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ABSTRACT

Machine learning (ML) may be oblivious to human bias but it is not immune to
its perpetuation. Marginalisation and iniquitous group representation are often
traceable in the very data used for training, and may be reflected or even enhanced
by the learning models. In the present work, we aim at clarifying the role played
by data geometry in the emergence of ML bias. We introduce an exactly solvable
high-dimensional model of data imbalance, where parametric control over the many
bias-inducing factors allows for an extensive exploration of the bias inheritance
mechanism. Through the tools of statistical physics, we analytically characterise
the typical properties of learning models trained in this synthetic framework and
obtain exact predictions for the observables that are commonly employed for
fairness assessment. Despite the simplicity of the data model, we retrace and
unpack typical unfairness behaviour observed on real-world datasets. We also
obtain a detailed analytical characterisation of a class of bias mitigation strategies.
We first consider a basic loss-reweighing scheme, which allows for an implicit
minimisation of different unfairness metrics, and quantify the incompatibilities
between some existing fairness criteria. Then, we consider a novel mitigation
strategy based on a matched inference approach, consisting in the introduction of
coupled learning models. Our theoretical analysis of this approach shows that the
coupled strategy can strike superior fairness-accuracy trade-offs.

1 INTRODUCTION

Machine Learning (ML) systems are actively being integrated in multiple aspects of our lives, from
face recognition systems on our phones, to applications in the fashion industry, to high stake scenarios
like healthcare. Together with the advantages of automatising these processes, however, we must
also face the consequences of their — often hidden — failures. Recent studies [Buolamwini & Gebru
(2018)); Weidinger et al.| (2021) have shown that these systems may have significant disparity in
failure rates across the multiple sub-populations targeted in the application. ML systems appear to
perpetuate discriminatory behaviours that align with those present in our society Benjamin| (2019);
Noble| (2018)); [Eubanks| (2018); Broussard| (2018)). Discrimination over marginalised groups could
originate at many levels in the ML pipeline, from the very problem definition, to data collection, to
the training and deployment of the ML algorithm Suresh & Guttag| (2021)).

Data represents a critical source of bias|Perez (2019). In some cases, the dataset can contain a record
of a history of discriminatory behaviour, causing complex dependencies that are hardly eradicated
even when the explicit discriminatory attribute is removed. In other cases (or even concurrently), the
root of the discrimination can be found in the data collection process, and is related to the structural
properties of the dataset. Heterogeneous representations of different sub-populations typically induce
major bias in the ML predictions. Drug testing provides a historically significant example: substantial
evidence |Hughes| (2007); |Perez| (2019) shows that the scarcity of data points corresponding to women
individuals in drug-efficiency studies resulted in a larger number of side effects in their group.

In spite of a vast empirical literature, a large gap remains in the theoretical understanding of the
bias-induction mechanism. A better theoretical grasp of this issue could help raise awareness and
design more theoretically grounded and effective solutions. In this work, we aim to address this gap
by introducing a novel synthetic data model, offering a controlled setting where data imbalances and
the emergence of bias become more transparent and can be better understood.



Under review as a conference paper at ICLR 2023

To the best of our knowledge, the present study constitutes the first attempt to explore and exactly
characterise by analytical means the complex phenomenology of ML fairness.

Summary of main results. We devise a novel synthetic model of data, the Teacher-Mixture (T-M),
to obtain a theoretical analysis of the bias-induction mechanism. The geometrical properties of the
model are motivated by common observations on the data structure in realistic datasets, concerning
the coexistence of non-trivial correlations at the level of the inputs and between inputs and labels
(some empirical observations can be found in appendix [B). In particular, we focus on the role played
by the presence of different sub-populations in the data, both from the point of view of the input
distribution and from that of the labelling rule. Surprisingly, this simple structural feature is sufficient
for producing a rich and realistic ML fairness phenomenology.

The parameters of the T-M can be tuned to emulate disparate learning regimes, allowing for an
exploration of the impact of each bias-inducing factor and for an assessment of the effectiveness of a
tractable class of mitigation strategies. In summary, in the present work we:

* Derive, through a statistical physics approach, an analytical characterisation of the typical
performance of solutions of the T-M problem in the high-dimensional limit. The obtained
learning curves are found to be in perfect agreement with numerical simulations in the
same synthetic settings (as shown in the central panel in Fig. [I)), and produce unfairness
behaviours that are closely reminiscent of the results seen on real data.

