
Supplementary Material

7 Elements of Group and Representation Theory

In this section, we provide a brief introduction to the concepts from Group Theory which we need in
our derivations.
Definition 7.1 (Group). A group is a pair (G, ·) containing a set G and a binary operation · : G⇥G !
G, (h, g) 7! h · g which satisfies the group axioms:

• Associativity: 8a, b, c 2 G a · (b · c) = (a · b) · c

• Identity: 9e 2 G : 8g 2 G g · e = e · g = g

• Inverse: 8g 2 G 9g�1 2 G : g · g�1 = g�1 · g = e

The operation · is the group law of G.

The inverse elements g�1 of an element g, and the identity element e are unique. In addition, if
the group law is also commutative, the group G is an abelian group. To simplify the notation, we
commonly write ab instead of a · b. It is also common to denote the group (G, ·) just with the name
of its underlying set G.

The order of a group G is the cardinality of its set and is indicated by |G|. A group G is finite when
|G| 2 N, i.e., when it has a finite number of elements. A compact group is a group that is also a
compact topological space with continuous group operation.
Definition 7.2 (Group Action). Given a group G, its action on a set X is a map . : G ⇥ X !
X , (g, x) 7! g.x which satisfies the axioms:

• identity: 8x 2 X e.x = x

• compatibility: 8a, b 2 G 8x 2 X a.(b.x) = (ab).x

A simple example of group action is the group law itself · : G⇥G ! G which defines an action of G
on its own elements (X = G). Another important action is the one defined on signals overs the group
G. Given a signal x : G ! R, the action of an element g 2 G maps x 7! g.x, [g.x](h) := x(g�1h).

The orbit of x 2 X through G is the set G.x := {g.x|g 2 G}. The orbits of the elements in X form
a partition of X . By considering the equivalence relation 8x, y 2 X x ⇠G y () x 2 G.y (or,
equivalently, y 2 G.x), one can define the quotient space X/G := {G.x|x 2 X}, i.e. the set of all
different orbits.
Definition 7.3 (Subgroup). Given a group (G, ·), a non-empty subset H ✓ G is a subgroup of G if
it forms a group (H, ·) under the same group law, restricted to the elements of H . This is usually
denoted as H  G.

H is a subgroup of G if and only if the subset H is closed under the group law and the inverse
operations, i.e.:

• 8a, b 2 H a · b 2 H

• 8h 2 H h�1 2 H

Note that a subgroup H needs to contain the identity element e 2 G.

Linear representations
Definition 7.4 (Linear representation). Given a group G and a vector space V , a linear representation
of G is a homomorphism ⇢ : G ! GL(V ) which associates to each element of g 2 G an element of
general linear group GL(V ), i.e. an invertible matrix acting on V , such that the condition below is
satisfied:

8g, h 2 G, ⇢(gh) = ⇢(g)⇢(h).
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The most simple representation is the trivial representation  : G ! R, g 7! 1, mapping all element
to the multiplicative identity 1 2 R. The common 2-dimensional rotation matrices are an example of
representation on R

2 of the group SO(2).

For a finite group G, an important representation is the regular representation ⇢reg. It acts on the
space V = R

|G| of vectors representing signals over the group G. The regular representation ⇢reg(g)
of an element g 2 G is a |G| ⇥ |G| matrix which permutes the entries of vectors x 2 R

|G|. Each
vector in R

|G| represents a function over the group, x : G ! R, with x(gi) being i-th entries of
x. Then, the group action ⇢reg(g)x represents the function g.x, i.e. the signal x shifted by g. In
other words, ⇢reg(g) is a permutation matrix moving the i-th entry of x to the j-th entry such that
gj = ggi. Regular representations are of high importance, because they describe the features of group
convolution networks.

Given two representations ⇢1 : G ! GL(Rn1) and ⇢2 : G ! GL(Rn2), their direct sum ⇢1 � ⇢2 :
G ! GL(Rn1+n2) is a representation obtained by stacking the two representations as follow:

(⇢1 � ⇢2)(g) =


⇢1(g) 0
0 ⇢2(g)

�
.

Note that this representation acts on R
n1+n2 which contains the concatenation of the vectors in R

n1

and R
n2 .

Fourier Transform Fourier analysis can be generalized for square integrable complex functions
f : G ! C defined over a compact group G. Fourier components in this case are a particular set of
complex representations of G called irreducible representations (or irreps) of G. Irreps are defined
as representation with no G�invariant subspaces (see Serre [1977] for rigorous details). The key role
of irreps is clear from the following theorem.
Theorem 7.5 (Maschke’s Theorem). Every representation of a finite group G on a nonzero, finite

dimensional complex vector space is a direct sum of irreducible representations.

Maschke’s theorem can be generalized to compact groups. Irreps are, therefore, simple blocks for
decomposing representations. Irreps are denoted by  with dimension dim , namely,  : G !
GL(Cdim )} . The set of irreps is denoted by Ĝ = { : G ! GL(Cdim )}. The matrix coefficients
of the irreps (i.e. each entry  ij : G ! C of each irrep  , interpreted as a function over G) form
an orthogonal basis for square integrable functions over G. Therefore, we can project a function
f : G ! C on this basis and get the Fourier components as:

f̂( ) :=

Z

g2G

f(g) (g) dµ(g),

where µ is the Haar measure over G. Note that f̂( ) is a dim ⇥ dim matrix containing a coefficient
for each entry of  . The inverse Fourier transform is defined as:

f(g) =
X

 2Ĝ

dim Tr(f̂( ) (g�1))

Note that the trace is equivalent to computing the elementwise product between the matrices f̂( )
and  (g�1)T =  (g) and then summing over all entries.

If G is the cyclic group, G = CN , one recovers the usual discrete Fourier transform, because the
complex irrep of CN are 1-dimensional and correspond to the the complex exponentials up to order
N � 1. When G is finite, the number of Fourier coefficients

P
 2Ĝ

dim2
 

is equal to |G|. Indeed, the
Fourier transform of a signal x : G ! C can be interpreted as a |G| ⇥ |G| change of basis which
maps the vector x 2 C

|G| representing x in the group domain to x̂ 2 C
|G| containing all the Fourier

coefficients.

Given two signals w, x : G ! C, the following property (similar to the common Fourier transform)
holds:

cg.x( ) =  (g)x̂( ) (12)
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Eq. 12 guarantees that a transformation by g of x does not mix the coefficients associated to different
irreps. Moreover, the coefficients associated with the irrep  are mixed precisely by the matrix  (g),
i.e. they transform according to  . Indeed, if all the coefficients associated to the same irrep are
grouped together, one can decompose the regular representation ⇢reg of G in a direct sum of the irreps
of G, up to the change of basis B as above. More precisely, the irreps decomposition of ⇢reg contains
dim copies of  , one for each column5 of f̂( ), i.e.:

⇢reg(g) = B�1
M

 2Ĝ

0

B@ (g)�  (g)� . . .| {z }
dim times

1

CAB .

This is the key insight used in the analysis of group convolution in this work.

