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A Proofs452

The section collects the proofs for the technical results in the main text. Section A.1 and A.2 are453

devoted to the proof of Lemma 3.1 and Theorem 3.2, respectively. In the end, Section A.3 provides454

proofs for the coverage gap bounds in the two examples in Section 3.3.455

A.1 Proof of Lemma 3.1456

Fix a set of locations B := {(i1, j1), . . . , (incal+1, jncal+1)}, and an index 1  m  ncal +1. By the457

definition of conditional probability, we have458

P ((i⇤, j⇤) = (im, jm) | Scal [ {(i⇤, j⇤)} = B, Str = S0)

=
P ((i⇤, j⇤) = (im, jm),Scal = B\{(im, jm)} | Str = S0, |S| = n)

P (Scal [ {(i⇤, j⇤)} = B | Str = S0, |S| = n)

=
P ((i⇤, j⇤) = (im, jm),Scal = B\{(im, jm)} | Str = S0, |S| = n)

Pncal+1
l=1 P ((i⇤, j⇤) = (il, jl),Scal = B\{(il, jl)} | Str = S0, |S| = n)

.

It then boils down to computing P (Scal = S1, (i⇤, j⇤) = (il, jl) | Str = S0, |S| = n) for any fixed459

set S1 and fixed location (il, jl) /2 S0 [ S1. To this end, we have the following claim (we defer its460

proof to the end of this section)461

P (Scal = S1, (i⇤, j⇤) = (il, jl) | Str = S0, |S| = n)

=
1

d1d2 � n
·

Q
(i,j)2S1

pij

1�pijP
A2⌦Str,n

Q
(i0,j0)2A

pi0j0

1�pi0j0

, (8)
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where ⌦Str,n = {A ✓ [d1]⇥ [d2] : |A| = n� |Str|, A \ Str = ?}. As a result, we obtain462

P ((i⇤, j⇤) = (im, jm) | Scal [ {(i⇤, j⇤)} = B, Str = S0, |S| = n)

=

Q
(i,j)2B\{(im,jm)}

pij

1�pijPncal+1
l=1

Q
(i,j)2B\{(il,jl)}

pij

1�pij

=
him,jmPncal+1

l=1 hil,jl

, (9)

where hij = (1� pij)/pij . This finishes the proof.463

Proof of Equation (8). Fix any two disjoint subsets S0,S1 ✓ [d1]⇥ [d2] with |S0|+ |S1| = n. We464

have465

P (Scal = S1,Str = S0 | |S| = n)

=P (supp(Z) = S0 [ S1,S0 ✓ supp(W),S1 ✓ supp(W)c | |S| = n) .

Since W and Z are independent, one further has466

P (supp(Z) = S0 [ S1,S0 ✓ supp(W),S1 ✓ supp(W)c | |S| = n)

=P (S0 ✓ supp(W),S1 ✓ supp(W)c) · P (supp(Z) = S0 [ S1 | |S| = n)

=q
|S0|(1� q)|S1| · P (supp(Z) = S0 [ S1 | |S| = n)

=
q
|S0|(1� q)|S1|

P(|S| = n)

Y

(i0,j0)2[d1]⇥[d2]

(1� pi0j0)
Y

(i,j)2S0[S1

pij

1� pij
, (10)

where the last two identities are based on direct computations.467

Based on (10), one can further compute468

P (Str = S0 | |S| = n)

=
X

A2⌦Str,n

P (Scal = A,Str = S0 | |S| = n)

=
q
|S0|(1� q)n�|S0|

P(|S| = n)

X

A2⌦Str,n

Y

(i0,j0)2[d1]⇥[d2]

(1� pi0j0)
Y

(i,j)2S0[A

pij

1� pij
, (11)

where the last identity uses Equation (10).469

Now we are ready to prove (8). Recall that the new data point (i⇤, j⇤) | S is drawn uniformly from470

Unif(Sc). Therefore one has471

P (Scal = S1, (i⇤, j⇤) = (in+1, jn+1) | Str = S0, |S| = n)