* Isolate the different sources of bias (shown in the left panel of Fig.[T)) and evaluate their
interplay in the bias-induction mechanism. This analysis also allows us to highlight how
unfairness can emerge in settings where the data distribution is apparently balanced.

* Trace a positive transfer effect between the different sub-populations, which implies that,
despite their distinctions, an overall similarity can be exploited for achieving better perfor-
mance on each group.

* Analyse the trade-offs between the different definitions of fairness, by studying the effects
of a sample reweighing mitigation strategy, which can be encompassed in the theoretical
framework proposed in this work and thus characterised analytically.

* Propose a model-matched mitigation strategy, where two coupled networks are simultane-
ously trained and can specialise on different sub-populations while mutually transferring
useful information. We analytically characterise its effectiveness, finding that with this
method, in the T-M, the competition between accuracy and different fairness metrics be-
comes negligible. Preliminary positive results are also reported on real data.

Further related works. In the past decade, algorithmic fairness has been receiving growing
attention, spurred by the increasing number of ML applications in highly consequential social and
economic areas Datta et al.[| (2015)); Metz & Satariano| (2020); /Angwin et al. (2016). A central
question in the field is on the proper mathematical definition of bias: the plethora of alternative
fairness criteria includes measures of group fairness, e.g. statistical parity (Corbett-Davies et al.
(2017); IDwork et al.|(2012); |[Kleinberg et al.| (2016), disparate impact (Calders & Verwer| (2010);
Feldman et al.| (2015); [Zafar et al.| (2017b); |Chouldechoval (2017)), equality of opportunity [Hardt
et al.[(2016)), calibration within groups Kleinberg et al.| (2016)), disparate mistreatment [Zafar et al.
(2017a), as well as measures of individual fairness|Speicher et al.|(2018]); Castelnovo et al.| (2022)).
We focus on group fairness in the following, since it is well-defined also in the high-dimensional limit
considered in our theoretical framework. Recent works have highlighted incompatibilities between
some of these fairness measures |[Kleinberg et al.|(2016); |(Corbett-Davies & Goel|(2018); | Barocas et al.
(2019)), e.g. calibration and error disparity [Pleiss et al.| (2017)), and their instability with respect to
fluctuations in the training dataset Friedler et al.|(2019); Castelnovo et al.|(2022). Our work is the first
to allow an exact quantification of the intrinsic trade-offs between these notions of group-fairness.

A second major topic in the field of algorithmic fairness is that of bias mitigation. In this work, we
focus on in-processing strategies |Arrieta et al.|(2020), where the training process is altered in order to
include fairness as a secondary optimisation objective for the learning model. These methods range
from including ad hoc regularisation terms to the loss function Kamishima et al.|(2012)); Huang &
Vishnoi| (2019)), to formulating fair classification as a constrained optimisation problem and deriving
reduction-based algorithms |Agarwal et al.|(2018;2019); |Celis et al.| (2019). Other possible strategies
include adversarial training Zhang et al.| (2018)), where a fairness-arbiter model can drive learning
towards a sough fairness criterion, and distributionally robust optimisation |Stowik & Bottou|(2021),
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Figure 1: T-M model. Often we can distinguish sub-populations as clusters in a dataset according to
some features. The label, e.g. effectiveness of a drug, is given by some rule acting on the data an may
differ for the two subpopulations. In the T-M model, (Left), the two sub-populations are drawn from
two Gaussians around the two centres (green and orange triangles). The labels (plus and minus) are
associated according to the hyper-planes W:ﬁ, W . In this 2D drawing we can see that the group +
(green) has 3 samples while group — (orange) has 7 samples, so p = 0.3. The two hyper-planes are
highly overlapping (g =~ 1) and weakly aligned with the shift vector (m4 ~ 0, m_ = 0). Finally,
we see that sub-population + is less spread than sub-population — (A} < A_). (Centre) For this
model, the test error can be calculated exactly, shown here as a function of p (solid curve). Numerical
simulations (dots) closely match the analytical results. The panel exemplify the importance of p in
creating bias against one sub-population or the other. (Right) Effect of changing one of the model
parameter in terms of test accuracy gap, starting the from the set-up of the central panel with p = 0.2.