Group Convolution Given a space X associated with the action of a group G and an invariant
inner product h·, ·i : X ⇥X ! R, we define the group convolution w~G x : G ! R of two elements
w, x 2 X as

8g 2 G (w ~G x)(g) := hg.w, xi . (13)
Group convolution satisfies the following equality:

\w ~G x( ) = x̂( )ŵ( )T (14)

The classical definition of group convolution between two signals w, x : G ! R is a special case of
the one above in the case X is the space of square integrable functions over G and the invariant inner
product is defined as:

hw, xi :=
Z

g2G

w(g)x(g) dµ(g)

where µ : G ! R is a Haar measure over G. The group convolution, then, becomes

(w ~G x)(g) :=

Z

h2G

w(g�1h)x(h) dµ(h) =

Z

h2G

w(h)x(g.h) dµ(h) .

Note that what we defined is technically a group cross-correlation, and so it differs from the usual
definitions of convolution over groups. We still refer to is as group convolution to follow the common
terminology in the deep learning literature.

When G is finite, the Haar measure is the counting measure and the integral becomes a sum. Fix
an ordering of group elements as (g0, g1, . . . , gi, . . . , g|G|�1) with g0 = e the identity element. The
signals x,w : G ! R can be stored as |G| dimensional vectors x,w 2 R

|G|, where the i-th entry
contains the value of the function evaluated on gi:

x =

0

B@
x(g0)

...
x(g|G|�1)

1

CA , w =

0

B@
w(g0)

...
w(g|G|�1)

1

CA . (15)

The same holds for the output signal w ~G x. Define matrix W as follows:

W =

0

BBB@

w(g0) . . . w(g|G|�1)
w(g�1

1 g0) . . . w(g�1
1 g|G|�1)

...
. . .

...
w(g�1

|G|�1g0) . . . w(g�1
|G|�1g|G|�1)

1

CCCA
(16)

Then, the group convolution can then be expressed as a matrix multiplication between the vector x
and a matrix W containing at position (i, j) the entry of w

g
�1
i

gj
:

(w ~G h.x)(gi) = (Wx)[i] (17)
The matrix W contains permuted copies of its first row, where the respective permutation matrix
is determined by group actions. Assuming g0 = e is the identity, the first row of W contains wT

while the i-th row contains (gi.w)T , i.e. the vector representing the signal gi.w. The matrix W is a
G-circulant matrix.

5In Eq. 12,  (g) acts on each column of the matrix f̂( ) independently.
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Equivariance. For two vector spaces V and V 0 with group representations respectively ⇢ and ⇢0,
the linear transformation T : V 0 ! V is equivariant if

8g 2 G : T � ⇢0(g) = ⇢(g) � T.

Now, since an invariant inner product satisfies hg.w, g.xi = hw, xi for any element g 2 G, one can
show that the group convolution above is equivariant:

(w ~G h.x)(g) = hg.w, h.xi
= h(h�1g).w, (h�1h).xi
= h(h�1g).w, xi
= (w ~G x)(h�1g) .

By definition of action of G on signals over G, it follows that (w ~G h.x) = h.(w ~G x).

We finish the part by presenting Schur’s lemma, [Serre, 1977, Section 2.2] which helps characterizing
equivariant maps.
Theorem 7.6 (Schur’s lemma). Let ⇢1 and ⇢2 be irreducible representations of G respectively on

vector spaces V1 and V2. Suppose that the linear transformation T : V1 ! V2 is equivariant. Then:

1. If ⇢1 and ⇢2 are non-isomorphic, then T = 0.

2. If V1 = V2 and ⇢1 = ⇢2, then T is a homothety, i.e, a scalar multiple of identity.

Equivariant neural networks. To build equivariant networks, without loss of generality, we
assume the feature x 2 R

cl of the neural network at layer l transforms according to a generic
representation cl-dimensional representation ⇢l and that it is decomposed6 in a number of subvectors
x̂i 2 R

cl,i , with
P

i
cl,i = cl, each transforming according to an irrep  i : G ! GL(Ccl,i). To see

this more precisely, consider the layer l given by the matrix Wl 2 R
cl⇥cl�1 . The group representation

is ⇢l acting on R
cl . The equivariance relation is given by:

Wl⇢l�1(h) = ⇢l(h)Wl .

We first decompose representations using Maschke’s theorem. The representation ⇢l can be written
direct sum of irreps as

⇢l = Ql

0

@
M

 

ml, M

i=1

 

1

AQ�1
l

= Ql ⇥ block-diagonal

0

BBBBBB@
 2 Ĝ :

0

B@
 . . . 0
...

. . .
...

0 . . .  

1

CA

| {z }
ml, blocks

1

CCCCCCA
⇥Q�1

l

The multiplicity of the irrep  in ⇢l is ml, . Using cWl = Q�1
l

WlQl�1, we have

cWl

0

@
M

 

ml�1, M

i=1

 

1

A =

0

@
M

 

ml, M

i=1

 

1

A cWl.

Since
⇣L

 

Lml, 

i=1  
⌘

is block diagonal, we can partition cWl similarly with the sub-block (j, i) of

blocks relating  1 to  2, denoted by cWl( 2, j, 1, i). The block relates  1 to  2 as:

cWl( 2, j, 1, i) 1 =  2
cWl( 2, j, 1, i).

6The decomposition can include an orthogonal change of basis Q.
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Figure 6: The block diagonal structure in Wl⇢l�1(h) = ⇢l(h)Wl

This setup follows the premise of Schur’s lemma, exept that in practice, a neural network uses real
valued features and weights. Hence, we need to consider real irreps, which we denote with { i}.
This requires some adaptation to the Fourier analysis and Schur’s lemma. This is explained more
precisely in Supplementary 8. If  1 6=  2, the block needs to be zero. Otherwise, each block W
equivariant to irrep  can be expressed as

W =

c X

k=1

wkB ,k

where matrices B ,k are given in Supplementary 8, c is either 1,2 or 4, and {wk}
c 

k=1 are the c 
free parameters. Therefore, each block cWl( , j, , i) is characterized by c free parameters.

Note that, the main difference of real irreps is that only the matrix coefficients in a fraction 1
c 

of the
columns of  are part of the orthogonal basis for real functions on G, while the other coefficients are
redundant. It follows that, when computing the Fourier transform of a function x : G ! R, only the
first dim 

c 
columns of x̂( ) needs to be considered and, therefore, the regular representation of H

only contains dim 
c 

copies of  .

Group convolutional networks. Group convolutional networks is an important special case of the
setup presented above. Group convolution based architectures of Cohen and Welling [2016a] can be
obtained by choosing multiple copies of regular representations at each layer.

Consider an input vector space X associated with an action H ⇥ X ! X of H . We use group
convolution as defined in eq. 13. Each convolutional kernel can be parametrized by a kernel w, and
its action is represented by a group circulant matrix W as in eq. 16.

This is the building blocks of the linear layers of group equivariant networks. Each intermediate
convolutional layer maps a feature space with cl�1 channels of dimension equal to group size |H| to
a new feature space with cl channels of dimension |H|. Any such layer can be visualized as follows:

0

BBB@

y1 2 R
|H|

y2 2 R
|H|

...
ycl

2 R
|H|

1

CCCA
=

0

BBB@

Wl,(1,1) Wl,(2,1) . . . Wl,(cl�1,1)

Wl,(1,2) Wl,(2,2) . . . Wl,(cl�1,2)

...
. . .

