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A Proof of Theorem 2.1

Let us restate the theorem. Recapping notation, let A ∈ Rn×d be an input matrix. Let a1, . . . , an
denote its rows. Let k be the target low rank, and let ε > 0 be an error parameter. Let S0 ∈
Rm×n be a random matrix in which every column is chosen uniformly at random from the standard
basis e1, . . . , em. S0 induces a partition of the rows A into m blocks, B1, . . . , Bm, where Bj is
comprised of the rows {ai : S(j, i) = 1}. Let βj,1 ≥ . . . ≥ βj,d denote its singular values, with
corresponding left-singular vectors wj,1, . . . , wj,d. We sample one left-singular vector wj,` with
probability β2

j,`/‖Bj‖2F , and replace the 1-entries in the jth row of S0 with the entries of wj,`.
Doing this for each Bj results in our sketching matrix S.

We do this with two random matrices S′0 ∈ Rm′×n and S′′0 ∈ Rm′′×n, where m′,m′′ are both
poly(k, ε−1, log n), and are within a low order term of each other. The final sketching matrix S is
the vertical concatenation of S′ and S′′, with sketching dimension m = m′+m′′. The claim is that,

Theorem A.1 (restatement of Theorem 2.1 from main text). If m = poly(k, ε−1, log n), then with
constant probability (say 0.99), ‖A− SCW (S,A)‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F .

In the remainder of this section we prove Theorem A.1.

A.1 Preliminaries

Let A = UΣV T denote the SVD of A. The singular values of A (i.e., the diagonal entries of Σ)
are denoted σ1 ≥ . . . ≥ σd. The corresponding left-singular vectors (columns of U ) are u1, . . . , ud,
and the corresponding right-singular vectors (columns of V ) are v1, . . . , vd. It will be convenient to
denote by ε1, ε2, ε3 . . . sizes that are all poly(ε, 1/k, 1/ log(n)).

First, we recall a basic lemma about SCW, which appears as Lemma 44 in [7]:

Lemma A.2 (Lemma 44 in [7]). SCW(S,A) returns the best rank-k approximation of A (in Frobe-
nius norm) within the row-space of SA. Put otherwise, it returns the best rank-k approximation of
A that can be written as BSA, where B ∈ Rn×m is any matrix of rank k.

Therefore, our goal is to show that this row-space contains a sufficiently large component of each
of vT1 , . . . , v

T
k (the top-k right-singular vectors of A, written as row vectors). To reason about the

row-space of SA, we have the following simple observation: whenever the algorithm samples a
left-singular vector of a block in forming S, it adds the corresponding right-singular vector to the
row-space of SA.
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Observation A.3. Let Bj be a block with singlular values β1 ≥ . . . ≥ βd, left-singular vectors
w1, . . . , wd, and right-singular values y1, . . . , yd. If the algorithm samples w` for the jth row of S,
then the row-space of SA contains y`.

Proof. It can be easily seen that the jth row of SA equals w`Bj , which equals β` · y`.

Let k′ ≤ k the largest index such that σk′ ≥ (ε/k)‖A‖2F . It suffices for us to find an approximate
rank-k′ approximation of A. Indeed, if A′ is a rank-k′ approximation of A, meaning it satisfies

‖A−A′‖2F ≤ ‖A−Ak′‖2F + ε‖A‖2F ,

then it is also a good rank-k approximation up to scaling ε by a constant, since

‖A−Ak′‖2F = ‖A−Ak‖2F +

k∑
i=k′+1

σ2
i ≤ ‖A−Ak‖2F + ε‖A‖2F ,

and therefore
‖A−A′‖2F ≤ ‖A−Ak‖2F + 2ε‖A‖2F .

To simplify notation, we will assume that k = k′, and

σ2
i ≥

ε

k
‖A‖2F for all i = 1, . . . , k. (1)

This is the most difficult case of the above (k′ ≤ k) and does not limit the generality of the proof.

A.2 Row Classification

We classify the rows a1, . . . , an into light, medium and heavy as follows. We define a row ai as
light if it satisfies,

1

ε2
· log n

ε24
· ‖ai‖

2
2

‖A‖2F
≤ 1

m
. (2)

A row ai is defined as heavy if
‖ai‖22
‖A‖2F

≥ 1

ε5m
. (3)

If a row satisfies neither eq. (2) nor eq. (3), it is defined as medium.