=
P (Scal = S1,Str = S0, (i⇤, j⇤) = (in+1, jn+1) | |S| = n)

P (Str = S0 | |S| = n)

=
P ((i⇤, j⇤) = (in+1, jn+1) | S = S1 [ S0)P (Scal = S1,Str = S0 | |S| = n)

P (Str = S0 | |S| = n)

=
1

d1d2 � n
·

Q
(i,j)2S1

pij

1�pijP
A2⌦Str,n

Q
(i0,j0)2A

pi0j0

1�pi0j0

, (12)

where the last line follows from (10) and (11).472

A.2 Proof of Theorem 3.2473

First, fix any a 2 [0, 1]. Lemma 3.1, together with the weighted conformal prediction framework of474

Tibshirani et al. (2019), implies that475

P
⇣
Mi⇤j⇤ 2 cMi⇤j⇤ ± q

⇤
i⇤j⇤(a) · bsi⇤j⇤

���Str,Scal [ {(i⇤, j⇤)}
⌘
� 1� a,
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where476

q
⇤
i⇤j⇤(a) = Quantile1�a

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

wij · �Rij

1

A ,

and477

wij =
hijP

(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0
.

Indeed, here a can be any function of the random variables we are conditioning on—that is, a may478

depend on n, on Str, and on Scal [ {(i⇤, j⇤)}.479

Next define a = ↵+� where � is defined as in (6). We observe that, since each bhij is a function of480

Str, then � (and thus also a) can therefore be expressed as a function of n, Str, and Scal [ {(i⇤, j⇤)}.481

Therefore, applying the work above, we have482

P
⇣
Mi⇤j⇤ 2 cMi⇤j⇤ ± q

⇤
i⇤j⇤(↵+�) · bsi⇤j⇤

���Str,Scal [ {(i⇤, j⇤)}
⌘
� 1� ↵��

and thus, after marginalizing,483

P
⇣
Mi⇤j⇤ 2 cMi⇤j⇤ ± q

⇤
i⇤j⇤(↵+�) · bsi⇤j⇤

⌘
� 1� ↵� E[�].

Next, we verify that484

bq � q
⇤
i⇤j⇤(↵+�)

holds almost surely—if this is indeed the case, then we have shown that485

P
⇣
Mi⇤j⇤ 2 cMi⇤j⇤ ± bq · bsi⇤j⇤

⌘
� 1� ↵� E[�],

which establishes the desired result. Thus we only need to show that bq � q
⇤
i⇤j⇤(↵+�), or equivalently,486

Quantile1�↵

0

@
X

(i,j)2Scal

bwij · �Rij + bwtest · �+1

1

A � Quantile1�↵��

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

wij · �Rij

1

A .

Define487

w
0
ij =

bhijP
(i0,j0)2Scal[{(i⇤,j⇤)}

bhi0j0
(13)

for all (i, j) 2 S [ {(i⇤, j⇤)}. Then by definition of bw, we see that w0
ij � bwij for (i, j) 2 S, and488

therefore,489

Quantile1�↵

0

@
X

(i,j)2Scal

bwij · �Rij + bwtest · �+1

1

A

� Quantile1�↵

0

@
X

(i,j)2Scal

w
0
ij · �Rij + w

0
(i⇤,j⇤)

· �+1

1

A � Quantile1�↵

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

w
0
ij · �Rij

1

A

holds almost surely. Therefore it suffices to show that490

Quantile1�↵

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

w
0
ij · �Rij

1

A � Quantile1�↵��

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

wij · �Rij

1

A

holds almost surely. Indeed, we have491

dTV

0

@
X

(i,j)2Scal[{(i⇤,j⇤)}

w
0
ij · �Rij ,

X

(i,j)2Scal[{(i⇤,j⇤)}

wij · �Rij

1

A  1

2

X

(i,j)2Scal[{(i⇤,j⇤)}

|w0
ij�wij | = �,

where dTV denotes the total variation distance. This completes the proof.492
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A.3 Proofs for examples in Section 3.3493

Recall the definition of �:494

� =
1

2

X

(i,j)2Scal[{(i⇤,j⇤)}

�����
bhijP

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0

� hijP
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0

����� .

