
A Decompose risk-of-ruin to individual stages379

Proof of Theorem 3.1. The last claim is trivial: it is easy to verify that (1) and (2) hold if we let380

Tt = ∅ for all t ∈ [T ]. Now we prove the first and the second claim. The case for T = 1 is trivial.381

We assume T ≥ 2. For any t = 2, . . . ,T , we have that382

P (Rt ≤ B) = E[P (Rt ≤ B | Ft−1)]

= E
[
P (Rt ≤ B,Rt−1 ≤ B | Ft−1) + P (Rt ≤ B,Rt−1 > B | Ft−1)

]
(a)

≤ P (Rt−1 ≤ B) + E [P (Rt ≤ B,Rt−1 > B | Ft−1)]

= P (Rt−1 ≤ B) + E
[
I (P (Rt−1 > B | Ft−1) > 0)

× P (Rt ≤ B | Rt−1 > B,Ft−1)P (Rt−1 > B | Ft−1)

+ I (P (Rt−1 > B | Ft−1) = 0)P (Rt ≤ B,Rt−1 > B | Ft−1)

]
(b)
= P (Rt−1 ≤ B) + E

[
I (P(Rt−1 > B | Ft−1 > 0))

× P (Rt ≤ B | Rt−1 > B,Ft−1)P (Rt−1 > B | Ft−1)

]
(c)

≤ P (Rt−1 ≤ B) + ∆tE
[
I (P (Rt−1 > B | Ft−1) > 0)P (Rt−1 > B | Ft−1)

]
= P (Rt−1 ≤ B) + ∆tP (Rt−1 > B)

where (b) used that P (Rt−1 > B | Ft−1) = 0 ⇒ Tt = ∅ and that rt((Yi,t)i∈Nt
, ∅) = 0, which383

implies that almost surely384

I (P (Rt−1 > B | Ft−1) = 0) · P (Rt ≤ B,Rt−1 > B | Ft−1)

= I (P (Rt−1 > B | Ft−1) = 0)P
(
Rt−1 + rt

(
(Yi,t)i∈N , ∅

)
≤ B,Rt−1 > B | Ft−1

)
= I (P (Rt−1 > B | Ft−1) = 0) · P (Rt−1 ≤ B,Rt−1 > B | Ft−1)

= 0

and (c) used that bt ≥ B, which implies that almost surely385

P (Rt ≤ B | Rt−1 > B,Ft) ≤ P (Rt ≤ bt | Rt−1 > B,Ft) ≤ ∆t.

Rearranging this, we obtain a recurrence relation: for any t = 2, ...,T ,386

P (Rt > B) ≥ (1−∆t) · P (Rt−1 > B) . (14)

Using the recurrence relation repeatedly for all t ∈ [T ], we obtain387

P (RT > B) ≥
T∏

i=2

(1−∆t) · P (R1 > b1) ≥
T∏

t=1

(1−∆t)

=⇒ P (RT ≤ B) ≤ 1−
T∏

t=1

(1−∆t) ≤ δ

as required. To prove the second claim, observe that equality is attained in all of the above inequalities388

if equality is attained in (14), (i), (ii) and (iii), and that equality is attained in (14) if equality is389

attained in (a) and (c). Finally, note that equality in (a) is attained if rt ≤ 0,∀t ∈ [T ] and equality in390

(c) is attained if equality is attained in (i) and (iv).391

B Stochastic domination392

Lemma B.1 (Stochastic domination under truncation). For any two independent real random variable393

X,Z and real number a, t ∈ R such that P(X < a) > 0, we have that394

P(X + Z ≥ t | X < a) ≤ P(X + Z ≥ t).
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Proof of Lemma B.1 . Assume that P(X ≥ a) > 0, or else the proof is trivial. We first claim that395

P(X + Z ≥ t | X < a) ≤ P(X + Z ≥ t | X ≥ a). Note that this holds if and only if396

P(X ≥ t− Z,X < a)

P(X < a)
≤ P(X ≥ t− Z,X ≥ a)

P(X ≥ a)
.

