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Figure 3. Example nanoscopy image (left) of a mouse kidney cryo-
section approximately 1/12th of the area of a single field-of-view of
the microscope, chosen to illustrate the level of details at different
scales. The bottom right images show that the smallest features in
the image of relevance can be as small as a few pixels (here 5-8
pixels for the holes)[? ].

A. Broader Impact001

The broader impact of this work lies particularly in its po-002
tential to extend the capability of deep learning models. By003
addressing the challenge of training models on large-scale004
images with limited computational resources, our approach005
opens up opportunities for researchers and practitioners with006
constrained hardware setups to tackle complex problems007
in healthcare, agriculture, and environmental monitoring,008
where high-resolution images play a crucial role in decision-009
making processes. Moreover, our approach can contribute010
to reducing the environmental footprint of deep learning by011
enabling efficient training on low-power devices, thus pro-012
moting sustainability in the development and deployment013
of deep learning models. In summary, our work has the014
potential to empower diverse communities, drive sustainable015
development, and accelerate scientific progress. It is essen-016
tial to approach these advancements with a conscientious017
mindset, taking into account the broader societal impact and018
proactively working towards an inclusive and responsible019
deployment of deep learning technologies. With our work,020
it is also important to address the potential risks and chal-021
lenges. Issues related to data privacy, bias, and fairness022
should be carefully addressed to prevent any unintended neg-023
ative consequences. Additionally, the potential for misuse024
or malicious applications of deep learning models should025
be acknowledged and proactively addressed through robust026
security measures and ethical guidelines.027

B. Future work028

This paper has established the foundational concept of patch029
gradient descent to enable training CNNs using very large030
images and even when only limited GPU memory is avail-031
able for training. The results as well as insights presented032
in the paper open doors to several novel secondary research033
directions that could be interesting in terms of improving the034

efficacy as well as the acceptance of the presented method in 035
a broader scientific community. We list some such directions 036
here. 037
• Scaling to gigapixel images at small compute memory. 038

An ambitious but very interesting application of PatchGD 039
would be to be able to process gigapixel images with small 040
GPU memory. We can clearly envision this with PatchGD 041
but with additional work. One important development 042
needed is to extend the PatchGD learning concept to mul- 043
tiple hierarchical Z blocks, thereby sampling patches from 044
the outer block to iteratively fill the information in the 045
immediate inner Z block and so on. 046

• Enhanced receptive field. So far, PatchGD has been looked 047
at only in the context of being able to handle very large 048
images. However, a different side of its use is that with 049
almost the same architecture, it builds a smaller recep- 050
tive build, thereby zooming in better. We speculate that 051
in this context, PatchGD could also help in building bet- 052
ter discriminative models with lighter CNN architectures. 053
Clearly, this would be of interest to the deep learning com- 054
munity and needs to be explored. 055

• PatchGD with Transformers. Transformers are known to 056
provide a better global context and it would be interesting 057
to expand the capability of transformers as well to handle 058
large images using PatchGD. 059

C. Datasets 060

C.1. PANDA 061

The Prostate cANcer graDe Assessment Challenge [1] con- 062
sists of one of the largest publically available datasets for 063
Histopathological images which scale to a very high res- 064
olution. It is important to mention that we do not make 065
use of any masks as in other aforementioned approaches. 066
Therefore, the complete task boils down to taking an in- 067
put high-resolution image and then classifying them into 6 068
categories based on the International Society of Urological 069
Pathology (ISUP) grade groups. There are a total of 10.6K 070
images which are split into train and test sets in the ratio 071
80:20. 072

C.2. UltraMNIST 073

This is a synthetic dataset generated by making use of the 074
MNIST digits. For constructing an image, 3-5 digits are 075
sampled such that the total sum of digits is less than 10. 076
Thus an image can be assigned a label corresponding to 077
the sum of the digits contained in the image. Each of the 078
10 classes from 0-9 has 1000 samples making the dataset 079
sufficiently large. Note that the variation used in this dataset 080
is an adapted version of the original data presented in [3], 081
with background noise removed so that any shortcut learning 082
is avoided [2]. Since the digits vary significantly in size and 083
are placed far from each other, this dataset fits well in terms 084
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of learning semantic coherence in a image. Moreover, it085
poses the challenge that downscaling the images leads to a086
significant loss of information. While even higher resolution087
could be chosen, we later demonstrate that the chosen image088
size is sufficient to demonstrate the superiority of PatchGD089
over the conventional gradient descent method.090

C.3. TCGA091

The TCGA-NSCLC dataset, known as The Cancer Genome092
Atlas-Non-Small Cell Lung Cancer, encompasses two dis-093
tinct types of lung cancer: Lung Adenocarcinoma (LUAD),094
with 522 cases, and Lung Squamous Cell Carcinoma095
(LUSC), with 504 cases, with a total number of image files096
3220. The data was split in a stratified manner using the pa-097
tient cases, into train and test set in the ratio 80:20, making098
sure there is no data leakage from train to test. The whole099
slide images are used to evaluate the performance of baseline100
and PatchGD in classifying the lung cancer subtypes.101