...
Wl,(1,cl) Wl,(2,cl) . . . Wl,(cl�1,cl)

1

CCCA

| {z }
Wl

·

0

BBB@

x1 2 R
|H|

x2 2 R
|H|

...
xcl�1 2 R

|H|

1

CCCA

| {z }
x

(18)

Here, any Wl,(i,j) 2 R
|H|⇥|H| block an group circulant matrix corresponding to H , which encodes a

H-convolution parametrised by a filter wl,i,j 2 R
|H|. Note that the output of the l-th layer is seen

as a |H| ⇥ cl signal, i.e. it stores a different value (w1 ~H x)(h, i) for each group element h and
channel i.

Usually, the group action on the input space X is given by the task. The first linear layer transforms
the input space to multiple signals (channels) over H . From that moment, we can use the convolution
in Eq. 13 in the following layers.

Finally, the last layer produces an invariant output for each class. This can be interpreted as a group
convolution with constant filters or, equivalently, as an average pooling within the |H| channels in
each block to produce a cL�1 dimensional invariant vector followed by a linear classifier.
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The resulting architecture can be written as a MLP with structured weights similar to Wood and
Shawe-Taylor [1996], Ravanbakhsh [2020]. Such network, denoted by f(x;W), is an MLP with L
layers, input x and the set of effective parameters W. The l-th layer consists of a linear map Wl from
a vector space Vl�1 to another vector space Vl followed by an activation function �l(·). The network
output at the layer l, denoted by fl(x;W), is given by fl(x;W) = �l(Wlfl�1(x;W)).

This design guarantees that each linear layer commutes with the group action. If also all non-linearities
commute with it, i.e.

�l(Wlh.x) = �l(h.(Wlx)) = h.�l(Wlx) ,

it follows that the output of the model is invariant to H .

Note that the number of effective channels after the l-th hidden layer is |H| cl but its number of
trainable parameters is |H| clcl�1. In total, if number of channels across layers are all equal to c, then
the number trainable parameters is equal to O

�
L|H|c2

�
. In our experiments, we always consider

fixed architectures where the number of effective channels is kept constant when changing the group,
i.e. different group choices only affect the number of learnable parameters and the structure of the
weight matrices but not their size and, therefore, not the computational cost of the model.

Groups considered in this work. In the experiments, we consider 4 different families of compact
groups. The special orthogonal group SO(2) is the group of all planar rotations. It is an abelian
(commutative) group and contains any rotation by an angle ✓ 2 [0, 2⇡). SO(2) contains infinite
elements. The orthogonal group O(2) is the group of all planar rotations and reflections. Indeed,
SO(2) is a subgroup of O(2). The elements of O(2) are planar rotations, or planar rotations combined
with a reflection along a fixed axis. It is not commutative and contains infinite elements. The cyclic
group CN of order N is a finite group containing the N rotations by angles multiple of 2⇡

N
. It is a

subgroup of both SO(2) and O(2) and it is abelian. Finally, the dihedral group DN is a finite group
containing 2N elements. It contains the N rotations in CN and but also their composition with a
reflection along a fixed axis. It is a subgroup of O(2) and it is not commutative. If G = CN , the
matrix W is a circulant matrix in the classical sense, where each row is a cyclic shift by one step of
the previous one.

8 Schur’s Lemma for intertwiners between real representations

Given two complex irreps �i : G ! GL(Cdim i ) and �j : G ! GL(Cdim�j ), Schur’s Lemma
guarantees that the set of equivariant matrices (intertwiners)

HomG,C( i, j) := {M | M i(g) =  j(g)M 8g 2 G}
is either zero dimensional containing only zero function (if  i �  j), or 1-dimensional and contains
only scalar multiples of the identity (if  i =  j), i.e.

8g 2 G M (g) =  (g)M () 9� 2 C s.t. M = �I,

where ⇠= denotes isomorphism. In other words, there is a change of basis matrix such that the
two representations are equal. The space HomG,C( i, j) is called the space of homomorphisms.
The subscript C indicates the complex-valued intertwiners are intended. This lemma is the core of
equivariant (complex valued) linear layers and provides a way to parametrize the space of all such
operations.

In this section, we discuss Schur’s lemma for real irreps and characterize the space of homomorphisms
HomG,R( i, j) for real valued representations. We still use � to denote complex irreps and will
refer to real irreps with  . First we note that if  i �  j are different real irreps, by using the complex
version of Schur’s Lemma, one can show that HomG,R( i, j) still contains only the zero matrix.

When we have  i
⇠=  j , the derivations are more tricky. For this cases,  i =  j =  , we have to

consider HomG,R( , ). For complex-valued representations, as seen above from Schur’s lemma,
this space is one dimensional spanned by the identity matrix I . However, for real representations,
this space can be either 1, 2 or 4 dimensional, corresponding to three types: real R, complex C and
quanternion H (see [Cesa et al., 2022, Section C] for accessible explanations). Based on this, any real
irrep  can be classified in three categories:

• real-type: 9 real :  ⇠= � ⇠= �
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• complex-type: 9 real :  = �R ⇠= � � �, with � � �

• quaternionic-type: 9 real :  = �R ⇠= � � � ⇠= � � �, as � ⇠= �

where � is a representation such that � : g 7! �(g) and �(g) is the complex-conjugation of the entries
of the matrix �(g). We also have defined

�R(g) :=


Re (�(g)) �Im (�(g))
Im (�(g)) Re (�(g))

�
2 R

2d⇥2d

where Re (X) (respectively, Im (X)) is a matrix containing the real (respectively, imaginary) part
of the complex entries of the matrix X , i.e.:

Re (X) =
1

2
(X + lineX)

Im (X) = �i
1

2

�
X �X

�

X = Re (X) + iIm (X)

Using these definitions, one can also verify that for any d-dimensional complex irrep �:

�R(g) = Dd


�(g) 0
0 �(g)

�
D⇤

d
= Dd(�(g)� �(g))D⇤

d

where

Dd =
1p
2


iId �iId
Id Id

�

where Id is the d⇥d identity matrix and ⇤ indicates the conjugate transpose. Note that Dd is a unitary
matrix.

We can then distinguish three cases.

Real type If  ⇠= � ⇠= �, we have  = A�A⇤, with A unitary matrix (A�1 = A⇤). An intertwiner
matrix M satisfies M (g) =  (g)M . It can be seen that the matrix M̃ := A⇤MA, M̃ is an
intertwiner of �:

M̃�(g) = A⇤MA�(g) = A⇤M (g)A = A⇤ (g)MA = �(g)A⇤MA = �(g)M̃,

and, therefore, has form �I for � 2 C from complex-valued Schur’s lemma. It follows that M = �I ,
allowing only real intertwiners,

MR = �I

with � 2 R.

Complex type If  ⇠= � � �, we have  = Dd(� � �)D⇤
d

with d being the dimension of irrep �.
If M satisfies M (g) =  (g)M , then the matrix M̃ = D⇤

d
MDd is an intertwiner of � � �:

M̃(�(g)� �(g)) = D⇤
d
MDd(�(g)� �(g))

= D⇤
d
M Dd

= D⇤
d
MDd(�(g)� �(g)) = (�(g)� �(g))M̃.