The above holds since its lhs and rhs satisfies397

P(X ≥ t− Z,X < a)

P(X < a)
=

P(X ≥ t− Z,X < a, a ≥ t− Z)

P(X < a)
≤ P(a ≥ t− Z)

P(X ≥ t− Z,X ≥ a)

P(X ≥ a)
=

P(X ≥ t− Z,X ≥ a, a < t− Z)

P(X ≥ a)
+ P(a ≥ t− Z)

It then follows from law of total probability that398

P(X + Z ≥ t) = P(X + Z ≥ t | X < a)P(X < a) + P(X + Z ≥ t | X ≥ a)P(X ≥ a)

≥ P(X + Z ≥ t | X < a)P(X < a) + P(X + Z ≥ t | X < a)P(X ≥ a)

= P(X + Z ≥ t | X < a)

as required.399

Proof of Lemma 3.2. If M (1)
t−1 = 0, (8) holds with equality since ST

t−1(0) < ST
t−1(1) − B ⇐⇒400

B < 0. So, assume M (1)
t−1 > 0 from now on. By (15f) and the conditional distributions of multivariate401

Gaussian, we have402 [
sTt (0)

∣∣∣∣ST
t−1(0),Ft−1

]
=

[
µ2 + V21V

−1
11 (ST

t−1(0)− µ1) + (V22 − V21V
−1
11 V12)

1/2Z

∣∣∣∣ST
t−1(0),Ft−1

]
where Z ∼ N(0, 1) is independent of ST

t−1(0) conditioned on Ft−1 and µ,V are defined in (15f).403

Here, we used that V11 > 0 since σp,t(0)
2,σ(0)

2
> 0 by Definition 3.1, and M

(1)
t−1 ̸= 0. Using the404

above and that ST
t (0) = sTt (0) + ST

t−1(0), we have405 [
ST
t (0)

∣∣∣∣ST
t−1(0),Ft−1

]
=

[
(V21V

−1
11 + 1)ST

t−1(0) + µ2 − V21V
−1
11 µ1

+ (V22 − V21V
−1
11 V12)

1/2Z

∣∣∣∣ST
t−1(0),Ft−1

]
.

Since V21V
−1
11 + 1 > 0 in the above, using also that bt − ST

t−1(1),S
T
t−1(1) − B ∈ Ft−1 and that406

sTt (1) is independent of ST
t−1(0),S

T
t (0), (8) follows from Lemma B.1.407

C Derivation of the decision rule408

Proof of these facts follows from standard Bayesian analysis (see e.g. [15])409

Lemma C.1 (Posterior distributions). We have for w = 0, 1, t ∈ [T ]410

µp,t(1) := E
[
µtrue(1)

∣∣∣∣Ft−1

]
=

1

1
σ0(1)

2 +
M

(1)
t−1

σ(0)2

(
µ0(1)

σ0(1)
2 +

ST
t−1(1)

σ(1)
2

)
(15a)

µp,t(0) := E
[
µtrue(0)

∣∣∣∣Ft−1

]
=

1

1
σ0(0)

2 +
M

(0)
t−1

σ(0)2

(
µ0(0)

σ0(0)
2 +

SC
t−1(0)

σ(0)
2

)
(15b)

σp,t(w)
2 := V

[
µtrue(w)

∣∣∣∣Ft−1

]
=

(
1

σ0(w)
2 +

Mt−1(w)

σ(w)
2

)−1

(15c)[
µtrue(w)

∣∣∣∣Ft−1

]
∼ N

(
µp,t(w), σp,t(w)

2
)

(15d)[
sTt (1)

∣∣∣∣Ft−1

]
∼ N

(
µp,t(1) ·mt, m

2
t · σp,t(1)

2 +mt · σ(0)2
)

(15e)[(
ST
t−1(0)
sTt (0)

)∣∣∣∣Ft−1

]
∼ N (µ,V ) (15f)
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where411

µ :=

(
µp,t(0) ·M (1)

t−1
µp,t(0) ·mt

)
,

V :=

(
(M

(1)
t−1)

2σp,t(0)
2 +M

(1)
t−1σ(0)

2
M

(1)
t−1mtσp,t(0)

2

M
(1)
t−1mtσp,t(0)

2 m2
tσp,t(0)

2 +mtσ(0)
2

)
.