LetAL, AM , AH be a partition ofA into submatrices that contain the light, medium and heavy rows
respectively. Observe that for every singular value σj we have

σ2
j = ‖Avj‖22 = ‖ALvj‖22 + ‖AMvj‖22 + ‖AHvj‖22. (4)

For every block B, we similarly partition it into three matrices BL, BM , BH of the light, medium
and heavy (respectively) rows assigned to it.

Next we prove some useful properties of each class of rows.

A.2.1 Heavy Rows

Lemma A.4. The number of heavy rows is at most ε5m. Furthermore, with high probability every
block contains at most one heavy row.

Proof. Let nH be the number of heavy rows. Since each heavy row ai satisfies eq. (3), the sum of
their squared norms is at least nH · ‖A‖2F /(ε5m). On the other hand, the sum of their squared norms
equals ‖AH‖2F , which is at most ‖A‖2F . Thus nH ≤ ε5m The second part of the lemma follows
since the rows are hashed into m buckets uniformly at random, and ε5 � 1.

2



A.2.2 Medium Rows

Lemma A.5. With high probability, for every block B it holds that ‖BM‖2F ≤ ε6‖A‖2F , where
ε6 = log(n)/(mε5ε2ε

2
4).

Proof. Let nM be the total number of medium rows in A. We upper bound nM . On the one hand,
since every medium row does not satisfy eq. (2), we have

‖AM‖2F =
∑

ai∈AM

‖ai‖22 ≥ nM ·
ε2ε

2
4

m log n
· ‖A‖2F .

On the other hand, ‖AM‖2F ≤ ‖A‖2F . Together,

nM ≤
m log n

ε2ε24
.

The medium rows are assigned to the m blocks at random, so by standard balls-into-bins
bounds, the maximum number of medium rows in any block is with high probability at most
2 max{nM/m, logm}. Since m ≤ n, both terms in the max are upper bounded by log(n)/(ε2ε

2
4),

so the maximum number of medium rows in any block is at most 2 log(n)/(ε2ε
2
4). By the definition

of medium rows, the squared norm of each is at most ‖A‖2F /(ε5m), and the lemma follows.

A.2.3 Light Rows

We will use the notion of projection-cost preserving sketches (PCPs) [5, 3, 2, 6]. We use the additive
error variant, introduced in [1] (whereas the former mentioned works used the relative error variant).
Definition A.6. A matrix B with the same column dimension as A is called a (k, ε)-projection
cost preserving sketch (abbrev. (k, ε)-PCP) of A if for every orthogonal projection P onto a rank-k
space, it holds that

‖B(I − P )‖2F = ‖A(I − P )‖2F ± ε‖A‖2F .

The following theorem from [1] shows that a (k, ε)-PCP of a given n-row matrix can be constructed
using importance sampling over the rows, proportionally to their masses, as long as they are over-
sampled by a factor of Ω(k2 log(n)/ε2).
Theorem A.7 ([1]). There is a universal constant c > 0 such that the following holds. Let A be a
given matrix with n rows a1, . . . , an. Let p1, . . . , pn be a sequence that satisfies

pi ≥ min

{
1,
ck2 log(n/δ)

ε2
· ‖ai‖

2
2

‖A‖2F

}
.

Let B be a matrix that includes each row ai, multiplied by 1/
√
pi, with independent probability pi.

Then, with probability 1− δ, B is a (k, ε)-PCP of A.

As a consequence, in our setting we have the following.
Corollary A.8. Suppose ‖AL‖2F ≥ 1

3cε2‖A‖
2
F , where c is the constant from Theorem A.7. Then,

with high probability, for every block B it holds that
√
m ·BL is a (1, ε4)-PCP of AL.

Proof. Let B be a block. Let ai be a light row of A. Using eq. (2) and the assumption ‖AL‖2F ≥
1
3cε2‖A‖

2
F , we have,

c log(n3)

ε24
· ‖ai‖

2
2

‖AL‖2F
≤ 1

ε2
· log n

ε24
· ‖ai‖

2
2

‖A‖2F
≤ 1

m
.

Since each row of AL is included in BL with probability 1/m, we can view BL as constructed
by Theorem A.7 with pi = 1/m, for a (1, ε4)-PCP with failure probability δ = 1/n2. Therefore,√
m ·BL is a (1, ε4)-PCP of AL with probability 1− 1/n2. The corollary follows by a union bound

over all m ≤ n blocks.

Let us make the following small point about PCPs with additive error:
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Claim A.9. Suppose B is a (1, ε4)-PCP of A. Then, for every unit vector x, we have ‖Bx‖22 =
‖Ax‖22 ± 2ε4‖A‖2F .