where one accounts for worst-case unfairness scenarios across the sub-populations in the data. In
this work, we analyse two simple schemes whose performance can be analytically traced in our
framework. First, an approach |Kamiran & Calders| (2012); Plecko & Meinshausen| (2020); Lum
& Johndrow| (2016)) based on loss-reweighing according to the associated subgroup and label of
each data point. Second, we propose —and analyse— a novel method based on the introduction of
coupled learning models, which can be interpreted as a modification of the “two naive Bayes” model
in|Calders & Verwer (2010).

Alternative classes of debiasing approaches, which cannot be analysed within our framework, include
pre-processing strategies Calmon et al.|(2017); |Feldman et al.| (2015), learning unbiased represen-
tations |Zemel et al.| (2013)), and post-processing techniques based on Decision Theory and Causal
Reasoning [Kamiran et al.| (2012)); Plecko & Meinshausen| (2020).

2 MODELLING DATA IMBALANCE

The Teacher-Mixture model, sketched in Fig.[I] combines aspects of two common modelling frame-
works for supervised learning, namely the Gaussian-Mixture (GM) and the Teacher-Student (TS)
setups. The GM is a simple model of clustered input data, where each data point is sampled from
one of a small set of —possibly overlapping— high-dimensional Gaussian distributions, while the
TS provides a simple model of input-label correlation, where the ground-truth labels are obtained
from a random “teacher” neural network and the “’student” learning model tries to reproduce sim-
ilar outputs. While retaining analytical tractability, the novel T-M data model allows for a richer
phenomenology than the previous models, retracing the main features of real data with multiple
coexisting sub-populations. For simplicity, the results discussed in this paper will focus on the case
of two groups, but the analysis could be extended to multiple sub-populations.

More formally, we consider a synthetic dataset of n samples D = {x*, y“}zzl, with x# € RY,
y* € {0,1}. We define the O(1) ratio « = n/d and we refer to it as the data scarsity parameter.
Each input vector is i.i.d. sampled from a mixture of two symmetric Gaussians with variances
A={A A}, x~ N(+v/Vd, ALT9*%), with respective probabilities p and (1 — p). The shift
vector v is a Gaussian vector with i.i.d. entries with zero mean and variance 1. The 1/v/d scaling
corresponds to the high-noise noise regime, where the two Gaussian clouds are overlapping and
hard to disentangle Mignacco et al.| (2020); |Saglietti & Zdeborova, (2022), e.g. as in the case of
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CelebA and MEPS shown in appendix [C] The ground-truth labels, instead, are provided by two
i.i.d. Gaussian teacher vectors, namely W; and W, with components of zero mean and variance
1. Each teacher produces labels for the inputs with the corresponding group-membership, namely
y# = sign (W% -xl 4 bjTE) The thresholds b7 correspond to the teacher bias terms, included in
the model to control the fraction of positive and negative samples within the two sub-populations.
Overall, the geometric picture of the data distribution (a sketch in Fig. [T) is summarised by the
following overlaps:

1 1

Wi gr = Wi -Wr, (1)
that respectively quantify the alignment of the teacher decision boundaries with respect to the shift
vector, controlling the group-label correlation, and the overlap between the teacher vectors, controlling
the correlation between labels assigned to similar inputs belonging to different communities.

m4 =

Given the synthetic dataset D, we study the properties of a single-layer network trained via empirical
risk minimization (ERM) of the loss:

r B ¢ Tew - xt A w - xH b P 9 )
('w)—z <\/&+ 0“774_ s>+2 ;wi (2)

neD

where £(y, ) is assumed to be convex, A is an external parameter that regulates the intensity of the
L regularisation, and the index ¢ € {4, —} denotes the group membership of data point . In this
work, we derive a theoretical characterisation of the asymptotics of this learning model and consider
the possible implications from a ML fairness perspective. In particular, we aim at studying the role of
data geometry and cardinality in the training of a fair classifier.