D Robustness to non-identically distributed and non-Gaussian outcomes412

Proof of Theorem 3.3. To show the experiment by Algorithm 1 is (δ,B)-RRC under Definition 3.4,413

it suffices to show that (1), (2) hold for each t ≥ 1. Since (1), (2) hold for each t ≥ 1 if mt = 0, we414

only need to show that for each t ≥ 1, if mt ̸= 0, almost surely415

P
(
ST
t (1)− ST

t (0) > B | Ft

)
> 0 (16a)

P
(
ST
t (1)− ST

t (0) ≤ bt | Ft−1,S
T
t−1(1)− ST

t−1(0) > B
)
≤ ∆t. (16b)

Note that for each t ≥ 1, if mt ̸= 0,416

P
(
ST
t (1)− ST

t (0) ≤ bt | Ft−1

)
= P

(
sTt (1)− ST

t (0)− µ̃t

σ̃t
≤ zt | Ft−1

)
(a)

≤ P
(
sTt (1)− ST

t (0)− µ̆t

σ̆t
≤ zt | Ft−1

)
(b)

≤ Φ (zt)
(c)

≤ ∆t

where we used first inequality in (13) in (a), second inequality in (13) in (b), and (11) in (c).417

We now show (16a) by induction. For t = 1, if m1 ̸= 0, Algorithm 1 ensures that418

E
(
P
(
sT1 (1)− sT1 (0) ≤ b1 | F1

))
= P

(
sT1 (1)− sT1 (0) ≤ b1

)
≤ ∆1 < 1

by construction, which implies that419

P
(
ST
1 (1)− ST

1 (0) > B | F1

)
≥ P

(
sT1 (1)− sT1 (0) > b1 | F1

)
> 0

almost surely. If m1 = 0, then P
(
ST
1 (1)− ST

1 (0) > B | F1

)
= 1 since B < 0. This proves the420

base case. For the inductive case, if mt ̸= 0, Algorithm 1 ensures that421

E
(
P
(
ST
t (1)− ST

t (0) ≤ bt | Ft

)
| Ft−1

)
= P

(
ST
t (1)− ST

t (0) ≤ bt | Ft−1

)
≤ ∆t < 1

by construction, which implies that422

P
(
ST
t (1)− ST

t (0) > B | Ft

)
≥ P

(
ST
t (1)− ST

t (0) > bt | Ft

)
> 0

almost surely. If mt = 0, we have that423

P
(
ST
t (1)− ST

t (0) > B | Ft

)
= P

(
ST
t−1(1)− ST

t−1(0) > B | Ft−1

)
> 0

from inductive hypothesis. This shows (16a).424

To show (16b), note that under Definition 3.4,425 [
sTt (1)− ST

t (0) | Ft−1,S
T
t−1(0) < ST

t−1(1)−B
]

d
= sTt (1)− sTt (0)−

[
ST
t−1(0) | Ft−1,S

T
t−1(0) < ST

t−1(1)−B
]

On the rhs, sTt (1)− sTt (0) is independent of426 [
ST
t−1(0) | Ft−1,S

T
t−1(0) < ST

t−1(1)−B
]

and that ST
t−1(1)−B ∈ Ft−1. It follows from these, (16a) and Lemma B.1 that427

P
(
sTt (1)− sTt (0)− ST

t−1(0) ≤ bt

∣∣∣∣Ft−1,S
T
t−1(0) < ST

t−1(1)−B

)
≤ P

(
sTt (1)− ST

t (0) ≤ bt | Ft−1

)
Therefore, for each t ≥ 1, if mt ̸= 0,428

P
(
ST
t (1)− ST

t (0) ≤ bt | Ft−1,S
T
t−1(1)− ST

t−1(0) > B
)
≤ ∆t

as required. This concludes the proof.429
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When are (13) satisfied Fix any t ≥ 1 where mt ̸= 0. Note that430 [
sTt (1)− ST

t (0) | Ft−1

]
=
∑
i∈Tt

(Yi,t(1)− Yi,t(0))−
∑

r∈[t−1]

∑
i∈Tr

[Yi,r(0) | Yi,r(1)]

The summands on the rhs are independent random variables under Definition 3.4. We thus expect431

that when mt or Mt−1 are sufficiently large,432 [
sTt (1)− ST

t (0) | Ft−1

]
− E

[
sTt (1)− ST

t (0) | Ft−1

]√
V
[
sTt (1)− ST

t (0) | Ft−1

] ≈ N(0, 1)

by central limit theorem under mild moment-growth conditions (e.g. Lyapunov’s conditions). We433

thus expect that first condition in (13) holds when mt or M (1)
t−1 are sufficiently large for each t ≥ 1.434