C.4. ImageNet100102

The ImageNet100 is a derived dataset from the parent103
ImageNet[4]. The dataset consists of 100 randomly chosen104
classes from the original 1000, which are used to perform105
classification via both the baselines as well as PatchGD.106

D. Training Methodology and Hyperparame-107

ters108

For Tables 1,2,3,5,6,7 presented in the main paper, all models109
are trained for 100 epochs with Adam optimizer and a peak110
learning rate of 1e-3. A learning rate warm-up for 2 epochs111
starting from 0 and linear decay for 98 epochs till half the112
peak learning rate was employed. The latent classification113
head consists of 4 convolutional layers with 256 channels114
in each. We perform gradient accumulation over inner it-115
erations for better convergence, in the case of PANDA. To116
verify if results are better, not because of an increase in pa-117
rameters (coming from the classification head), baselines are118
also extended with a similar head. GD*, for MobileNetV2119
on UltraMNIST, refers to the baseline extended with this120
head.121

In the case of low memory, as demonstrated in the Ul-122
traMNIST experiments, the original backbone architecture is123
trained separately for 100 epochs. This provides a better ini-124
tialization for the backbone and is further used in PatchGD125
as mentioned in Tables 1 and 2.126

For baseline in PANDA at 2048 resolution, another study127
involved gradient accumulation over images, which was128
done for the same number of images that can be fed when129
the percent sampling is 10% i.e. 14 times since a 2048x2048130
image with a patch size of 128 and percentage sampling of131
10 percent can have a maximum batch size of 14 under 16GB132
memory constraint. That is to say, the baseline can virtually133

process a batch of 14 images. This, however, was not opti- 134
mal and the peak accuracy reported was in the initial epochs 135
due to the loading of the pre-trained model on the lower res- 136
olution after which the metrics remained stagnant(accuracy: 137
32.11%, QWK:0.357). 138

For Table 4 presented in the main paper, we use the re- 139
spective training strategies as mentioned in the respective 140
works. The training strategy on TCGA is similar to what 141
is employed on the PANDA dataset. In the case of Ima- 142
geNet100, both the baselines and PatchGD were trained 143
with a peak learning rate of 1e-3, with Adam Optimizer. Co- 144
sine LR decay with warmup was used as the learning rate 145
scheduler. The image level augmentation pipelines are im- 146
plemented as in the A3 pipeline of [6] both for baseline and 147
PatchGD. For PatchGD, the stride(20) is kept to be half of 148
the patch size(40) and the percent sampling was 25%. under 149
3GB memory constraint. 150

E. On other tasks 151

Generative modeling. PatchGD can be used for generating 152
large-scale images with a broad semantic context, which can 153
be beneficial for data augmentation in fields such as deep 154
learning for medical imaging. Early results using StyleGAN- 155
2 on the CIFAR-10 dataset showed that our method gener- 156
ated patches of 16 × 16 which were stitched together and 157
analyzed by the discriminator, leading to a comparable FID 158
score of 6.3 to the standard GD’s FID score of 6.1. We 159
believe this small performance gap can be eliminated with 160
hyperparameter optimization. We consider that the poten- 161
tial of PatchGD in generative modeling can be maximized 162
by generating large images with various semantic contexts, 163
although this needs to be explored further. 164

PatchGD for segmentation. We discuss here how 165
PatchGD can be used for tasks such as segmentation or 166
any other encoder-decoder tasks We have discussed genera- 167
tive modeling already, and since the setup would be some- 168
thing similar, we present here an understanding of how the 169
PatchGD formulation would unfold for tasks such as seg- 170
mentation. For the task of segmentation as well, we have 171
two sets of weights θ1 and θ2 that constitute the encoder 172
and the decoder, respectively. Here, the encoder generates 173
a Z-block and the decoder is used to generate the segmen- 174
tation map from the Z-block. Similar to the classification 175
problem, PatchGD operates on each image over a course of 176
multiple inner iterations. At each inner iteration, patches 177
are sampled from image x and accordingly passed through 178
and the output is then used to update the respective parts 179
of Z. Further, k c-dimensional vectors are sampled from Z 180
and passed through the decoder to generate mask patches 181
that are used to update parts of the segmentation map y, and 182
the process is repeated. Note that similar to Z–filling, this 183
process also requires y-filling before the model updates of 184
the encoder and decoder are performed over patches. For 185
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Figure 4. Sample PANDA and UltraMNIST dataset images used for training PatchGD.