We can apply complex-valued Schur’s lemma again. The matrix M̃ needs to have form ↵I � �I
for ↵,� 2 C. Re-applying the change of basis Dd and requiring only real entries, one finds that M
needs to have the following form:

MC =


aId �bId
bId aId

�

with a, b 2 R.
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Quaternionic type If  ⇠= � � �, there is a basis where  = Dd(� � �)D⇤
d

and � = TT

d
�Td

with Td =


0 �Id/2

Id/2 0

�
, that is  = Dd(Id � TT

d
)(�� �)(Id � Td)D⇤

d
. If M satisfies M (g) =

 (g)M , we define M̃ = D⇤
d
(Id � Td)M(Id � TT

d
)Dd, intertwiner of � � �. M̃ needs to have form

M̃ =


↵Id �Id
�Id �Id

�
for ↵,�, �, � 2 C. Re-applying the change of basis Dd(Id � TT

d
) and requiring

only real entries, one can show that M needs to have the following form:

MH =


aId + cTd �bId + dTd

bId + dTd aId � cTd

�
=

2

64

aId �cId �bId �dId
cId aId dId �bId
bId �dId aId cId
dId bId �cId aId

3

75 =

2

64

a �c �b �d
c a d �b
b �d a c
d b �c a

3

75⌦ Id

with a, b, c, d 2 R.

Application to equivariant networks. Real-valued version of Schur’s lemma characterizes equiv-
ariant kernel W parametrized by MR,MC,MH. The columns of W are all orthogonal to each other
and each contains only one copy of each of its c free parameters, where

c =

8
<

:

1 real type
2 complex type
4 quaternionic type

It follows that all columns have the same norm, equal to the sum of the c free parameters squared,
and therefore that W is a scalar multiple of an orthonormal matrix (with scale equal to the norm of
any of its columns). The matrix W satisfies the following property:

kWxk22 =
1

dim 

kW k2
F
kxk22 .

From the above identity, it follows that the spectral norm of W is

kW k2 =
1p
dim 

kW k
F

(19)

For any irrep  , we can express any matrix W equivariant to  as

W =

c X

k=1

wkB ,k

where {wk}
c 

k=1 are the c free parameters. When  has real type, c = 1 and B ,1 = I is the
identity matrix. When  has complex type, c = 2 and B ,1 = I2d is the identity matrix while

B ,2 =


0 �Id
Id 0

�
, where d = dim /2. Finally, if  has quaternionic type, c = 4

B ,1 = I4d,B ,2 =

2

64

0 0 �Id 0
0 0 0 �Id
Id 0 0 0
0 Id 0 0

3

75 , B ,3 =

2

64

0 �Id 0 0
Id 0 0 0
0 0 0 Id
0 0 �Id 0

3

75 , B ,4 =

2

64

0 0 0 �Id
0 0 Id 0
0 �Id 0 0
Id 0 0 0

3

75

where d = dim /4. Note that, for any  and 1  k  c , B ,k is an orthonormal matrix.

9 Proof of Theorem 4.1

In this section, we provide the detailed proof of Theorem 4.1. The complete version of the theorem,
including all consants and dependences, is given below.
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Theorem 9.1 (Homogeneous Bounds for Equivariant Networks). For any equivariant network, with

probability 1� �, we have:

L(fW)  L̂�(fW)+ (20)
vuuuut

32e4B2�2

�2m⌘

 
LX

l=1

p
M(l, ⌘)

!2
0

B@
X

l

P
 ,i,j

���cWl( , i, j)
���
2

F

/ dim 

kWlk22

1

CA+
log(⇠(m)Lm1+1/2L

�
)

2�2m

(21)

where � = (
Q

l
kWlk2), and

M(l, ⌘) := log

 P
L

l=1

P
 
ml, 

1� ⌘

!
max
 

(5ml�1, ml, c ) . (22)

9.1 Proof of Lemma 4.3: Perturbation Analysis

The proof of perturbation bound uses standard inequalities and given in Neyshabur et al. [2018]. We
derive a bound on the spectral norm of an equivariant matrix Wl.

kWlxk22 =
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���
2

2
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2

=
X

 

ml, X

j=1

�����
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
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���
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2
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2

F

kbx( , i)k22

=
X

 

ml�1, X
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0
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1
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ml, X
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���cWl( , j, i)
���
2

F

1

A kbx( , i)k22


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1iml�1, 

ml�1, 
1
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ml, X
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���
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A kxk22

where (a) follows from Cauchy-Schwarz inequality, and (b) from eq. 19, namely that for equivariant
matrices, we have:

kW k2 =
1p
dim 

kW k
F

(23)

Therefore, we get:

kWlk2 

vuutmax
 

max
1iml�1, 

ml�1, 
1

dim 

ml, X

j=1

���cWl( , j, i)
���
2

F

(24)
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9.2 Proofs of Lemma 4.4 and Tail Bound for Spectral Norms of Equivariant Kernels

Proof. Recall that the matrix bUl( , j, i) has only c learnable entries and that 1
dim 

��� bUl( , j, i)
���
2

F

is equal to the sum of the squares (see Supplementary 8):

1

dim 

��� bUl( , j, i)
���
2

F

=

c X

k=1

��[ul,i,j( )k
��2 .

To find tail bounds on the spectral norm, note that
Pml, 

j=1

P
k

��[ul,i,j( )k
��2 is a �2-random variable

with ml, ⇥ c degrees of freedom. We will use the following inequality for bounding the tail.

Lemma 9.2 ([Laurent and Massart, 2000, Lemma 1.]). Let X1, . . . , Xn be i.i.d. Gaussian random

variable with zero mean and variance 1. For any vector a 2 R
n

, we have

P(
nX

i=1

ai(X
2
i
� 1) � 2 kak2

p
x+ 2 kak1 x)  exp(�x). (25)

Then, using this theorem, we have:
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Using the union bound:
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p
t+ 2�2t
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We can combine this bound with the bound on the spectral norm in Supplementary 9.1 to obtain a
bound similar to the one in Lemma 4.4:

P

✓
kUlk2 � �

r
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ml�1, 

⇣
ml, c + 2ml, c 

p
t+ 2t

⌘◆
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0

@
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A e�t (26)

Using 5ml�1, ml, c t � ml�1, (ml, c + 2ml, c 
p
t+ 2t):
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Using an union bound over all layers, one finds that by choosing t = log
⇣
2
P

l

P
 
ml, 

⌘
, with

probability at least 1
2 the following inequality holds for every layer l 2 [L]:

kUlk2 < �
q
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5ml�1, ml, c 
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25



9.3 A KL Divergence Identity

We use the following lemma later in context of PAC-Bayes bounds.
Lemma 9.3. For any two probability measures µ, ⇢ defined on the probability space (⌦,F), assume

that µ|A is defined as the normalized probability measure restricted to the set A 2 F . Then we have:

D(µk⇢) = µ(A)D(µ|Ak⇢) + µ(Ac)D
�
µ|Ack⇢

�
+ hb(µ(A)), (29)

where hb(·) is the binary entropy defined as hb(p) = �p log p� (1� p) log(1� p).

The proof of this lemma follows from standard integral manipulations.

9.4 PAC-Bayesian Generalization Bound - Derandomization Technique

The PAC-Bayesian generalization lemma of 4.2 provides a bound on the generalization error of
randomized classifiers drawn from the posterior distribution Q. To obtain a bound that holds for
individual hypothesis, we need to de-randomize the bound. The following lemma, a reformulation of
Neyshabur et al. [2018], provides a way of achieving this goal.
Lemma 9.4. Let P be a finite set of priors P over the hypothesis space. Let the set Sh0 be defined

as:

Sh0 = {h 2 H : kh� h0k1  �/4}.
If the hypothesis after training is chosen using the posterior Q, set ⌘ := Q(Sh0). Then with

probability 1� �, we have for all Q:

L(h0)  L̂�(h0) +

s
minP2P D(QkP ) + ⌘ log(⇠(m)|P|/�)

2m⌘
, (30)

where ⇠(m) :=
P

m

k=0

�
m

k

�
(k/m)k(1� k/m)m�k

.