Note that �  1 by definition. We start with stating a useful lemma to bound the coverage gap �495

using the estimation error of bhij .496

Lemma A.1. By the definition of the coverage gap �, we have497

� 
P

(i,j)2Scal[{(i⇤,j⇤)} |bhij � hij |
P

(i0,j0)2Scal

bhi0j0
. (14)

A.3.1 Proof for Example 3.3.1498

Under the logistic model, one has for any (i, j)499

P((i, j) 2 Str) = q · pij =
q · exp(ui + vj)

1 + exp(ui + vj)
.

In this case, if bu and bv are the constrained maximum likelihood estimators in Example 3.3.1,500

Theorem 6 in Chen et al. (2023) implies that501

kbu� uk1 = OP

 r
log d1
d2

!
, kbv � vk1 = OP

 r
log d2
d1

!
,

with the proviso that kuk1 + kvk1  ⌧ < 1, d2 �
p
d1 log d1 and d1 � (log d2)2. Then for502

hij = exp(�ui � vj) and bhij = exp(�bui � bvj), we have503

max
i,j

|bhij � hij | = max
i,j

e
�ui�vj

⇣
e
�(bui�ui)�(bvj�vj) � 1

⌘
= OP

 r
log d1
d2

+

r
log d2
d1

!
.

Further, as mini,j hi,j = mini,j exp(�ui � vj) � e
�⌧ , then with probability approaching one, for504

every (i, j) 2 [d1]⇥ [d2], one has bhi,j � hi,j � |hij �bhij | � e
�⌧

/2 =: h0. By the upper bound (14),505

we have506

� .
r

log d1
d2

+

r
log d2
d1

⇣

s
logmax{d1, d2}
min{d1, d2}

.

Further, as �  1, we have E[�] .
q

logmax{d1,d2}
min{d1,d2} .507

A.3.2 Proof of Example 3.3.2508

Define the link function  (t) = q(1 + e
��(t)), where � is monotonic. Applying Theorem 1 in the509

paper (Davenport et al., 2014), we obtain that with probability at least 1� C1/(d1 + d2)510

1

d1d2
kbA�Ak2F 

p
2 eC⌧

s
k(d1 + d2)

d1d2
, (15)

with the proviso that d1d2 � (d1 + d2) log(d1d2). Here eC⌧ = 239/4e9/4(1 +
p
6)⌧L⌧�⌧ with511

L⌧ = sup
�⌧t⌧

| 0(t)|
 (t)(1�  (t))

, and �⌧ = sup
�⌧t⌧

 (t)(1�  (t))

| 0(t)|2 . (16)

Denote this high probability event to be E0. Since kAk1 
p
d1d2kAkF, on this event E0, we further512

have513

1

d1d2
kbA�Ak1  C⌧

✓
k(d1 + d2)

d1d2

◆1/4

,
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where C⌧ = ⇣
p
L⌧�⌧ and ⇣ is a universal constant.514

Recall that hij = exp(��(Aij)) and kAk1  ⌧ . On the same event E0, we further have515

1

d1d2
k bH�Hk1  C

0
⌧

✓
k(d1 + d2)

d1d2

◆1/4

, (17)

where C
0
⌧ = 2e�(⌧)

q
eC⌧ .516

By the feasibility of the minimizer bA and the fact that bhij = exp(��( bAij)), we have bhij � h0 =517

e
��(⌧) for all (i, j). This together with the upper bound (14) implies that518

�  1

h0ncal

X

(i,j)2Scal[{(i⇤,j⇤)}

|hij � bhij | 
1

h0ncal
k bH�Hk1.

Define a second high probability event E1 = {ncal � (1 � c)(1 � q)kPk1}. Using the Chernoff519

bound, we have P (E1) � 1� C0(d1d2)�5. Therefore, on the event E0 \ E1, we have520

�  d1d2

ch0(1� q)kPk1
C

0
⌧

✓
k(d1 + d2)

d1d2

◆1/4

.