Figure 5. Sample PANDA images along with their latent space Z. It can be seen that the latent space clearly acts as a rich feature extractor.

this purpose, we can first train a segmentation model on186
lower-resolution images of the chosen task and then use its187
encoder and decoder, and starting models for the PatchGD188
learning process.189

F. Comparison with normalization techniques 190

Batch normalization methods also influence the covergence 191
of deep learning models at low batch sizes. However, 192
PatchGD outperforms these techniques as well and we 193
present a comparison is presented in Table 1. 194
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Table 1. Comparison with normalization techniques at 2048 image
size and 48GB memory constraint with Resnet50 backbone.

Method Batch Size Setting Accuracy %

BatchNorm 6 - 49.4
GroupNorm 6 Groups = 32 50.3
Grad. Acc. 5 Steps = 11 44.1
PatchGD 56 56.2

G. Gradient Accumulation Study195

We also highlight an ablation study on the effect of changing196
the gradient accumulation steps ϵ as presented in Table 2.197
The gradients are accumulated and weights are updated only198
after ϵ steps. The ablations were conducted for different199
epsilon settings, image and patch sizes, and memory con-200
straints. We found that for smaller patch sizes, employing201
gradient accumulation steps greater than 1 is essential, with202
significant gains observed as the patch size to image size203
ratio decreases. Despite this promising trend,ϵ remains a204
hyperparameter requiring further tuning. Moreover, explor-205
ing the nuanced relationship between accuracy and steps206
is an essential aspect for future investigation in optimizing207
PatchGD. In case of UltraMNIST dataset at 512 image size,208
best performance is observed at ϵ = 1 for a patch size of209
256. For PANDA two variations were tried for image size210
512 and image size 4096 with best results obtained at 8 and211
32 respectively.212

H. Applications in Time Series Classification213

Extending the concept of PatchGD to the 1-dimensional case,214
we find the application in time series classification. For this215
task, we take the example of UCI Human Activity Recog-216
nition Dataset [5]. A set of 9 inertial signals at 128 unique217
time stamps are used to predict the action being executed218
(sitting, walking, etc.). For the baseline model, we use a219
basic 1-d Convolutional Network with 64 kernels each of220
size 3 and a linear layer at the end which achieves an ac-221
curacy of 88.9%. The model is trained using Adam as an222
optimizer with a constant learning rate of 1e-3 for 30 epochs223
with 32 batch size. The counterpart PatchGD-inspired ap-224
proach involved the same 1-d convolutional network as the225
encoder with an intermediate latent vector, with other com-226
mon hyperparameters being kept the same. The time series227
is broken into chunks temporally, each chunk being of length228
16. Each inner iteration consists of sampling 25% of the total229
chunks with gradient updates enabled. The model is updated230
at the final iteration. Impressively, the approach achieves231
similar accuracy of 88.5%. The results are promising and232
yet again demonstrate the wide application to other tasks233
where PatchGD can be applied. Although this needs to be234
investigated further.235

References 236

[1] Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, 237
Peter Ström, Hans Pinckaers, Kunal Nagpal, Yuannan Cai, 238
David F Steiner, Hester van Boven, Robert Vink, et al. Artifi- 239
cial intelligence for diagnosis and gleason grading of prostate 240
cancer: the panda challenge. Nature medicine, 28(1):154–163, 241
2022. 1 242

[2] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, 243
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe- 244
lix A Wichmann. Shortcut learning in deep neural networks. 245
Nature Machine Intelligence, 2(11):665–673, 2020. 1 246

[3] Deepak K. Gupta, Udbhav Bamba, Abhishek Thakur, Akash 247
Gupta, Suraj Sharan, Ertugrul Demir, and Dilip K. Prasad. 248
Ultramnist classification: A benchmark to train cnns for very 249
large images. arXiv, 2022. 1 250

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San- 251
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, 252
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale 253
visual recognition challenge. International journal of computer 254
vision, 115:211–252, 2015. 2 255

[5] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger 256
Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, 257
and Mads Møller Jensen. Smart devices are different: Assess- 258
ing and mitigatingmobile sensing heterogeneities for activity 259
recognition. In Proceedings of the 13th ACM conference on 260
embedded networked sensor systems, pages 127–140, 2015. 4 261

[6] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet 262
strikes back: An improved training procedure in timm. arXiv 263
preprint arXiv:2110.00476, 2021. 2 264

4



CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Influence of different number of gradient accumulation steps ϵ on the performance of PatchGD.

Model Dataset Memory Image size Patch size ϵ Accuracy

MobileNetv2 UltraMNIST 16 GB 512 256 1 83.7
MobileNetv2 UltraMNIST 16 GB 512 256 2 81.5
MobileNetv2 UltraMNIST 16 GB 512 256 4 81.1
Resnet50 PANDA 4GB 512 64 1 41.9
Resnet50 PANDA 4GB 512 64 8 50.5
Resnet50 PANDA 4GB 512 64 32 45.0
Resnet50 PANDA 48GB 4096 256 8 56.9
Resnet50 PANDA 48GB 4096 256 32 59.7
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