Note that the T-M has, at the same time, the advantage of being simple, allowing better understand-
ing of the many facets of ML bias, and the disadvantage of being simple, since some modelling
assumptions might not reflect the complexity of real-world data. For example, we ignore any type
of correlation among the inputs other than the clustering structure. The goal of this modelling work
continues a long tradition of research in statistical physics, which has shown that theoretical insights
gained in prototypical settings can often be helpful to disentangle and interpret the complexity of real
world behaviour.

Remark 1 By looking at the available degrees of freedom in the T-M, several possible sources of
bias naturally emerge from the model.:

* the relative representation, p = n. /(ny + n_), with n. the number of points in group c.
* the group variance, A, determining the width of the clusters.

* the label frequencies, controlled through the bias terms b,.

* the group-label correlation, m..

* the labelling rule similarity, gr, which measures the alignment between the two teachers, i.e.
the linear discriminators that assign the labels to the two groups of inputs.

* the data scarcity, o, representing the ratio between dataset size and input dimension.

Theoretical analysis in high-dimensions. In principle, solving Eq.[2|requires finding the minimiser
of a complex non-linear, high-dimensional, quenched random function. Fortunately, statistical physics
Mézard et al.|(1987) showed that in the limit n, d — oo, n/d = «, a large class of problems, including
the T-M model, becomes analytically tractable. In fact, in this proportional high-dimensional
regime, the behaviour of the learning model becomes deterministic and trackable due to the strong
concentration properties of a narrow set of descriptors that specify the relevant geometrical properties
of the ERM estimator. The original high-dimensional learning problem can be reduced to a simple
system of equations that depends on a set of scalar overlaps:

Q:$W~W, mzéWm Ri:$W~WjTE, 3)

representing the typical norm of the trained estimator, its magnetisation in the direction of the cluster
centres, and its overlap with the two teachers of the T-M.
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Analytical result 1 In the high dimensional limit when n, d — oo at a fixed ratio « = n/d, the
scalar descriptors © = {Q, m, Ry, 0q} of the vector w obtained by the empirical risk minimisation
of Eq. [2| with a convex loss, and their Lagrange multipliers 6 = {Q, m, Ri, 3G}, converge to
deterministic quantities given by the unique fixed point of the system:

_ 35((:);)\). B 35(@);)\). B 35(@);)\). _ ,0s(6;7)
Q__2 864 ;o m= 8m ) Ri_ aRi ) 6q_2 A ) (4)
A, 0e(6;A) o 0e(O©;A) o 0e(©;Ar) . 0e(©;A)
Q—2a765q M= e Ry —aiaRi i 0= aiﬁ)@ ; (5)
with:
o A\ 2 o o
(Mt TR SR 42 (g~ T ) L e
5(8;4) = 2(3G+ \)
] (6)
VQ(eiie +be) + @B@z)
e(0;A) =E. |E, H|—y v(y,c, © 7

where ¢ € {+,—} ~ Bernoulli(p), z ~ N'(0,1), H(-) = Serfc(-/\/2) is the Gaussian tail function,
w is the solution of:

2
v(y, ¢, ©) = max [U; —E(y,\/Acéqur ACQz+cm+b)} (8)
and the bias b implicitly solves the equation Ope(0; A) = 0.

Note that this result was obtained through the non rigorous yet exact replica method from statistical
physics Mézard et al.| (1987); Engel & Van den Broeck! (2001)); Zdeborova & Krzakalal (2016)). The
derivation details are deferred to appendix [D| We remark that several analytic results obtained through
the replica method have been subsequently proved rigorously. In particular, the proofs presented by
Thrampoulidis et al.|(2015)); Mignacco et al.|(2020); |[Loureiro et al.|(2021)) in settings similar to the
present one suggest that an extension for the T-M case could be derived. However, this is left for
future work. In this manuscript, we verify the validity of our theory by comparison with numerical
simulations, as shown e.g. in the central panel of Fig.[T]

The obtained fixed point for the scalar descriptors © can be used to evaluate simple expressions for
common model evaluation metrics, such as the confusion matrix or the generalisation error.