Under the assumptions that pij = 1/(1 + e
��(Aij)), and that kAk1  ⌧ , we know that pij � C2521

for some constant that only depends on ⌧ . As a result, we have kPk1 � C2d1d2, which further leads522

to the conclusion that523

�  1

cC2h0(1� q)
C

0
⌧

✓
k(d1 + d2)

d1d2

◆1/4

.

on the event E0 \ E1. In addition, on the small probability event (E0 \ E1), one trivially has �  1.524

Therefore simple combinations of the cases yields the desired bound on E[�].525

A.3.3 Proof of Lemma A.1526

Reusing the definition of w0 (13), one has527

� =
1

2

X

(i,j)2Scal[{(i⇤,j⇤)}

|wij � w
0
ij |

=
1

2

X

(i,j)2Scal[{(i⇤,j⇤)}

��hij
P

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0 � bhij

P
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0

��
⇣P

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0

⌘⇣P
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0

⌘

 1

2

X

(i,j)2Scal[{(i⇤,j⇤)}

(
hij

��P
(i0,j0)2Scal[{(i⇤,j⇤)}

bhi0j0 �
P

(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0
��

⇣P
(i0,j0)2Scal[{(i⇤,j⇤)}

bhi0j0

⌘⇣P
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0

⌘

+
|bhij � hij |

P
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0⇣P

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0

⌘⇣P
(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0

⌘
)

=
1

2

��P
(i0,j0)2Scal[{(i⇤,j⇤)}

bhi0j0 �
P

(i0,j0)2Scal[{(i⇤,j⇤)} hi0j0
��

⇣P
(i0,j0)2Scal[{(i⇤,j⇤)}

bhi0j0

⌘ +
1

2

P
(i,j)2Scal[{(i⇤,j⇤)} |bhij � hij |⇣P

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0

⌘


P

(i,j)2Scal[{(i⇤,j⇤)} |bhij � hij |
P

(i0,j0)2Scal[{(i⇤,j⇤)}
bhi0j0

. (18)

This completes the proof.528

B Additional numerical experiments529

In this section, we provide additional simulation results. In Section B.1, the confidence intervals530

are visualized. We also present the simulation results for the convex relaxation (cvx) and the531

conformalized convex method (cmc-cvx) in both settings with homogeneous and heterogeneous532

missingness in Section B.2 and B.4.533
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(a) Large sample size + Gaussian
noise: r = r⇤ = 8

(b) Large sample size + Gaussian
noise: r⇤ = 8 < 50 = r

(c) Coherent matrix: r = 6 < 8 =
r⇤

Figure 4: Histogram of standardized scores for als and prediction lower and upper bounds for 50
distinct unobserved entries.

(a) Setting 1: Large sample size + Gaussian noise (b) Setting 2: Small sample size+Gaussian noise

(c) Setting 3: Large sample size + heavy-tailed noise (d) Setting 4: Violation of incoherence

Figure 5: Comparison between conformalized and model-based matrix completion approaches.

B.1 Illustration of confidence intervals and normalized scores534

In Figure 4, we present the histogram of standardized scores (cMij � Mij)/
q
b✓2ij + b�2 and the535

plot of the upper and lower bounds for three settings. In Figure 4a, when the model assumptions536

are met and r = r
⇤, the scores match well with the standard Gaussian and the prediction bounds537

produced by als and cmc-als are similar. With the same data generating process, when the rank is538

overparametrized, the distribution of scores cannot be captured by the standard Gaussian, thus the539

quantiles are misspecified. As we can see from the confidence intervals, als tends to have smaller540

intervals which lead to the undercoverage. In the last setting, the underlying matrix is no longer541

incoherent. When the rank is underestimated, the r
⇤ � r factors will be captured by the noise term542

and the high heterogeneity in the entries will further lead to overestimated noise level. As a result,543

the intervals by als are much larger while the conformalized intervals are more adaptive to the544

