z dﬁ,’”(s,a) . ’ — An(s,a)(1{a € supp (775(|5))} —1{a € supp (%,E(|s))})

helH] (s,a)¢In

_ KIF);L - @h)Vh+1} (5,a)(s,a) — bl (s, a)

< Z Z dpwsa {|Ahsa ({aesupp( s))}—~1{a€supp(w5(~|s))})’

helH] (s,a)¢Zy,
+ ‘ [(]P’h — @h)VhH} (s, a)‘ + b9 (s, a)} (by triangle inequality)

2H Z Z dP”sa

helH] (s,a)¢In

<2CtranH Z Z < ™ (s,a) +eh(8a)+]§[>

helH] (s,a)¢In
(iii) , ¢
5 Cran g . Z Z (GZ (s,a) + N)
he[H] (s,a)¢ZIn

CtraneH2S A HSA
< tran
S—xN  t C 7 (180)

where (i) is by [|Apn|oos |Vatilloos bl (s,a) < H, (ii) comes from Eq.(90) and the concentration event £(ii), and (iii)
follows from the definition of Zj,.

Combining Eq.(179) and Eq.(180), we can conclude that

Cran¢H2SA  C™NH2SAp HSA
< tran el
1M < v + i +C = (181)
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For the term (II), following a similar approach as in Eq.(98), we have

II) = Z Z di,’ﬁ(s,a) bl (s, a)

he[H] (s,a)ETLULy,

_ Z Z di'm(s’a) mln{\/bgM@E/m [thh+1j|( )+ Hl(/)\g-/\/‘(@7€/H)L

b b
he[H] (s,a)€Zp ULy, Np(s,a) V1 Ny(s,a) V1

€ log NV (©;¢/H)e
+H<1+ ]vb(sa)\/l >’H}

Z Z di/ min { \/logj\/(@ e/H)e {thh-i-l} (s,a), H} + HIC)Ag./\/(@; ¢/H)t (182)

b
he[H] (s,a) €T, ULy )Vv1 Ny(s,a) V1

o
=)
o
)

(1)

Yy

he[H] (s,a)€TnUTn

log NV (©;¢/H)e {VthH}(S a)+H N Hlog N(©;¢/H)e
NY(s,a)V1+1/H Nb(s,a) V1

N log N'(©;¢/H)t
H Nbsa\/l

w Z > . log N'(©; ¢/ H). |:Vth+1}(s,a)-‘rH

WD) (s.0) T, By | dF (s5,0)] + 1/H

(IL.a)
. HlogN'(0;¢/H
+ Z Z di’ (s,a) - OgAﬂ,( /).
he[H] (s,a)€T, Uy KE oy {dh (Sﬂ)} +1/H
(ILb)
’ 1 ] H

+§ oy 4 s |1+ OgNA(?’G/ ) . (183)

W) sua) €T KB dF (5,0)| +1/H

(IL.c)
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For the term (I.a), by the Cauchy-Schwarz inequality, we have

(ILa) <VCren H = H° \/dﬁ“’f(s,a)-(1og/\/(@;e/H)LWhvh+1] (s,a) + H)

helH] (s,a)€T, ULy,

. 4, (s, a)
KEq 0 {3;;/(5, a)] +1/H

VTSN \JE(s,0) (08 N(©; ¢/ H)ViVi] (5,a) + H)

he[H] (s,a)€T, ULy,

Qd?;’ﬂl(s,a) + 2eT' (s,a) + %
KEq [c/l\,’zl(s,a)} +1/H

< V/Ctran Z Z \/di"”(s, a)- (log N (©;¢/H)[ViVii1] (s,a) + H)

he[H] (s,a)€L, ULy,

dy™ (s, a)
KBy {cfg’(s, a)] +1/H
1/2

<vern ! ST N @ (s,a) - (1og N(©; ¢/ H)e[Vi Vi) (s,a) + H)

he[H] (s,a)eSx.A

(IL.a.1)
, 1/2

D S

helH) (siayesx A KEpr oy [dz’(s,a)} +1/H

(I.a.2)

Following similar approaches as in Eq.(100) and Eq.(101), we have

(ILa.1) < \/H3log N'(©;¢/H)u, (IL.a.2) < HTSA, (184)

which implies that

ran [J4 .
(II.a)S\/Ct HSAI(EN(@,e/H)L. (185)

For the term (IL.b), by Eq.(16), we have

(IIb) _ Z Z dI}P; ,71'(8, a) . Ogﬁ/‘/(gy 6/ )L
he[H] (s,a)eSx A KE [d}{ (Sﬂl)} +1/H

crn Z Z di’”l(s a) Hlog N (©;¢/H)t
K bl

he[H] (s,a)eSx A E oo {dgl(&a)] CKH

Ctran o Hlog N (©;¢/H)t
SED D S AT o

he[H] (s,a)ESx A Er e [JZ'(S,G)} +1/KH
tran 72 .
Lo SAI([)?N(@,E/H)L' 156

<
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For the term (Il.c), we have

1 e/H
o=% > > 47 |1+ Ogj\i(/@’e/ e
H e armiut, KE, [dg (s,a)} Y1/H

o Ctrane Z Z /dﬂ}:/m(s a)- (s,a) og N'(©;¢/H)u

AP KB, |dr (s,a)} Y1/H

<ot C’t'a”e Z Z & (50) d/?,;’wl(s,a) log N (©;¢/H)e
) af' (s,a)| +1/H

(s,a)ETLUTy, KEW’N,U,"
, & 1 ©;¢/H
< €+ Z Z d]i ,7r( Z h (s7a)AOlgN( 36/ )L
he[H] (s,a)ZnUTn e[H] (s,a)eTy, KEmrpp [dz (s, a)] +1/H

6 (1 N \/CtranSA log N (©; e/H)L) ’ (187)

HK

where the second last line is by the Cauchy-Schwarz inequality and the last line is by Eq.(16).
Then combining Eq.(185) Eq.(186), and Eq.(187), we obtain the bound for the term (II)

(I1) < (ILa) + (ILb) + (ILc)

< \/Ctranmsmog/\/(@;e/H)L N C"™ H>SAlog N (©;¢/H)t +6<1+\/th3” 1ogN(e;e/H)L)
K K HK
ran f74 .
5\/& H SAl(‘;?N(@,e/H)L_i_e’

(188)

where the last line is from e < 1.

Finally, combining Eq.(181) and Eq.(188), we get the final bound

3%, %) = swp " (+.7) < (1) + (1)

m,0€0

< N + Ctran + €

< CtraanQSA CtranH4SA10gN(@;€/H)L C«tran[{QSfM7 HSA
+ K + K K

Hence, we can guarantee Dg) (%’*, @) < 2¢, provided that

KH>N > (5(\/H9S7A7K),
~<C“"HSA(C”3" + H3log N'(©;¢/H)) N C"Q”H2SA7]>

K>0 > (189)

€ €

Here poly log (H, S, A, 1/6) are omitted. Similar to the proof of Theorem 11, suppose ¢ < H~2(SA)~6, set N = O, when

_ CtranHSA Ctran H31 N @; H tranH2 A
KzO( ( +2 og N'(©;¢/ ))+C San\ (190)
€ €
Eq.(189) holds. And at this time, the total sample complexity is
Ctan [7 S A(Ctran H3 1 @ H tran 72
K+NH>(’)< ( +2 ogN(O;¢/H)) | C™"H SA”). (191)
€ €
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