Analytical result 2 In the same limit as in Analytical result[l] the entries of the confusion matrix,
representing the probability of classifying as § an instance sampled from sub-population c with true
label y, are given by:

p(7y;c) =E. . 9

Heav (y (\/ZcZ +eme + Ec)) H (_y(cm Zi)(;:/—f?g)l%cz>

where z ~ N(0,1) and Heav(-) is the Heaviside step function. The generalization error, representing

the fraction of wrongly labelled instances, can then be obtained as e; = E.. |:Zy7£y (7] y; c)} )

This second result provides us with a fully deterministic estimate of the accuracy of the trained
model on the different data sub-populations. These scores will be used in the following sections to
investigate the possible presence of bias in the classification output of the model. Note that theorems
and 2] allow for an extremely efficient and exact evaluation of the learning performance in the T-M,
remapping the original high-dimensional optimisation problem onto a system of deterministic scalar
equations that can be easily solved by recursion.

3 INVESTIGATING THE SOURCES OF BIAS

With these analytical results at hand, we now turn to systematically investigating the effect of the
sources of bias identified in remark [I} which potentially mine the design of a fair classifier. To
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Figure 2: Bias under different parametric settings. Impact of several parameters on the Disparate
Impact (DI) of the model. From left to right. (Panel 1) Phase diagram where each point represents the
DI (red indicates a worse accuracy on group +) for different values of rule similarity ¢ (x-axis) and
the relative representation p (y-axis). The dotted grey line denotes the 80% threshold for disparate
impact. (Panel 2) Accuracy of group + (dashed lines) and group — (dot-dashed lines), in a cut across
the first phase diagram at g7 = 0.8. The different colours indicate different levels of group-label
correlation m4.. (Panel 3) Phase diagram of the DI at fixed g7 = 1, as the group-label correlation
ma (x-axis) and p are varied. (Panel 4) Role of the dataset size (), at a cut my = 0.5 of the diagram
in panel 3.

quantify the level of bias in the predictions of the trained model, we need to choose a metric of
fairness. Throughout this section, we employ disparate impact (DI) |Feldman et al.[(2015), a ML
analogous of the 80% rule |Commission et al.| (1979), which allows a simple assessment of the
over-specialisation of the classifier on one of the sub-populations. In principle, in the T-M there is no
preferable realisation of the target attribute so we can adopt a symmetric version of DI, defined as the
ratio between test accuracy in sub-population + and sub-population —. We consider three separate
experiments to summarise some distinctive features of the fairness behaviour in the T-M: namely, the
impact of the correlation between the labelling rules and the group structure, the interplay between
relative representation and group variance, and the positive transfer effect in the data-scarse regime.
The parameters of the experiments, if not specified in the caption, are detailed in appendix [E. ]

Group-label correlation. In the two left panels of Fig.|2] we consider a scenario where the labelling
rules for the two groups are not perfectly aligned, i.e. W # W7 (and/or by # b_). Note that in
this case we have a clear mismatch between the learning model, a single linear classifier, and the
true input-output structure in the data: the learning model cannot reach perfect generalisation for
both sub-populations at the same time. For simplicity, we set an equal correlation between the two
teacher vectors and the shift vector, m = m_ > 0, and isolate the role of rule similarity gr. The
first panel shows a phase diagram of the DI (DI< 1 indicating a lower accuracy on group +), as
function of the similarity of the teachers and the fraction of 4 samples in the dataset. As intuitively
expected, the induced bias exceed the 80% rule when the labelling rules are misaligned and the group
sizes are numerically unbalanced (small g7 and p). Indeed, in the cut displayed in the second panel,
by lowering the group-label correlation m_ the gap between the measured accuracies on the two
sub-populations becomes smaller. However:

Remark 2 Even when qr = 1 and the task is solvable (i.e. the classifier can learn the input-output
mapping), the trained model can still be biased.

This is shown in the two panels on the right of Fig. [2] where a large high-bias region (DI< 80%)
exists. In particular, the third panel shows the cause of this effect in the presence of a non-zero
group-label correlation m., and in the fourth panel we see how this effect is more pronounced in
the data-scarse regime. In all four panels, as p reaches 0.5, the two sub-populations become equally
represented and the classifier achieves the same accuracy for both.