Proof. The PCP property implies that
‖B(I − xxT )‖2F = ‖A(I − xxT )‖2F ± ε4‖A‖2F .

Applying the Pythagorean identity to both sides,
‖B‖2F − ‖BxxT ‖2F = ‖A‖2F − ‖AxxT ‖2F ± ε4‖A‖2F .

The PCP property also implies ‖B‖2F = (1 ± ε4)‖A‖2F , and plugging this above an rearranging
yields

‖BxxT ‖2F = ‖AxxT ‖2F ± 2ε4‖A‖2F .
The claim follows since ‖CxxT ‖2F = ‖Cx‖22 for every matrix C and unit direction x.

A.3 Recovering Top Directions

We call a block B heavy if it contains a heavy row, and light otherwise (so light blocks may contain
both light and medium rows). For a heavy row a, let Ba denote the heavy block that contains it.
Let wa, βa, ya denote its top left-singular vector, top singular value, and top right-singular vector
respectively.

The following lemma shows that for every heavy row a which is sufficiently well-correlated with
some vi (a top-k direction of A), the row space of the sketched matrix SA contains a vector (ya)
highly correlated with a (and thus well-correlated with vi).
Lemma A.10 (recovery from heavy rows). With high probability, the following holds for an appro-
priate choice of ε7 (cf. eq. (5)). For every heavy row a, for which there is i ∈ {1, . . . , k} such that
(aT vi)

2 ≥ ε7σ2
i , the row-space of SA contains ya. Furthermore, 1

‖a‖ · |y
T
a a| ≥ 1− ε9.

Proof. We start by lower-bounding the quantity ‖a‖22/‖Ba‖2F . We can break up ‖Ba‖2F into heavy,
medium and light rows, ‖Ba‖2F = ‖BHa ‖2F + ‖BMa ‖2F + ‖BLa ‖2F . By Lemma A.4, a is the only
heavy row in Ba, so ‖BHa ‖2F = ‖a‖22. Furthermore,

‖a‖22 ≥ (aT vi)
2 ≥ ε7σ2

i ≥ ε7 · εk‖A‖
2
F ,

having used eq. (1) for the last inequality. By Lemma A.5, ‖BMa ‖2F ≤ ε6‖A‖2F . By Corollary A.8,
‖BLa ‖2F ≤ 1

m (1 + ε4)‖AL‖2F ≤ 1
m (1 + ε4)‖A‖2F . Putting all the bounds together,

‖a‖22
‖Ba‖2F

= 1− 1
‖a‖22

‖BM
a ‖2F+‖BL

a ‖2F
+ 1
≥ 1− 1

(ε7·(ε/k)‖A‖2F
(ε6+

1
m (1+ε4))‖A‖2F

+ 1
.

By choosing

ε7 �
k

ε
·
(
ε6 +

1

m
(1 + ε4)

)
, (5)

we get ‖a‖22 ≥ (1−ε8)‖Ba‖2F , for ε8 of our choice. Since a is a row inBa, we have ‖Ba‖22 ≥ ‖a‖22,
and therefore,

β2
a = ‖Ba‖22 ≥ ‖a‖22 ≥ (1− ε8)‖Ba‖2F .

We sample wa from Ba with probability β2
a/‖Ba‖2F , which is at least 1− ε8. By Observation A.3,

this implies that the row-space of SA contains ya with that probability. By Lemma A.4 there are at
most ε5m heavy rows and thus at most that many heavy blocks, so we choose ε8 � 1/(ε5m), and
we can take a union bound and ensure the above happens with high probability for all heavy blocks
simultaneously.

For the second part of the lemma, let ea denote the standard basis vector corresponding to the index
of row a in Ba, so that aT = eTaBa. Since ‖eTaBa‖22 ≥ (1 − ε8)‖Ba‖2F , it is not hard to see that
|wTa ea| ≥ 1−3ε8 by decomposing ea over the orthonormal basis of left-singular vectors of Ba. But
wa = β−1a Baya, and therefore

1− 3ε8 ≤ β−1a |yTa BTa ea| = β−1a |yTa a| ≤
1

‖a‖
|yTa a|,

where the last inequality is since βa = ‖Ba‖2 ≥ ‖a‖. We can take ε9 = 3ε8.
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Let ε3 = ε2/(3c), where c is the constant from Theorem A.7.
Lemma A.11 (recovery from light rows). With high probability, the following holds. For every
i ∈ {1, . . . , k} such that ‖ALvi‖22 ≥ ε3σ

2
i , the projection of vi on the row-space of SA has length

at least 1− ε1.