magnitude of entries.545

B.2 Additional results for homogeneous misingness546

In this section, we present the results for synthetic simulation with the convex relaxation cvx and547

the conformalized convex matrix completion method cmc-cvx. Setting 1, 2, 3, 4 are the same as548

introduced in Section4.1. The true rank is r⇤ = 8 and the hypothesized rank varies from 4 to 24 with549

the stepsize 4.550

The conformalized methods, regardless of the based algorithm adopted, have nearly exact coverage551

around 1 � ↵. But we can observe different behaviors between als and cvx since the convex552

relaxation is free of the choice of r until the projection of cMcvx onto the rank-r subspace (Chen et al.,553

2020). As a result, when r > r
⇤, cvx tends to overestimate the strength of the noise. In Figure 5a, 5b554

and 5d, when r > r
⇤, cvx has coverage rate higher than the target level and the confidence interval555
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is more conservative than conformalized methods. Since the accuracy of cvx is based on the large556

sample size, in Figure 5b, when the effective sample size is insufficient with small pij , the residuals557

from cvx have a large deviation from the standard distribution and the intervals are much larger than558

the oracle ones. Besides, in Figure 5c, when the noise has heavy tails than Gaussian variables, cvx559

overestimates the noise strength similar to als and is conservative in coverage. When the incoherence560

condition is violated in Figure 5d, if r < r
⇤, both cvx and als fit the missed factor by overestimating561

the noise strength and produce extremely large intervals.562

B.3 Estimation error for one-bit matrix estimation563

The estimation error in bpij can be visualized from the following heatmaps comparing P and bP. Here564

the entries are sorted by the order of pij for each row and each column.565

(a) k⇤ = 1: d1 = d2 = 500. (b) k⇤ = 1: d1 = d2 = 2000.

(c) k⇤ = 5: d1 = d2 = 500. (d) k⇤ = 5: d1 = d2 = 2000.

Figure 6: Heatmaps for P and bP.

B.4 Additional results for heterogeneous missingness566

In Figure 7, we present the results for synthetic simulation with the convex relaxation cvx as the567

base algorithm, where we denote cmc-cvx and cmc⇤-cvx as the conformalized matrix completion568

method with estimated weights and true weights, respectively. Three settings with heterogeneous569

missingness are the same as Figure 2.570

B.5 Additional plots for the sales dataset571

Denote M the underlying matrix in the sales dataset. In Figure 8a, we plot singular values of M572

and top-5 singular values contain a large proportion of the information. In Figure 8b, we plot the573

histogram of entries Mij’s of the underlying matrix, and the sales dataset has the range from 0 to574

over 20 thousand with a heavy tail.575

In Figure 9, cmc-cvx has nearly exact coverage at 1� ↵, but cvx tends to have higher coverage than576

the target level. Besides, the convex approach has much larger intervals when r is large, which can be577

caused by the overfitting of the observed entries. As conformalized approach leaves out a proportion578

of observed entries as the training set, intervals produced by cmc-cvx are less accurate than cvx due579

to the poorly behaved base algorithm.580
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(a) Gaussian noise: k⇤ = 1. (b) Gaussian noise: k⇤ = 5.

(c) Adversarial heterogeneous noise: k⇤ = 1. (d) Adversarial heterogeneous noise: k⇤ = 5.

(e) Random heterogeneous noise: k⇤ = 1. (f) Random heterogeneous noise: k⇤ = 5.

Figure 7: Comparison under heterogenous missingness.

(a) Singular values of the underlying matrix M. (b) Histogram of entries in M.

Figure 8: Descriptive plots for the underlying matrix M.