Proof. PAC-Bayesian bound in Lemma 4.2 holds for a single P . Taking the union bound over all
P 2 P , we can see that with probability at least 1� |P| � for all P 2 P and for all Q over H, the
bound in Lemma 4.2 holds. Choose the margin loss eq. 1 with margin �/2 as the loss function. After
replacing � with �/|P|, the following inequality holds with probability 1� �:

L�/2(Q)  L̂�/2(Q) +

r
minP2P D(QkP ) + log(⇠(m)|P|/�)

2m
. (31)

For each Q, define Q̂ as:

Q̂(h) :=

(
1
⌘
Q(h) h 2 Sh0

0 otherwise.
(32)

Since eq. 31 holds for all Q, we can use Q̂ in the bound. Let h be drawn from Q̂. Then h belongs to
Sh0 . Knowing that, we follow the argument we sketched above to obtain bound on the risks of h0.
Since h 2 Sh0 , kh� h0k1  �/4. We have:

✓
h(x)[y]�max

j 6=y

h(x)[j]

◆

✓
h0(x)[y] + �/4�max

j 6=y

(h0(x)[j]� �/4)

◆
(33)


✓
h0(x)[y]�max

j 6=y

h0(x)[j]

◆
+ �/2, (34)

and therefore:

L(h0) = P(x,y)⇠D
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◆
 L�/2(h) = P(x,y)⇠D
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◆
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Similarly we have:
✓
h0(x)[y]�max

j 6=y

h0(x)[j]

◆

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h(x)[y]�max

j 6=y

h(x)[j]

◆
+ �/2, (36)
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which provides a bound on the empirical risk as follows:

L̂�/2(h)  L̂�(h0). (37)

Since inequalities 35 and 37 hold for all h 2 Sh0 , we get:

L(h0)  L�/2(Q̂) and L̂�/2(Q̂)  L̂�(h0), (38)

from which we immediately obtain the following de-randomized bound:

L(h0)  L̂�(h0) +

s
minP2P D(Q̂kP ) + log(⇠(m)|P|/�)

2m
. (39)

Applying the lemma 9.3, we get ⌘D
⇣
Q̂kP

⌘
 D (QkP ). Using this inequality, the lemma is

obtained from eq. 39.

9.5 Proof of Theorem 9.1 and Generalization Bounds for Equivariant Networks

Proof. We consider the perturbation bound in Eq. 7:

kfW+U � fWk1  kfW+U � fWk2  eB
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!
LX

i=1

kUik2
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By applying the results found in Supplementary 9.2 together with a union bound argument, with
probability 1�

⇣P
L

l=1

P
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⌘
e�t, for all l, it holds (for t > 1):
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r
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Therefore, with probability 1�
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Choosing t = log
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◆
, with probability ⌘:
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kWlk2
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(43)

To reduce clutter in the next equations, we define

M(l, ⌘) := log

 P
L

l=1

P
 
ml, 

1� ⌘

!
max
 

(5ml�1, ml, c ) (44)

such that the previous bound becomes:

kfW+U � fWk1  eB

 
LY

i=1

kWik2

!
LX

l=1

�
p

M(l, ⌘)

kWlk2
. (45)

We can then consider a set P of possible values for �, such that for any �0 there exists a � 2 P
satisfying

|� � �0|  �0 (46)
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with

�0 :=
�

4eB(1 + )
⇣Q

L

i=1 kWik2
⌘P

L

i=1

p
M(l,⌘)

kWik2

. (47)

By choosing the covariance of the distribution Q from this set P of values for �, we get
Q(SfW) � ⌘. (48)

Again, suppose that such a set P of � values can be chosen and that it has cardinality |P|. We can
then use the PAC-Bayesian KL-bound in Eq. 5 and choose a � satisfying the above inequality to
obtain:

D(QkP ) 
(1 + )232e2B2

⇣Q
L

i=1 kWik22
⌘

(1� )2�2

 
LX

l=1

p
M(l, ⌘)

kWlk2

!2
0

@
X

l, ,i,j

���cWl( , i, j)
���
2

F

/ dim 

1

A

(49)


(1 + )232Le2B2

⇣Q
L

i=1 kWik22
⌘

(1� )2�2

 
LX

l=1

M(l, ⌘)

kWlk22

!0

@
X

l, ,i,j

���cWl( , i, j)
���
2

F

/ dim 

1

A .

(50)

We need to construct a set P such that for any �0 there exists a � 2 P satisfying inequality 46.
Using a similar argument to Neyshabur et al. [2018], it can be seen that the bound is non-vacuous ifQ

L

l=1 kWlk2 2 [�/2B, �
p
m/2B]. If the product of norms after training is outside the interval, the

bound holds trivially, and any (P,Q) can be chosen. Therefore, we cover only this interval. Details
follow below.

In homogeneous networks, we can always rescale the weights such that the margin is not touched,
and thereby change all the norms. The above generalization bound is not invariant to rescaling of
weights. Here, we derive a scaling-invariant version of it. Define �L =

Q
L

i=1 kWik2 and normalize
every layer to have norm �. Then, �0 can be written as:

�0 =
�

4eB(1 + )�L�1
P

L

l=1

p
M(l, ⌘)

. (51)

To cover the set �0, we require only to cover � effectively. Again, we consider only �L > �

2B and

�2L <
⇣
�
2
m

4B2

⌘
, such that the bound is not vacuous. Note that the generalization bound in Eq. 49 is

simplified to (removing  as we cover our set differently):
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32e2B2�2L
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Therefore, if � > (�
p
m

2B )1/L all the remaining terms are bigger than one. Specifically note that:

kWlk22 
X

 ,i,j

���cWl( , i, j)
���
2

2
=
X

 ,i,j

���cWl( , i, j)
���
2

F

/ dim (54)

where we first used the fact that the spectral norm of a block matrix is upperbounded by the sum of
the spectral norm of each block and then we used Eq. 19 to express the spectral norm of each block.

Therefore we need only to cover � within the interval ( �

2B )1/L  �  (�
p
m

2B )1/L with radius
1/d( �

2B )1/L.

This choice guarantees that there is a �̃ such that
���� � �̃

���  �/d. From which, it can be concluded

that 1/e�L�1  �̂L�1  e�L�1. Using a cover of size Lm1/2L provides the desired cover.
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10 Derivations for Group Convolutional Networks

In this section, we provide a special case of Theorem 9.1 for group convolutional networks.

In a group convolution architecture, we assume the features at the l-th layer are Cl = cl|H|-
dimensional vectors representing a cl-channels signal over H . This means ⇢l contains cl copies of the
regular representation. The linear layer consists of a matrix Wl with a block structure as in Eq. 18,
where the block Wl,(i,j) is an H-circulant matrix mapping the i-th input channel to the j-th output
channel via group convolution with a filter wl,i,j 2 R

|H|. The parametrization of this block is in
term of the Fourier transform of wl,i,j , i.e. the coefficient in the matrices [wl,i,j( ), indexed by the
irreps  2 Ĥ . Since we use real irreps, we only need the first dim /c columns of [wl,i,j( ), so we
assume it is a dim ⇥dim 

c 
matrix. Similarly, the Fourier transform of a single channel xl,i 2 R

|H|

only contains the first dim /c columns of bxl,i( ). In the notation used before, this means that  is
contained in each channel dim /c times and, therefore, for each (intermediate) layer l and irrep  ,
it holds that:

ml, = cl dim /c .