Bias and variance. In Fig.[3] we plot the DI as a function of the group variances A, for different
values of the fraction of + samples. One finds that the model might need a disproportionate number
of samples in the two groups to obtain comparable accuracies. We can see that:

Remark 3 Balancing the group relative representation does not guarantee a fair training outcome.
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Figure 3: Bias in equally represented subpopulations. We show the disparate impact as the
distribution of the two subpopulations is changed by altering their variances (A and A_). The
diagonal line gives the configurations where the two subpopulations have the same variance. The
three panels consider different levels of representation, from left to right p = 0.1, 0.3, 0.5. The latter
is the situation with both subpopulations being equally represented in the dataset. We use the red and
blue colours to quantify the disparate bias against sub-population + and — (respectively).

In fact, the quality of a group’s representation in the dataset can increase if the number of points is
kept constant but the group variance is reduced. The blue regions in the first two panels indicate a
higher accuracy for the minority group even if the dataset only contains 10% and 30% of samples
belonging to it. This exemplifies the fact that a very focused distribution (low A_) actually requires
less samples. The last panel (p = 0.5) shows the scenario one would expect a priori: on the diagonal
line the DI is balanced, but by setting Ay > A_ (or viceversa) one induces a bias in the classification.

Positive transfer. If mixing different sub-populations in the same dataset can induce unfair be-
haviour, one could think of splitting the data and train independent models. In Fig.[d] we show that a
positive transfer effect|Gerace et al.| (2022) can yet be traced between the two groups when the rules
are sufficiently similar.

Remark 4 The performance on the smaller group tends to further deteriorate if the dataset is split
according to the sub-group structure.

To clarify this point, we plot the DI as a function the data scarcity «, for several values of the rule
similarity g7 and at fixed p. We also compare the accuracies on each sub-population of a classifier
trained on the full dataset and of a baseline classifier trained only on the respective data subsets (+ in
the second figure, — in the third). If the rules are sufficiently similar (large gr), we can observe a
positive transfer and using the dataset in his entirety leads to a performance and fairness improvement.
As expected, positive transfer can be particularly useful in data-scarce regimes (small o) and becomes
ineffective or detrimental in large datasets (large «), as shown in the last panel.
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Figure 4: Positive transfer effect. Given a fixed proportion of the two sub-populations, we compare
different levels of rule similarity (¢7) as the size of the dataset is increased. The accuracy gap
(first figure) may mislead into thinking that the accuracy in one sub-population is decreasing as the
other increases, instead the accuracy is steadily increasing (second figure) for both sub-populations.
Finally, the last two figures show the accuracy in the sub-population + and — (respectively) minus
the accuracy on the same dataset when the other sub-population is perfectly removed.
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Figure 5: Mitigation trade-off. The phase diagrams show the effect of re-weighting, biasing both:
towards low mistakes in classifying sub-population + (w4 on the x-axis) and towards low mistakes
for label +1 (w; on the y-axis). The quantity shown in the diagrams are the mutual information for
the metrics introduced in the text (first three columns) and the accuracy on the two sub-populations
(last column). The diagrams for the mutual information also show red markers denoting where the
minimum is achieved.

4 MITIGATION STRATEGIES

To assess the fairness of a ML model on a given data distribution, a plethora of different fairness
criteria have been designed [Speicher et al| (2018); [Castelnovo et al.| (2022). Appendix [Fpresents a
summary of the criteria considered in our analysis. Following the lines of [Speicher et al.| (2018)), we
aim to quantify exactly how far is a given trained model from meeting each of these criteria. Given a
classification event ' —specified by the criterion— and the group membership C, a natural measure of
their independence is provided by the Mutual Information (MI):

P[E,C)]
I(E;C) = Dkr(PE,C] | P[EIPIC]) =E log ———=-.
(:C) = Dx(PIE, €] | PLEIPIC]) = E(r.clo8 gy
Clearly, the fairness condition is completely verified only if the joint distribution factorises, i.e.
P[E, C] = P[E]P[C], and the mutual information goes to zero. This represents the impossibility of
predicting the classification outcome of an unbiased model just from the group membership.