Proof. First, note that if no i ∈ {1, . . . , k} satisfies ‖ALvi‖2 ≥ ε3‖A‖2F then the lemma holds
trivially, whereas otherwise, the conclusion in Corollary A.8 holds. Therefore we many assume the
latter henceforth.

The algorithm samples a left-singular vector from each block, thus adding the corresponding right-
singular vector to the row-space of SA (cf. Observation A.3). We restrict our attention to the light
blocks, and visualize sampling vectors from them one by one (in an arbitrary order).

Let W ⊂ Rd denote the subspace spanned by the right-singular vectors of the light blocks sampled
so far, together with all the heavy and medium rows in A. Let PW denote the orthogonal projection
on it, and P⊥W = I − PW the orthogonal projection orthogonal to it. Note that AP⊥W = ALP⊥W . If
‖PW vi‖22 ≥ 1− ε1, then we are done with vi (the conclusion of the lemma holds for it). Otherwise,
‖P⊥W vi‖22 > ε1, which we assume henceforth.

We have,

‖ALP⊥W vi‖22 = ‖AP⊥W vi‖22 = ‖
∑
j

ujσjv
T
j P
⊥
W vi‖22 =

∑
j

σ2
j (vTj P

⊥
W vi)

2 ≥ σ2
i (vTi P

⊥
W vi)

2 = σ2
i ‖P⊥W vi‖42.

Letting x = 1
‖P⊥

W vi‖2
P⊥W vi denote the unit direction along P⊥W vi, the above together with eq. (1)

implies
‖ALx‖22 ≥ σ2

i ‖P⊥W vi‖2 ≥
ε1 · ε
k
‖A‖2F .

Let B be the next light block we sample from. By Corollary A.8,
√
mBL is a (1, ε4)-PCP of AL,

which by Claim A.9 implies

m‖BLx‖22 ≥
(ε1 · ε

k
− 2ε4

)
· ‖AL‖2F .

Let {wj}, {βj}, {yj} denote the left-singular vectors, singular values, and right-singular vectors
respectively of B. Then, the expected projection length of x along the singular vector yj we sample
from B into SA is,∑

j

β2
j

‖B‖2F
· (yTj x)2 =

‖Bx‖22
‖B‖2F

≥ ‖BLx‖22
‖BL‖2F + ‖BM‖2F + ‖BH‖2F

.

The numerator ‖BLx‖22 is lower bounded by 1
m ( εk − 2ε4)‖A‖2F as shown above. For the denomina-

tor, we have

• ‖BL‖2F ≤ 1
m (1 + ε4)‖A‖2F by the PCP property of B.

• ‖BM‖2F ≤ ε6‖A‖2F by Lemma A.5.

• BH = 0 since B is a light block (no heavy rows).

Putting these together, the expected mass is at least
1
m (ε1 · εk − 2ε4)‖A‖2F

1
m (1 + ε4)‖A‖2F + ε6‖A‖2F

=
ε1 · εk − 2ε4

1 + ε4 +mε6
,

which is at least say Ω(ε1/(ε6m)) with an appropriate choice of ε4. Since the mass is bounded
between 0 and 1, by a Markov bound on 1 minus this expected mass, the sampled mass is at least
Ω(ε1/(ε6m)) with probability at least Ω(ε1/(ε6m)). So, after O(ε6m/ε1) steps in expectation we
gain Ω(ε1/(ε6m)) mass along the direction x. Recalling that x is the direction of P⊥W vi, we gain
Ω(ε1/(ε6m)) mass along vi, all in a direction orthogonal to what we had so far of vi. To ensure the
lemma, we need to repeat this up to O(1/ε1) times per direction for each of the k top directions, so
to ensure that we have enough light blocks we need m� kε6m/ε1. This can be achieved by letting
ε6 be appropriately small.
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A.4 Putting Everything Together

We now finish the proof of the theorem. Let i ∈ {1, . . . , k}. We only need to show the existence
in the row-space of SA of a rank-k space that forms a good low rank approximation of A (up to an
additive error of ε‖A‖2F ), since by Lemma A.2, SCW is guaranteed to compute an approximation at
least as good.

Let i ∈ {1, . . . , k}. If ‖ALvi‖ ≥ ε3σ
2
i , then by Lemma A.11, the row-space of SA contains a

direction fi such that fTi vi ≥ 1 − ε1. By including fi as one of the k direction in our low rank
approximation, we incur error at most ε · σ2

i from σ2
i . The total error incurred on all such vi’s

together is at thus most ε1‖A‖2F .