We now focus on the second condition in (13). Suppose that ∆t ≤ 0.5, which implies zt ≤ 0 by (11).435

Note that we can write436

µ̆t =
∑
i∈Tt

E (Yi,t(1)− Yi,t(0))−
∑

r∈[t−1]

∑
i∈Tr

E [Yi,t(0) | Yi,t(1)]

σ̆2
t =

∑
r∈[t−1]

V (Yi,t(1)− Yi,t(0)) +
∑
i∈Tr

V [Yi,t(0) | σ (Yi,t(1))]

and437

µ̃t = mt (µp,t(1)− µp,t(0))− µp,t(0)M
(1)
t−1

σ̃2
t = mt ·

(
σ(1)

2
+ σ(0)

2
)
+M

(1)
t−1 · σ(0)

2
+m2

t · σp,t(1)
2 +

(
mt +M

(1)
t−1

)2
· σp,t(0)

2.

For t = 1,438

µ̆t =
∑
i∈Tt

E (Yi,t(1)− Yi,t(0)) , σ̆2
t =

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

and439
µ̃t = mt (µ0(1)− µ0(0)) ,

σ̃2
t = mt ·

(
σ(0)

2
+ σ(1)

2
)
+m2

t ·
(
σ0(1)

2
+ σ0(0)

2
)
.

So, second condition in (13) holds for t = 1 if we have chosen prior and model parameters such that440

µ0(1)− µ0(0) ≤
1

mt

∑
i∈T1

E (Yi,1(1)− Yi,1(0))

σ(0)
2
+ σ(1)

2
+mt ·

(
σ0(1)

2
+ σ0(0)

2
)
≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

This corresponds to that we choose prior and model parameters conservatively in the sense that we441

do not overestimate treatment effect or underestimate its variability. Now fix any t ≥ 2. From the law442

of large number, we expect that for M (1)
t−1 sufficiently large443

µp,t(0) ≈
1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0)]

1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0) | Yi,t(1)] ≈
1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0)]

µp,t(1)− µp,t(0) ≈
1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(1)− Yi,t(0)]

1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0) | Yi,t(1)] ≈
1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

EV [Yi,t(0) | Yi,t(1)]

≤ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0)]
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So if the treatment effects increase or stay roughly constant throughout the experiments444

1

mt

∑
i∈Tt

E (Yi,t(1)− Yi,t(0)) ≥
1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(1)− Yi,t(0)]

and our variance estimates σ(0)2,σ(1)2 are accurate or conservative in the sense that445

σ(0)
2 ≥ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0)] , σ(0)
2
+ σ(1)

2 ≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

the second condition in (13) holds for each t ≥ 2 and the experiment produced by Algorithm 1 is446

(δ,B)-RRC.447

E Algorithm for general Bayesian models and costs448

The following outcome model is a generalization of Definition 3.1. Here, experiment outcomes are449

allowed to be multivariate with each coordinate corresponds a different business metric.450

Definition E.1 (General Bayesian model). Fix p, q ≥ 1. The model parameter θtrue ∈ Rq is generated451

from certain prior π0. The experiment outcome of unit i at stage t are distributed independently and452

identically as453 (
Yi,t(0),Yi,t(0)

)
iid∼ p(θtrue)

where Yi,t(0),Yi,t(0) ∈ Rq and p(θtrue) is a probability distribution on Rp×p.454

The following is a generalization of Definition 2.1. It allows for general experiment cost beyond455

treatment effect. The cost of treating unit i is now hit = ht(Yi,t(1),Yi,t(0)) for some function456

ht : Rp×p 7→ R chosen by the user. For instance, ht can be chosen to compute the worst treatment457

effect across multiple business metrics.458

Definition E.2 (General experiment cost). For each t ≥ 1, let the experiment cost from stage-t and459

treated unit i be hit = ht(Yi,t(1),Yi,t(0)) where ht : Rp×p 7→ R is any user-chosen function. Then460

define rt :=
∑

i∈Tt
hi,t. We let rt = 0 if Tt = ∅. Define the cumulative experiment cost up to stage461

t as Rt :=
∑

k∈[t] rk.462

We now move to derive an explicit algorithm Algorithm 1 from Theorem 3.1 that output (mt)t≥1463

such that the experiment is (δ,B)-RRC. Compared to Algorithm 1, the algorithm developed in this464

section will require Monte-Carlo simulations and generally gives more conservative ramp schedule.465