(10)

In the following, we consider two simple bias mitigation strategies that can be analysed within our
analytical framework. The required generalisations of the replica results are detailed in appendix [D]
First, we study the de-biasing effect of a sample reweighing strategy where the relevance of each
sample is varied based on its label and group membership [Kamiran & Calders| (2012); [Plecko &
[Meinshausen|(2020);|Lum & Johndrow|(2016). By adjusting the weights, one can indirectly minimise
the MI relative to any given fairness measure. We use the simultaneous quantitative predictions on the
various metrics to assess the compatibility between different fairness definitions. Then, we propose
a theory-based mitigation protocol, along the lines of protocols used in the context of multi-task

learning (2016).

Loss Reweighing. Recent literature shows that some fairness constraints cannot be satisfied si-
multaneously. ML systems are instead forced to accept trade-offs between them
(2016). This sort of compromise is well-captured in the simple framework of the T-M model. Fig. I
shows, in form of phase diagrams, the MI measured with respect to the various fairness criteria while
varying the two reweighing parameters, w; and w4, which up-weigh data points with true label 1
and in group +, respectively. E.g., the loss term associated to a label 1-group + sample will be
weighed w4 w,, while that of a label 0-group — data point will receive weight (1 — w4 )(1 — wy).
By changing these relative weights one can force the model to pay more attention to some types
of errors and re-establish a balance between the accuracies on the two sub-populations. The red
crosses in the phase diagrams identify the points where the MI reaches its minimum value for each
fairness metric. Notably, some minima are found to lie in different regions of the phase diagram (at
the opposite extremes), and they often align only in correspondence of trivial classification, where
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Figure 6: Mitigation trade-off in the coupled architecture. The first two figures represent a one
dimensional version of Fig. [§] for the coupled architecture set up. On the left panel, the mutual
information of the different fairness measures (statistical parity, , equal accuracy,
equal odds, predicted parity 1, predicted parity 4-1) is plot as function of the coupling-strength
parameter -y, observe that the minima of the curves are much closer. Furthermore, the second panel
shows a better accuracy trade-off between and . The remaining two
figures, show an example from the CelebA dataset splitting and classifying according to the attributs
”Wearing_Lipstick” and “Wavy_Hair” respectively, more details are provided in appendix [B]and
The observations made for the synthetic model applies also in this real-world case.

fairness is achieved but at the expense of accuracy. These results are in agreement with rigorous
results in the literature |[Barocas et al.| (2019), but also show how the incompatibilities between the
different constraints extend to regimes where the fairness criteria are not exactly satisfied.

Coupled Networks. The emergence of classification bias in the T-M could be lead back to the
clear mismatch between the generative model of data and the learning model. In order to move
towards a matched inference setting, we need to enhance the learning model to account for the
presence of multiple sub-populations and labelling rules. This inspires a novel mitigation strategy —
called coupled neural networks. The strategy consists in the simultaneous training of multiple neural
networks, each one seeing a different subset of the data associated with a different sub-population.
The networks exchange information by means of an elastic penalty that mutually attracts them, and
the intensity of this elastic interaction is obtained by cross-validation. This approach is close in spirit
to other methods already present in the literature Calders & Verwer| (2010); |Saglietti et al.| (2021);
Zenke et al.| (2017).

Remark 5 The coupled neural networks method allows for higher expressivity and specialisation on
the various sub-populations, while also encouraging a positive transfer between similarly labelled
sub-groups, leading to better fairness-accuracy trade-offs

The first plot in Fig. [f] displaying the behaviour of the mutual information as a function of the
coupling parameter for different fairness metrics, shows the key advantage of using this method. We
observe is a more robust consistency among the various fairness metrics: the positions of the different
minima are now very close to each other. Moreover, the value of the coupling parameter achieving
this agreement condition is also the one that minimises the gap in terms of test accuracy between the
two sub-populations, as shown in the second plot of Fig. 6] without hindering the performance on the
larger group. Notice that this result does not contradict the impossibility theorem Barocas et al.|(2019)
which states that statistical parity, equal odds, and predicted parity cannot be satisfied altogether. In
fact, our result only concerns soft minimisation of each fairness metrics. In appendices D] and [FI] we
provide additional results for this method and we discuss the effect of training the networks on data
subsets that only partially correlate with the true group structure.