Next consider vi which has mass at least ε3 on the heavy rows, meaning ‖AHvi‖22 ≥ ε3σ2
i . The total

mass of vi on those heavy rows on which there is less than ε7 · σ2
i mass is at most nHε7 · σ2

i , where
nH is the number of heavy rows. By Lemma A.4 this is at most ε7 · ε5m · σ2

i ≤ ε7 · ε5m · ‖A‖2F ,
which is at most ε‖A‖2F for an appropriate choice of ε7, so we may ignore these heavy rows. For
the remaining heavy rows, by Lemma A.10 we recover a 1− ε9 fraction of the mass of vi on them,
thus incurring at most ε9‖A‖2F total additional error.

Finally we need to handle medium rows. Recall we use two partitions into blocks, one with m′ as
above, and one with m′′ = m′/ε10, where ε10 > log(n)/(ε2ε

2
4ε5). Since every medium row ai in

the first partition does not satisfy eq. (2), it satisfies

‖a‖22
‖A‖2F

>
ε2ε

2
4

m′ log n
,

and therefore by choice of ε10, it satisfies

‖a‖22
‖A‖2F

>
1

m′′ε5
,

rendering the row heavy in the latter row classification. This implies no row is medium is both block
partitions: if it is non-light with respect to m′, it is necessarily heavy with respect to m′′. Since we
recover a (1− ε)-fraction of the mass of each top-k direction from light and heavy rows, and every
row is either heavy or light in one of the two block partitions, we include a 1 − ε approximation
of each top-k direction in the row-space of SA, and those approximate directions yield a low rank
approximation of A inside that row-space, with additive error at most O(ε) · ‖A‖2F . Since SCW is
guaranteed to find a solution at least as good (Lemma A.2), the proof is complete.

B Proof of Theorem 2.2

The theorem is implicit in the original works that developed the SCW algorithm (in particular, the
correctness of the SCW algorithm was proved by designing a distribution over S that with high
probability satisfies conditions equivalent to the assumption of Theorem 2.2). Let us recap the proof
for completeness, mostly following the presentation from [7].

By Lemma A.2, in order to prove the theorem, it suffices to exhibit any B ∈ Rn×m of rank k such
that

‖A−BSA‖2F ≤ (1 +O(ε)) · ‖A−Ak‖2F . (6)

The lemma then guarantees that SCW returns an output at least as good as BSA.

The B we choose is the following:

B = Uk(U>k S
>SUk)−1U>k S

>.

Our choice requires U>k S
>SUk to be invertible; we will later show this indeed follows from

the conditions of the theorem. For brevity we will denote Z = (U>k S
>SUk)−1, rendering

B = UkZU
>
k S
>.

In what follows we let r denote the rank ofA. We now prove eq. (6). We use the Pythagorean identity
and decompose the left-hand side ‖A − BSA‖2F into the sum of projections onto and against the
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top-k column-space of A. The projection matrix onto is UkU>k and the projection matrix against is
Ur−kU

>
r−k, thus:

‖BSA−A‖2F = ‖UkZU>k S>SA−A‖2F
= ‖UkU>k (UkZU

>
k S
>SA−A)‖2F + ‖Ur−kU>r−k(UkZU

>
k S
>SA−A)‖2F

= ‖UkZU>k S>SA−Ak‖2F + ‖A−Ak‖2F .
Therefore in order to prove eq. (6) it suffices to prove:

‖UkZU>k S>SA−Ak‖2F ≤ O(ε) · ‖A−Ak‖2F . (7)
Recall that the SVD of A is A = UΣV >, and let us decompose it into its top-k and bottom-(r − k)
part as A = UkΣkV

>
k + Ur−kΣr−kV

>
r−k. Now we have:

‖UkZU>k S>SA−Ak‖2F = ‖UkZU>k S>SAk + UkZU
>
k S
>S(A−Ak)−Ak‖2F

= ‖UkZU>k S>S(A−Ak)‖2F
≤ ‖Uk‖22 · ‖Z‖22 · ‖U>k S>S(A−Ak)‖2F
= ‖Z‖22 · ‖U>k S>S(A−Ak)‖2F ,

where:

• The first equality is just by writing A = Ak + (A−Ak).