We first review the Cantelli’s inequality, which is an improved version of the well-known Chebyshev’s466

inequality for one-sided tail bounds.467

Lemma E.3 (Cantelli’s inequality). For any λ ≥ 0, and real-valued random variable X with finite468

variance,469

P(X − E(X) ≥ λ) ≤ 1

1 + λ2/V(X)

Given that (i) P (Rt−1 ≥ B | Ft−1) > 0 and that (ii) E [Rt | Rt−1 ≥ B,Ft−1] ≥ bt, a direct470

application of Cantelli’s inequality shows that471

P (Rt ≤ bt | Rt−1 > B,Ft−1)

= P
(
E [Rt | Rt−1 > B,Ft−1]−Rt ≥ E [Rt | Rt−1 > B,Ft−1]− bt

∣∣∣∣Rt−1 > B,Ft−1

)

≤

(
1 +

(E [Rt | Rt−1 > B,Ft−1]− bt)
2

V (Rt | Rt−1 > B,Ft−1)

)−1

where F0 denotes trivial σ-algebra.472
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Our strategy to construct an algorithm that selects ramp size mt such that (1), (2) hold is as follows:473

we first verify that condition (i) holds; if not, set mt = 0 and otherwise find mt such that the following474

two inequalities hold475

E [Rt | Rt−1 ≥ B,Ft−1] ≥ bt (17a)
1

1 + (E[Rt|Rt−1>B,Ft−1]−bt)
2

V(Rt|Rt−1>B,Ft−1)

≤ ∆t (17b)

To accomplish this, note that by exchangeability of the outcomes under Definition E.1,476

E [Rt | Rt−1 ≥ B,Ft−1] = E [rt | Rt−1 ≥ B,Ft−1] + E [Rt−1 | Rt−1 ≥ B,Ft−1]

= mtE [hi=1,t | Rt−1 ≥ B,Ft−1] + E [Rt−1 | Rt−1 ≥ B,Ft−1]
(18)

and477

V (Rt | Rt−1 ≥ B,Ft−1) = V (rt | Rt−1 ≥ B,Ft−1) + V (Rt−1 | Rt−1 ≥ B,Ft−1)

+ Cov (rt,Rt−1 | Rt−1 ≥ B,Ft−1)

= mtV (hi=1,t | Rt−1 ≥ B,Ft−1)

+mt (mt − 1)Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)

+ V (Rt−1 | Rt−1 ≥ B,Ft−1) + Cov (rt,Rt−1 | Rt−1 ≥ B,Ft−1)
(19)

We thus require a Monte-Carlo procedure to output estimates φ̂t(0), . . . , φ̂
(6)
t for the following478

posterior quantities on the rhs of (18), (19)479

P (Rt−1 ≥ B | Ft−1)← φ̂t(0)

E (hi=1,t | Rt−1 ≥ B,Ft−1)← φ̂t(1)

E (Rt−1 | Rt−1 ≥ B,Ft−1)← φ̂
(2)
t

V (hi=1,t | Rt−1 ≥ B,Ft−1)← φ̂
(3)
t

Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)← φ̂
(4)
t

V [Rt−1 | Rt−1 ≥ B,Ft−1]← φ̂
(5)
t

Cov (hi=1,t,Rt−1 | Rt−1 ≥ B,Ft−1)← φ̂
(6)
t

where hi=1,t,hi=2,t denote costs from treating two units i = 1, 2 at stage t. Recall that under (...), the480

outcome of the units are exchangeable. So i = 1, 2 simply refers to any two distinct units. These quan-481

tities will be used to construct estimates of E [Rt | Rt−1 > B,Ft−1] and V (Rt | Rt−1 > B,Ft−1)482

as functions of mt chosen.483

We now outline a procedure to construct φ̂t(0), . . . , φ̂
(6)
t . Firstly, suppose that we can obtain K484

samples from the posterior distribution485 [
(Yi,r(0))i∈Tr,r∈[t−1] ,Yi=1,t(0),Yi=1,t(1),Yi=2,t(0),Yi=2,t(1)