C Additional details of algorithms and extensions581

C.1 Extension to likelihood-based scores and categorical matrices582

We will show in this section that cmc can also be applied to categorical matrix completion (Cao and583

Xie, 2015) or a more general setting in (19), the validity of which is also guaranteed by the presented584

theorem.585

Setup To formulate the problem, consider an underlying parameter matrix M
⇤ 2 [d1]⇥ [d2] and586

the observations {Mij : i 2 [d1], j 2 [d2]} are drawn from the distribution587

Mij | M⇤
ij ⇠ PM⇤

ij
, (19)

where {P✓}✓2⇥ can be a family of parametric distributions with probability density p✓. The cat-588

egorical matrix completion is a specific example where the support of Mij is finite or countable.589

For example, a Poisson matrix is generated by Mij ⇠ Pois(M⇤
ij), where M

⇤
ij is the Poisson mean.590

Similar to the previous setup, we treat M as deterministic, and entries in the subset S ✓ [d1]⇥ [d2]591

are available. Here S is sampled in the same manner as before with the matrix P 2 [d1]⇥ [d2].592
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(a) Homogeneous missingness. (b) Heterogeneous missingness with k⇤ = 1.

Figure 9: Comparison between conformalized and model-based matrix completion with sales dataset.

Split conformal approach Consider the split approach with the partition S = Str [ Scal as in593

Algorithm 1. With the training set Mtr, we obtain an estimated likelihood function b⇡(m; i, j) such594

that595

b⇡(m; i, j) = bpM⇤
ij
(m),

which is an estimate for the true likelihood of Mij at m. The estimation can be feasible given596

certain low-complexity structures. For example, if a hypothesized distribution family {Q✓}✓2⇥ with597

probability density q✓ is given and the underlying mean matrix M
⇤ is assumed to be low-rank. Then,598

M can be viewed as a perturbation of M⇤ and we can estimate M⇤ via matrix completion algorithms599

with entries in Mtr. Denote cM as the estimate for M⇤, then we have the estimated likelihood600

b⇡(m; i, j) = qcMij
(m).

The odds ratios are also estimated from the training set, i.e. bhij , from which we compute the weights601

bwij =
bhijX

(i0,j0)2Scal

bhi0j0 + max
(i0,j0)2Sc

bhi0j0
, (i, j) 2 Scal, bwtest =

bhi⇤j⇤X

(i0,j0)2Scal

bhi0j0 + max
(i0,j0)2Sc

bhi0j0
.

For each (i, j) 2 Scal, calculate the likelihood-based nonconformity score602

Rij = �b⇡(Mij ; i, j).

Then, for any test point (i⇤, j⇤) 2 Sc, we can construct the confidence interval603

bC(i⇤, j⇤) = {m 2 [K] : b⇡(m; i⇤, j⇤)  bq} ,

where bq is the weighted quantile604

bq = Quantile1�↵

0

@
X

(i,j)2Scal

bwij · �Rij + bwtest · �+1

1

A .

More examples of conformal methods for classification are shown in Romano et al. (2020), An-605

gelopoulos et al. (2020), etc.606

C.2 Full conformalized matrix completion607

In Algorithm 2, the procedure of the full conformalized matrix completion (full-cmc) is presented.608

This full conformal version of cmc offers the same coverage guarantee as given in Theorem 3.2 for609

the split version of cmc (except with the entire observed set S in place of Scal, when defining �(bw);610

the formal proof of this bound for full conformal is very similar to the proof of Theorem 3.2, using611

an analogous weighted exchangeability argument as in Lemma 3.1, and so we omit it here.612

To define this algorithm, we need some notation: given the observed data MS , plus a test point613

location (i⇤, j⇤) and a hypothesized value m for the test point Mi⇤j⇤ , define a matrix M
(m) with614

entries615

M
(m)
ij =

8
<

:

Mij , (i, j) 2 S,
m, (i, j) = (i⇤, j⇤),
;, otherwise,

(20)
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Algorithm 2 full-cmc: full conformalized matrix completion
1: Input: target level 1� ↵; partially observed matrix MS .
2: Using the training data MS , compute an estimate bP of the observation probabilities (with bpij

estimating pij , the probability of entry (i, j) being observed).
3: for (i⇤, j⇤) in Sc do
4: for m 2 M do
5: Augment MS with one additional hypothesized entry, {Mi⇤,j⇤ = m}, to obtain M

(m)

defined as in (20).
6: Using the imputed matrix M

(m)
S , compute:

• An initial estimate cM(m) using any matrix completion algorithm (with cM (m)
ij estimating

the target Mij);

• Optionally, a local uncertainty estimate bs(m) (with bs(m)
ij estimating our relative uncertainty

in the estimate cM (m)
ij ), or otherwise set bs(m)

ij ⌘ 1;

• An estimate bP of the observation probabilities (with bpij estimating pij , the probability of
entry (i, j) being observed).