• The second equality is by observing that since Z = (U>k S
>SUk)−1,

UkZU
>
k S
>SAk = UkZU

>
k S
>SUkΣkV

>
k = UkΣkV

>
k = Ak.

• The third inequality is since ‖XY ‖F ≤ ‖X‖2 · ‖Y ‖F for any matrices X,Y .
• The fourth equality is since Uk has orthonormal columns and thus ‖Uk‖2 = 1.

Now we use the premise of the theorem, which we recall is
‖U>k S>SU − I0‖2F ≤ ε.

By the column-wise additivity of the squared Frobenius norm, this implies both of the following:

1. ‖U>k S>SUk − I‖2F ≤ ε ≤ 1/9. This implies ‖U>k S>SUk − I‖2 ≤ 1/3, which in turn
implies that all eigenvalues of U>k S

>SUk are between 2/3 and 4/3. (Note this implies
that U>k S

>SUk is invertible, as promised earlier for our choice of B.) Equivalently, all
eigenvalues of Z = (U>k S

>SUk)−1 are between 3/4 and 3/2. Thus, ‖Z‖22 ≤ 9/4.

2. ‖U>k S>SUr−k‖2F ≤ ε. This yields,

‖U>k S>S(A−Ak)‖2F = ‖U>k S>SUr−kΣr−kV
>
r−k‖2F

≤ ‖U>k S>SUr−k‖2F · ‖Σr−kV >r−k‖22
≤ ε · ‖A−Ak‖22
≤ ε · ‖A−Ak‖2F ,

where we have observed that ‖Σr−kV >r−k‖2 is the (k+1)th singular value ofA, also written
as ‖A−Ak‖2.

Plugging the bounds ‖Z‖22 ≤ 9/4 and ‖U>k S>S(A−Ak)‖2F ≤ ε · ‖A−Ak‖2F above yields

‖UkZU>k S>SA−Ak‖2F ≤ 9
4ε · ‖A−Ak‖

2
F ,

proving eq. (7) and thus eq. (6), finishing the proof of the theorem.

C Additional Experimental Results

Sparsity. We evaluate the performance of SCW, 1Shot2Vec and FewShotSGD when the sparsity
of the sketching matrix is increased. In particular, we evaluate each method when the number of
non-zero entries in each column of the sketching matrix is 1 (as in the main text), and when it is 8.
In both cases, the locations of the non-zero entries are chosen uniformly at random in each column,
independently across columns. The results are give in Table 1.
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Table 1: Error attained with sparsities 1 and 8 (denoted by the suffixes “–s1” and “–s8” respectively).

Dataset SCW–s1 SCW–s8 1Shot2Vec–s1 1Shot2Vec–s8 FewShotSGD–s1 FewShotSGD–s8

Eagle 2.2 1.94 1.09 1.06 0.64 0.54
Logo 0.47 0.42 0.21 0.26 0.13 0.1

Table 2: Evaluation of learned LRA in the transfer learning and mixed learning settings.

Category SCW FewShotSGD Transfer Mixed

Panda 8.39 4.34 5.21 5.04
Okapi 7.22 5.14 5.26 5.41

Transfer and mixed learning. We evaluate FewShotSGD in the transfer and mixed learning set-
tings. Suppose we are given two datasets D1 and D2. In the transfer learning setting, we learn the
sketching matrix from the training set of D2, and evaluate it on the test set of D1. In the mixed
learning setting, we learn the sketching matrix on the combined training sets of D1 and D2, and
evaluate it on the test set of D1.

The results given in Table 2 are evaluated on the Panda and Okapi categories of the Caltech-101
image dataset [4]. They show that on one of the categories (Okapi), transfer and mixed learning
perform about as well as direct learning (i.e., learning on the training set of D1 and evaluating on
the test set of D1), while on the other class (Panda), transfer and mixed learning perform better than
the oblivious baseline SCW, but not as well as direct learning. We have also run these experiments
on the Eagle and Logo datasets. The results (not included here) showed that on Logo, transfer and
mixed learning performed no better than the oblivious baseline SCW, while on Eagle, transfer and
mixed learning performed somewhat better than SCW, but not as well as direct learning (similar to
the results for Okapi). The results reported here use the Caltech-101 dataset instead of Eagle and
Logo, based on the premise that images from two semantically related categories of the same dataset
might be more amenable to transfer and mixed learning than two unrelated videos.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] see line 102 and elaboration in
line 340.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...
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you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots,

if applicable? [N/A] We have not used crowdsourcing nor conducted research with
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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spent on participant compensation? [N/A]
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