∣∣∣∣Ft−1

]
, (20)

from certain MCMC algorithms. The specific details of the MCMC algorithm will depend on the486

Bayesian model used, but generating posterior-predictive samples while imputing unobserved data,487

as required in (20), is a common objective of such algorithms (see e.g. [15, Chapter 18]). Let us488

denote the K samples as489 (
Y

{k}
i,r (0)

)
i∈Tr,r∈[t−1]

,
(
Y

{k}
i,t (0)

)
,Y

{k}
i=1,t(1),Y

{k}
i=2,t(0),Y

{k}
i=2,t(1), k = 1, . . . ,K (21)

These will give us K samples from [hi=1,t,hi=2,t,Rt−1 | Ft−1] as follows:490 (
ĥ
{k}
i=1,t, ĥ

{k}
i=2,t, R̂

{k}
t−1

)
=

(
ht

(
Y

{k}
i=1,t(1)− Y

{k}
i=1,t(0)

)
,ht

(
Y

{k}
i=2,t(1)− Y

{k}
i=2,t(0)

)
,

t−1∑
r=1

∑
i∈Tr

hr

(
Y

{k}
i,r (1)− Y

{k}
i,r (0)

))
, k = 1, . . . ,K
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Then we can estimate P (Rt−1 ≥ B | Ft−1) by491

P (Rt−1 ≥ B | Ft−1)← φ̂t(0) =
1

K

K∑
k=1

I
(
R̂

{k}
t−1 ≥ B

)
Let492

Lt :=
{
k ∈ [K] : R̂

{k}
t−1 ≥ B

}
⊂ [K]

which denotes the subset of the K Monte-Calor samples for which the budgets are not depleted.493

If φ̂t(0) = 0 ⇐⇒ Lt = ∅, we can simply out mt = 0 since this corresponds to the case that494

the condition (i) does not hold, i.e. P (Rt ≤ bt | Rt−1 > B,Ft−1) ≈ 0. Otherwise, we continue to495

construct φ̂t(1), . . . , φ̂
(6)
t as follows:496

E (hi=1,t | Rt−1 ≥ B,Ft−1)← φ̂t(1) =
1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,t

E (Rt−1 | Rt−1 ≥ B,Ft−1)← φ̂
(2)
t =

1

|Lt|
∑
k∈Lt

R̂
{k}
t−1

V (hi=1,t | Rt−1 ≥ B,Ft−1)← φ̂
(3)
t =

1

|Lt|
∑
k∈Lt

(
ĥ
kk}
i=1,t

)2
− (φ̂t(1))

2

Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)

← φ̂
(4)
t =

1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,tĥ

{k}
i=2,t − φ̂t(1)

(
1

|Lt|
∑
k∈Lt

ĥ
{k}
i=2,t

)

V [Rt−1 | Rt−1 ≥ B,Ft−1]← φ̂
(5)
t =

1

|Lt|
∑
k∈Lt

(
R̂

{k}
t−1

)2
−
(
φ̂
(2)
t

)2
Cov (hi=1,t,Rt−1 | Rt−1 ≥ B,Ft−1)← φ̂

(6)
t =

1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,tĥ

{k}
i=2,t − φ̂t(1)φ̂

(2)
t

(22)

From (18), (19) and the Monte-Carlo estimates above, we then have estimators for497

E [Rt | Rt−1 ≥ B,Ft−1] ,V [Rt | Rt−1 ≥ B,Ft−1] in terms of φ̂t(1), . . . , φ̂
(6)
t as follows498

E [Rt | Rt−1 ≥ B,Ft−1]← mt · φ̂t(1) + φ̂
(2)
t

V [Rt | Rt−1 ≥ B,Ft−1]←
(
mt · φ̂(3)

t +mt (mt − 1) · φ̂(4)
t

)
+ φ̂

(5)
t +mt · φ̂(6)

t

The two inequalities in (17) then become499

mt · φ̂t(1) + φ̂
(2)
t ≥ bt (23a)