7: Compute normalized residuals for (i, j) 2 S [ {(i⇤, j⇤)},

R
(m)
ij =

|Mij � cM (m)
ij |

bs(m)
ij

.

8: Compute weights

bwij =
bhijP

(i0,j0)2S[{(i⇤,j⇤)}
bhi0j0

, bhij =
1� bpij
bpij

, (i, j) 2 S [ {(i⇤, j⇤)}.

9: Compute the weighted quantile

bq(m)(i⇤, j⇤) = Quantile1�↵

0

@
X

(i,j)2S

bwij�R(m)
ij

+ bwi⇤j⇤�+1

1

A (21)

10: end for
11: end for
12: Output:

n
bC (i⇤, j⇤) =

n
m 2 M : R

(m)
i⇤j⇤

 bq(m)(i⇤, j⇤)
o
: (i⇤, j⇤) 2 Sc

o

where, abusing notation, “Mij = ;” denotes that no information is observed in this entry.616

We note that, when M = R (or an infinite subset of R), the computation of the prediction set617

is impossible in most of the cases. In that case, our algorithm can be modified via a trimmed or618

discretized approximation; these extensions are presented for the regression setting in the work of619

Chen et al. (2016, 2018), and can be extended to the matrix completion setting in a straightforward620

way.621

C.3 Exact split conformalized matrix completion622

In Algorithm 3, we present the exact split approach, which is less conservative than our one-shot623

approach given in Algorithm 1, but may be less computationally efficient. In this version of the624

algorithm, the quantile bq = bq(i⇤, j⇤) needs to be computed for each missing entry since the weight625

vector bw depends on the value of bpi⇤,j⇤ .626
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Algorithm 3 split-cmc: split conformalized matrix completion

1: Input: target coverage level 1� ↵; data splitting proportion q 2 (0, 1); observed entries MS .
2: Split the data: draw Wij

i.i.d.⇠ Bern(q), and define training and calibration sets,

Str = {(i, j) 2 S : Wij = 1}, Scal = {(i, j) 2 S : Wij = 0}.

3: Using the training data MStr indexed by Str ✓ [d1]⇥ [d2], compute:
• An initial estimate cM using any matrix completion algorithm (with cMij estimating the

target Mij);
• Optionally, a local uncertainty estimate bs (with bsij estimating our relative uncertainty in the

estimate cMij), or otherwise set bsij ⌘ 1;
• An estimate bP of the observation probabilities (with bpij estimating pij , the probability of

entry (i, j) being observed).
4: Compute normalized residuals on the calibration set,

Rij =

��Mij � cMij

��
bsij

, (i, j) 2 Scal.

5: Compute estimated odds ratios for the calibration set and test set,

bhij =
bpij

1� bpij
, (i, j) 2 Scal [ Sc

,

6: for (i⇤, j⇤) 2 Sc do
7: Compute weights for the calibration set and test point,

bwij =
bhijX

(i0,j0)2Scal

bhi0j0 + bhi⇤j⇤

, (i, j) 2 Scal, bwtest =
bhi⇤j⇤X

(i0,j0)2Scal

bhi0j0 + bhi⇤j⇤

.

8: Compute threshold

bq(i⇤, j⇤) = Quantile1�↵

0

@
X

(i,j)2Scal

bwij · �Rij + bwtest · �+1

1

A ,

where �t denotes the point mass at t.
9: end for

10: Output: confidence intervals

bC(i⇤, j⇤) = cMi⇤j⇤ ± bq(i⇤, j⇤) · bsi⇤j⇤
for each unobserved entry (i⇤, j⇤) 2 Sc.
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