Note also that, for each block (i, j), the matrix [wl,i,j( ) 2 R
dim ⇥

dim
 

c
 contains the c coefficients

in [wl,·,·( ) associated to each of the dim 
c 

⇥ dim 
c 

pairs of input and output occurrences of  in
xl�1,i and xl,j .

Assuming a group-convolutional architecture, we can use the identity ml, = cl
dim 
c 

. Define:

DH := max
 

dim2
 

c 
(55)

EH :=
X

 

dim 

c 
. (56)

In case of a group convolution architecture, we get:

M(l, ⌘) = log

 
EH

P
L

l=1 cl
1� ⌘

!
5clcl�1DH (57)

and the bound in Theorem 9.1 becomes:

LD(fW)  L̂�(fW)+
vuut32e4B2�2
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��2
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log(⇠(m)Lm1+1/2L
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2�2m

By choosing ⌘ = 1/2 and by defining QH =
⇣P

L

l=1
p
cl�1cl

⌘2
DH log 2EH

P
L

l=1 cl�1, this bound
corresponds to Theorem 10.1.
Theorem 10.1 (Generalization Bounds for Group Convolutional Networks). For any group convolu-

tional network, with high probability, we have:

LD(fW)  L̂�(fW) + Õ

0

BBB@

vuuut
⇣Q

L

l=1 kWlk22
⌘
QH

✓P
L
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P
 ,i,jk\wl,i,j( )k2
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kWlk2
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�2m
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with QH =
⇣P

L

l=1
p
cl�1cl

⌘2
DH log 2EH

P
L

l=1 cl�1.

First, note that the constant factor DH is at most 2 for commutative groups (all subgroups of SO(2))
and at most 4 for other subgroups of O(2). In practical networks, the number channels are inversely
scaled with the group size. This means that the cl|H| are kept constant for different values of |H|.
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In terms of generalization error, this implies an improvement of order 1/|H| not withstanding the
impact of group size on the ratio of Frobenius and Spectral norms.

It is worth mentioning an intermediate result for proving the above theorem. We can adapt the tail
bound of eq. 11 to perturbations for group convolutional networks:

kUlk2 < �

vuuut5cl�1cl
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dim2
 

c 

!
log

0

@2
X

l

cl
X

 

dim 
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1

A.

which is equal to Eq. 11 when defining DH = max 
dim2

 

c 
and EH =

P
 

dim 
c 

. The bound can be
further simplified by noting that |H| =

P
 
dim2

 
/c �

P
 
dim /c = EH :

kUlk2 < �

vuut5cl�1clDH log

 
2|H|

X

l

cl

!
.

This tail bound can be of independent interest.

11 Comparison to Neyshabur et al. [2018]

In this section, we try to directly adapt the proof of Neyshabur et al. [2018] to show the benefit of
working in space of irreps.

First, note that the Forbenius norm of kernels is an upper-bound on the norm of parameters. To see this,
similar to Neyshabur et al. [2018], define h = maxl Cl, where Cl = cl|H| is the effective number of
channels, as the upper bound on the number of channels, and similarly h|H| = maxl cl = h/|H|. In
the hidden layers and the input layer,

X

 

��[wl,i,j( )
��2
F

X

 

dim 

��[wl,i,j( )
��2
F
= |H| kwl,i,jk22 =

��Wl,(j,i)

��2
F

and, therefore,
P

i,j, 

��[wl,i,j( )
��2
F
 kWlk2F . By also upperbounding cl = Cl/|H|  h/|H| and

ignoring the constant factors, the result in Theorem 10.1 becomes

LD(fW)  L̂�(fW) + Õ
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vuut
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L2h2DH log(2LhEH
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which can be further simplified to

LD(fW)  L̂�(fW) + Õ

0
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F
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2

⌘

�2m
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CCA

by assuming DH is approximately constant and by noting EH  |H|.
This bound looks very similar to the one proposed in Neyshabur et al. [2018], with the difference that
it contains 1) h2 instead of h and 2) an additional term 1

|H| . The additional h factor is constant in our
experiments as we always consider fixed architectures when changing the equivariance group H , so
we ignore it in this discussion. Instead, we want to drive the attention to the 1

|H| term.

The presence of this 1
|H| in our bound implies that, when changing the equivariance group H for a

fixed architecture, the bound from Neyshabur et al. [2018] scales at least |H| times worse than ours.
In the experiments, we empirically observe that our bound is approximately scaling like 1p

|H|
. This

can be explained by the fact that with larger group size, the ratio of Frobenious norm and spectral
norm increases similar to O(|H|), thereby increasing the generalization error by O(

p
|H|). This
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leads to an overall scaling of O(1/
p
|H|) observed by our experiments too. On the other hand, it

follows that the bound from Neyshabur et al. [2018] scales like
p
H , which is undesirable.

However, it is still possible to adapt the method in Neyshabur et al. [2018] by considering, as done in
this work, perturbations only in the equivariant subspace of the weights. The main difference with
respect to our method is how the spectral norm of the perturbation matrices kUlk2 is bounded. In the
rest of this section, we follow this strategy to derive an alternative generalization bound.

The strategy used in Neyshabur et al. [2018] can be adapted to any parametrization of the linear
layers. In particular, assume cl�1 and cl input and output channels and Wl =

P
k
wl,kBl,k for some

set of matrices {Bl,k 2 R
cl⇥cl�1} forming a basis for the linear layer Wl.

Theorem 11.1 (Tropp [2012]). Assume {ul,k}k are i.i.d. random variables with a standard gaussian

distribution N (0, 1). Define the variance parameter

v2
l
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Then, for any t � 0:
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If perturbation is done on the weights {wl,k}k with i.i.d. {ul,k ⇠ N (0,�2)}k and h = max cl, cl�1,
this result can be used to bound the spectral norm of the perturbation matrix as

kUlk2  �
q

2v2
l
�2 log(4h)

Using an union bound over all layers l 2 [L], one gets:

kUlk2 
p
2v2�2 log(4hL)

where v2 = maxl v2l .

In particular, in Neyshabur et al. [2018], the parametrization Wl =
P

i,j
wl,i,jEi,j was considered,

where wl,i,j is the entry of Wl at row j and column i while Ei,j is a matrix of the same shape
containing 0 everywhere but 1 at position (i, j). In that case, v2 = h.

We can express the basis considered in this work as

Wl =
X

 ,i,j,k

[wl,i,j( )kBl, ,i,j,k ,

where [wl,i,j( )k is the k-th entry of the vector [wl,i,j( ) containing the c learnable coeffi-
cients which parametrize the block cWl( , i, j). Indeed, recall that a block cWl( , i, j) always
has one of the three forms described in Supplementary 8 and can be written as cWl( , i, j) =Pc 

k=1 cwl( , i, j)kB ,k. The matrix Bl, ,i,j,k is simply a zero matrix containing the matrix B ,k

at the same position of the corresponding block \Wl( , i, j). By using the structure of the ma-
trices Bl, ,i,j,k and the orthonormality of all matrices B ,k, one can show that in this case
v2
l
= max c maxl ml, . When using a group convolution architecture, because ml, = cl

dim 
c 

,
this becomes v2

l
= max dim h|H| = max dim h/|H|. We can use this result in a similar

manner to obtain a bound on the generalization error: Assuming again that max dim is a constant
factor, it follows that the bound on the spectral norm in our parametrization is |H| times tighter than
the one obtained in Neyshabur et al. [2018].