1

1 +

(
mt·φ̂t(1)+φ̂

(2)
t −bt

)2(
mt·φ̂(3)

t +mt(mt−1)·φ̂(4)
t

)
+φ̂

(5)
t +mt·φ̂(6)

t

≤ ∆t (23b)

respectively. Assume that ∆t > 0 or else set mt = 0 directly. Observe that (23b) can be written as,500

with qt := ∆−1
t − 1,501

Atm
2
t +Btmt + Ct ≥ 0

where502

At := (φ̂t(1))
2 − qtφ̂

(4)
t

Bt := 2φ̂t(1)
(
φ̂
(2)
t − bt

)
− qtφ̂

(3)
t + qtφ̂

(4)
t − qtφ̂

(6)
t

Ct :=
(
φ̂
(2)
t − bt

)2
− qtφ̂

(5)
t

(24)

Then one can choose mt to be the largest, positive integer in the range defined by503

mt · φ̂t(1) + φ̂
(2)
t ≥ bt, Atm

2
t +Btmt + Ct ≥ 0
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If the range does not contain any positive integer, we set mt = 0. Note that the range can be504

easily identified after solving the quadratic equation Atm
2
t + Btmt + Ct = 0. Algorithm 2 gives505

the algorithm that outputs ramp sizes adaptively. Note that by construction, it gives a (δ,B)-RRC506

experiments if the Monte-Carlo estimators are sufficiently accurate.507

Algorithm 2 Output ramp size adaptively

Input: B < 0, δ ∈ [0, 1)

1: Initialize t← 1,
∏0

r=1 (1−∆r)← 1

2: while
∏t−1

r=1 (1−∆r) > 1− δ do
3: choose ∆t ∈

[
0, 1−δ∏t−1

r=1(1−∆r)
− 1
]
, bt ≥ B

4: run MCMC to obtain posterior samples in (21) and computes φ̂t(0)
5: if φ̂t(0)← 0 then mt ← 0
6: else
7: compute φ̂t(1), . . . , φ̂

(6)
t using (22) and then At,Bt,Ct by (24)

8: find Vt ←
{
m ∈ N+ ∩ [0,Nt/2] : m · φ̂t(1) + φ̂

(2)
t ≥ bt,Atm

2 +Btm+ Ct ≥ 0
}

9: if Vt ̸= ∅ then
10: mt ← maxVt
11: else
12: mt ← 0
13: end if
14: end if
15: Output mt and then conduct stage t-experiment and observe the outcomes
16: update t← t+ 1
17: end while

We have conducted preliminary simulations of the proposed procedure for a multivariate Gaussian508

outcome model with Gaussian-inverse-Wishart prior, and observed satisfactory results. However,509

we defer presenting numerical results until future work when a more systematic investigation of510

Monte-Carlo based procedures can be conducted.511

F Linkedin experiment data512

In Table 1 below, µtrue (w),σ(w)
2
,w = 0, 1 are sample statistics from the actual LinkedIn experiment.513

Nt are incoming population size reduced by 104 factor for tractability on a personal computer.514

Stages t 1 2 3 4 5 6

µtrue(0) 0.3648 0.3780 0.3752 0.2317 0.4009 0.3930
µtrue(1) 0.3659 0.3788 0.3754 0.2317 0.4010 0.3941
σ(0)

2 2.0993 2.2769 2.0909 1.1165 2.2705 2.3982
σ(1)

2 2.0923 2.2248 2.0135 1.0526 2.2476 2.4430
Nt 10,756 10,460 10,598 7,580 10,550 10,688

Table 1: Linkedin experiment data

G Thompson-sampling based Bayesian bandit515

This algorithm is developed in [27, Section 4] for clinical trials. The algorithm assigns a user i at516

stage t ≥ 1 to treatment with probability517

P (i ∈ Tt) =
P (µtrue (1) > µtrue (0) | Ft−1)

c

P (µtrue (1) > µtrue (0) | Ft−1)
c
+ P (µtrue (1) ≤ µtrue (0) | Ft−1)

c

19



for tuning parameter c > 0. Under Definition 3.1, by (15d), we have that518

P (µtrue (1) > µtrue (0) | Ft−1) = Φ

(
µp,t(1)− µp,t(0)√
σp,t(0)2 + σp,t(1)2

)
.
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