LD(fW)  L̂�(fW) + Õ

0

BB@
1p
|H|

vuut (max dim )L2h log(2Lh)
⇣Q

L

l=1 kWlk22
⌘⇣P

L

l

kWlk2
F

kWlk2
2

⌘

�2m

1

CCA

(58)

31



This bound explicitly shows the scaling of the generalization error as 1p
|H|

which we also verified

experimentally. A similar scaling was reported in Sokolić et al. [2017a], however it was mainly based
on the assumption that the transformations change the input space in a considerable way. However, in
our experiments we observe the bound in Theorem 9.1 empirically scales like 1p

|H|
. Because the

bound in Eq. 58 is at least 1p
|H|

times worst, we do not expect it to correlate significantly with the

equivariance group H . We also verify this hypothesis empirically in our experiments. See Fig. 2
and 3 for a comparison of the two bounds on different continuous synthetic datasets.

A similar strategy could also be applied by considering bases for group convolution layers directly
in terms of the filters parametrizing each H-circulant matrix (i.e. by performing the perturbation
analysis in the group domain). More precisely, one could consider a basis

Wl =
X

i,j,k

wl,i,j,kCl,i,j,k ,

where wl,i,j 2 R
|H| and wl,i,j,k is its k-th entry. Cl,i,j,k is then a zero matrix containing the a base

circulant matrix CH,k in the block (i, j). The matrix CH,k is an H-circulant matrix generated by the
vector ek = (0, . . . , 0, 1, 0, . . . 0)T 2 R

|H| (with 1 in the k-th entry). For instance, for H = C3

{CC3,k}3k=1 =

("
1 0 0
0 1 0
0 0 1

#
,

"
0 1 0
0 0 1
1 0 0

#
,

"
0 0 1
1 0 0
0 1 0

#)
.

In this parametrization, v2
l
= |H|max{cl, cl�1} and, therefore, v2 = h as in Neyshabur et al. [2018].

Indeed, this leads exactly to their same bound, which we have already discussed at the beginning of
this section.

12 Experiments

We experiment on synthetic datasets characterized by discrete or continuous symmetries as well as
with transformed MNIST 12K and CIFAR10 datasets.

We choose a discrete subgroup H < G and build a shallow MLP classifier equivariant to H . In
particular, denoting as ⇢0 the representation of G acting on the samples in a G symmetric dataset, the
input representation of the MLP is chosen to be ResG

H
⇢0 while in the hidden layers we use multiple

copies of the regular representation ⇢Hreg of H , making the linear layers effectively group convolutions
over H . For different choices of H , we preserve the size of each layer, which means that the number
of parameters of the model is proportional to 1

|H| . Note that a larger group H results in a higher level
of symmetry for the network but also in a loss in capacity, as less channels are allocated per each
group element.

We train each model on a fixed training set until the model correctly classifies 99% of it with a margin
greater than �. We use � = 10 in the synthetic datasets and � = 2 on the image datasets. In the
synthetic datasets, we test the models on a testset consisting of 10K fixed samples from the full
distribution PG in order to measure the generalization on the whole symmetry group G.

The MLP used in the experiments on the synthetic datasets consists of 3 linear layers, alternated with
ReLU non-linearities, and has 2048 and 512 channels in the intermediate features. In the MNIST
experiments, we use 4 linear layers with 1024, 512 and 512 channels in the intermediate features.
Finally, in the CIFAR experiments we use 4 layers with 2048, 1536 and 512 channels. The first linear
layer of the last two models uses steerable filters from Weiler and Cesa [2019] to process the input
images. The models are trained with Adam without any weight decay or additional regularization.
Neither batch normalization nor dropout are used in the models.

To handle input images, we use an E(2)-convolution layer as described in Weiler and Cesa [2019]:
with a filter as large as the input image, the output produced is a single vector which is only H
equivariant. The implementation of the kernel constraint from Weiler and Cesa [2019] automatically
performs the necessary band-limiting and implicitly decomposes the image as a signal over the group
H considered.
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12.1 Synthetic Datasets

Continuous Symmetries For G = SO(2), the data distribution is defined over a D-dimensional
torus T D embedded in a 2D dimensional Euclidean space. The action of an element r✓ 2 SO(2)
simultaneously rotates the D circles in T D, potentially at different integer frequencies in each of
them. Note that each circle is isomorphic to SO(2). We generate one point in the first circle and
two points in all the others. Then, we generate 2D�1 representative points X by tacking every
combination of points from each circle. We assign a random label in {�1, 1} to each of them. The
quotient distribution S0 is defined by sampling a random representative in X and adding some noise.
In practice, we add Gaussian noise on each of the D circles and, then, project each of them on the
unit circle. This is the training augmentation PS . We finally add additional small Gaussian noise.
Fig. 7 shows a projection of the dataset for D = 2. In our experiments we use D = 6. We also build

(a) SO(2) rotates both circles with frequency
1

(b) SO(2) rotates the largest circle (horizontal)
with frequency 1 and the smallest (vertical)
with frequency 2.

Figure 7: 3D projection of SO(2) synthetic datasets for D = 2.

a similar dataset for O(2). Here, each circle is replaced by a pair of circles such that the action of the
reflection moves the points from one to the other. Each pair of circles is isomorphic to the group O(2)
itself. We fix two points per pair such that we still have 2D�1 representative points but embedded in
a 4D-dimensional space.

Discrete Symmetries We consider a group G of N discrete rotations and, possibly, reflections. We
build a dataset as described for O(2) using D = N pairs, each associated with a different frequency
from 1 to F = bN/2c. We associate all the 2F�1 representative points in X with the label +1. If we
do not require symmetry to reflections (i.e., G = CN ), we generate 2F�1 new representative points
by rotating those in X by ⇡/N and associating them with the label �1. If symmetry to reflections is
necessary (G = DN ), we generate 3 · 2F�1 new representative points by i) rotating X by ⇡/N , ii) by
mirroring it or iii) by doing both. In the first two cases, we associate the points with the label �1, in
the last with +1. Note that a model equivariant to D2N or C2N will be invariant to (all or part of) the
transformations we used to generate the labels and, therefore, will not be able to distinguish the two
classes.

12.2 Dependency on the group size |H|

In this section we study the effect of the size |H| of the equivariance group on the generalization
error. In particular, we hypothesize that the generalization errors is proportional to the quantity 1p

|H|
as previously observed in Sokolić et al. [2017a], so we investigate the correlation between these two
terms in different datasets.

We consider the synthetic datasets with continuous and discrete symmetries (for different frequencies
F or rotation orders M ) in Fig. 8 and the images datasets (MNIST and CIFAR10) in Fig. 9. In

33



(a) G = SO(2), H = CN (b) G = O(2), H = DN or CN

(c) G = CM , H = CN (d) G = DM , H = DN or CN

Figure 8: Empirical generalization error (GE) vs 1p
|H|

for different synthetic datasets, with continuous

or discrete symmetries G. In the continuous symmetries case (first row), F indicates the maximum
rotational frequency in the data and, therefore, each color (F ) corresponds to a different dataset. In
the discrete symmetries case (second row), M indicates the the number of rotations in the discrete
symmetry. The visualizations shows a strong correlation between the two terms. The correlation is
weaker on low frequency O(2) datasets because of the different behaviours of DN and C2N .

all cases, we observe a strong correlation. However, we note that the slope of the lines varies over
different versions of the same dataset or when changing the training set size m. In particular, in
Fig. 8(first line), the slope grows when increasing the frequency F in the data. In the discrete
symmetries case, Fig. 8(second line), the slope increases with the symmetry group’s size |G| but then
decreases at the largest values of |G|. In the O(2) synthetic data (Fig. 8(b)), the linear correlation
is weaker for low values of F as the generalization does not depend only on the size |H| of the
group anymore. Indeed, the groups C2N and DN have both size |H| = 2N . However, when the data
only contains low frequency features, considering 2 times more rotations (C2N ) becomes eventually
unnecessary while introducing reflection equivariance (DN ) allows the model to generalize over a
whole new set of transformations. Overall, the

12.3 PAC-Bayesian Bound

In this section, we focus on the study of the de-randomized PAC-Bayes bound from Sec. 4 in different
contexts. As reported in Nagarajan and Kolter [2019], bounds based on the spectral norm of the
weight matrices tend to grow with the dataset size m in practice. Our perturbation bound falls in this
same category and, therefore, we observe a similar behaviour. Moreover, such bounds are generally
vacuous, i.e. greater than 1. For these reasons, we do not expect the bound derived to accurately
predict the generalization error or describe the effect of different training sizes. Instead, we are
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(a) MNIST, G = SO(2) (b) MNIST, G = O(2)

(c) CIFAR10, G = SO(2) (d) CIFAR10, G = O(2)

Figure 9: Empirical generalization error (GE) vs 1p
|H|

on transformed MNIST and CIFAR10 datasets.

All settings show a strong correlation between the two terms.

interested in how well the bound correlates with the generalization error and explains the effect of
equivariance. Therefore, we study the correlation between the estimated bound and the generalization
error in different settings and datasets when different equivariance groups H are used.

In Fig. 10 we look at the correlation between our bound and the generalization error on O(2)-MNIST
and on the SO(2) symmetric synthetic dataset for different training set sizes. Nevertheless, we
observe a good correlation between them when considering a fixed training set size m, i.e. by looking
at each colored sequence independently. This is the relation we are most interested in and which we
now explore further.

In Fig. 2(first row) and 3(first row) we have already observed this correlation on 6 versions of the
O(2) and the SO(2) symmetric synthetic datasets. In Fig. 11, we repeat a similar study on the other
three types of datasets.

We notice that the results on the synthetic datasets (both with continuous symmetries as in Fig. 2
and 3 and with discrete symmetries as in the first row of Fig. 11) show a better linear correlation
with the generalization error. Conversely, the results on the image datasets are in log scale on the
Y axis, suggesting a superlinear scaling of the bound with the generalization error. In light of the
observations in Supplementary 12.2, this also implies that the bound does not scale as 1p

|H|
on these

two datasets.

It also follows that the alternative bounds considered in Supplementary 11 are not worse here.
However, in the synthetic dataset with discrete symmetries, the same observation from Section 5
apply. Indeed, in Fig. 12, we repeat the experiments in Fig. 11(b) but use the alternative bound from
Supplementary 11. As already shown in Fig. 2(second row) and 3(second row) for the continuous
symmetry synthetic datasets, this bound does not capture the effect of different equivariance groups
H .
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(a) SO(2) Synthetic Data (b) O(2) MNIST

Figure 10: Bound (B) from Theorem 9.1 vs Generalization Error (GE) of different H-equivariant
models (H = CN or H = DN ) on O(2)-MNIST and on the SO(2) synthetic dataset. Different
colors represent different training set sizes m. As expected, the bound does not explain the effect of
the training set size and as it grows with m.

12.4 PAC-Bayes Bound During Training

In this section, we study how the bound in Section 4.2 evolves during training. In particular, we
consider a few different equivariance groups H , and we train them on the original labels as well as
on random labels.

Fig. 13 reports the results of these experiments on the two of the continuous synthetic datasets. We
observe that the bounds grow during training for all models. This happens using both the original and
the random labels. Moreover, the bound computed with the randomly labeled training sets grows
larger than the one computed on models trained on the original labels.

12.5 PAC-Bayes Bound on Randomly Labelled Data

Zhang et al. [2017] has shown that neural networks can fit randomly labelled training sets, obtaining
arbitrarily bad generalization error. We expect a useful generalization bound to be consistent with
this result and, therefore, be larger when computed on models trained on random labels. We have
already observed in Supplementary 12.4 that the bound tends to grow faster while training on random
datasets. Here, we perform a more extensive comparison on the two variations of the MNIST dataset.
In Fig. 14, we compare the bound of different models trained on the original labels (circles) or on
random ones (crosses). Training is performed on an augmented dataset, which means that each image
is also transformed with a random element g 2 G. As expected all models trained on the random
labels have generalization error equals to 0.9 (like a random classifier). Fixing a model (same H , i.e.
same color), we observe that the bound computed over models trained on random labels is always
higher. On larger training sets, we obtain higher train errors; we think this is due to the limited size,
and therefore, capacity of the model used.

We perform a similar experiment on the synthetic G = SO(2) dataset in Fig. 15. Again, we are
able to fit a randomly labeled training set with equivariant models, given sufficiently large models.
Since this is a binary classification task, the models trained on the random labels have GE = 0.5
generalization error.
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(a) CM Synthetic Data (b) DM Synthetic Data

(c) SO(2) MNIST (d) O(2) MNIST

(e) SO(2) CIFAR10 (f) O(2) CIFAR10

Figure 11: Bound (B) from Theorem 9.1 vs Generalization Error (GE) of different H-equivariant
models on different datasets. We always use PS = PG. In the synthetic ones, different colors
represent different discrete symmetry groups G, where M is the number of rotations in G = DM or
G = CM ; higher values of M define more complex datasets.

Figure 12: Alternative bound (B) from Supplementary 11 vs Generalization Error (GE) of different
H-equivariant models on synthetic dataset with discrete DM symmetries. As in the continuous
symmetry cases, this bound does not capture the effect of H equivariance.
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(a) G = SO(2) (b) G = O(2)

Figure 13: Evolution of the PAC-Bayes Bound (B) during the training of H-equivariant models
on the SO(2) and O(2) datasets with F = 3 and m = 1024 examples. Dashed lines represent the
models trained on random labels.

(a) H = CN and G = SO(2)

(b) H = CN and G = O(2) (c) H = DN and G = O(2)

Figure 14: PAC-Bayes Bound (B) from Theorem 9.1 versus Generalization Error (GE) of different
H-equivariant models on different G-MNIST datasets (G = SO(2) or G = O(2)) when the models
are trained with the real labels or with random labels. Crosses represent models trained on random
labels, while circles represent models trained on the original labels. Note that for the same training
setting, the bound computed on the models trained on random labels is always higher.
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Figure 15: PAC-Bayes Bound (B) versus Generalization Error (GE) of different CN -equivariant
models on the synthetic continuous G = SO(2) datasets when trained with the real labels or with
random labels. Crosses represent models trained on random labels, while circles represent models
trained on the original labels. We used frequency F = 3 and F = 4 and m = 1024.
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