Despite the fact that the T-M is just a data prototype, the positive agreement with real phenomenology
suggests that this method could be effective also on real-world data. The remaining two plots in
Fig.[6] show preliminary results of the performance of the coupled neural networks strategy in the
realistic dataset from Celeb We stress that although the method works significantly better in the
synthetic framework, real data present more complex correlations that may hinder the effectiveness
of the method. Therefore, an application of this technique on real settings requires caution. A future
research direction will be to understand the range of applicability of the coupled neural networks and,
consequently, its limitations.

!"The illustrated chekpoints are used only to show the similarity of behavior in synthetic data and realistic
data (CelebA), and not used or recommended to use in any face recognition systems or scenarios.
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A EXTENDED BROADER IMPACT STATEMENT

According to the Cambridge dictionary, bias is “the action of supporting or opposing a particular
person or thing in an unfair way”. Bias is inherently rooted in societies, and each society carries their
prejudice in favour and against some groups compared with others. We acknowledge that defining or
addressing biases in a social system only from a technical standpoint, may risk the root causes of
issues and even amplify other types of biases that are dismissed. We also recognise there are multiple
incompatible notions of Fairness and Bias|Narayanan| (2018). Thus, we recognise it is very important
to define and identify bias and fairness definitions that fit the task and context in hand. With this
paper, our aim is to quantify biases that stem from data imbalance in a system in a controlled setting.
This will help identify and mitigate biases that stem from geometric properties of the input data or
the insufficient number of quality labels for some subgroups.

It is important to recognise the priority of debiasing in a system and perform appropriate bias tests
considering the context and task in hand Rostamzadeh et al.|(2021)); Hutchinson et al.|(2022). In our
work, this indicates the clusters in represented data space being associated with attributes that matter
in the system for the task of interest. In a software system, unit testing is performed to identify edge
cases. However, in ML systems this search space might be larger and identifying the features that we
want to debias the systems with, is of importance.

On the choice of the datasets, in this paper, we used synthetic data to have control over the experiments
and hypothesis. We also used CelebA dataset to compare a realistic data representation with our
synthetic set up. We acknowledge that CelebA datasets have features like gender, and age that may
not be representative or inclusive. For example the binary gender attributes may be harmful to trans
and gender non-conforming communities. Therefore, we only used features like “Wavy_Hair” and
“Wearing_Lipstick” that don’t inherit social constructs and are appearance based. We also state that
the outcome of this research should not be used in any ways or forms in a face recognition or detection
system.
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Figure B.1: Relative representation and bias. Numerical experiments on a sub-sample of the
CelebA dataset. (Left) A 2D projection of the pre-processed dataset, obtained from PCA, where
the colours represent the two sub-populations. (Right) Per community test error, as the fraction of
samples from the two subpopulations is varied (dataset dimension is fixed).

Consider the following simple experiment. The CelebA dataset|Liu et al.| (2015) is a collection of
face images of celebrities, equipped with metadata indicating the presence of specific attributes in
each picture. We construct a dataset by sub-sampling CelebA and by preprocessing the selected
images through an Xception network |Chollet (2017) trained on ImageNet|Deng et al.| (2009). As
depicted in the scatter plot in Fig. [B.] the first two principal components of the obtained data clearly
reveal a clustered structure. Many attributes contained in the metadata are highly correlated with the
split into these two sub-populations. For example, in the figure we colour the points according to the
attribute "Wearing_Lipstick”. Now, suppose we are interested in predicting a different target attribute,
which is not as easily determined by just looking at the group membership, e.g. ”Wavy,Hair’ﬂ What
happens to the model accuracy if one alters the relative representation of the two groups, e.g. when
one varies the fraction of points that belong to the orange group?

The right panel of Fig. shows the outcome of this experiment. As we can see from the plot,
the fact that a group is under-represented induces a gap in the generalisation performance of the
model when evaluated on the different sub-populations. The presence of a gap is a clear indicator of
unfairness, induced by an implicit bias towards the over-represented group.

Many factors might play a role in determining and exacerbating this phenomenon. This is precisely
why designing a general recipe for a fair / unbiased classifier is a very challenging, if solvable,
problem. Some bias inducing factors are linked to the sampling quality of the dataset, as in the case
of the overall number of datapoints and the balance between the sub-populations frequencies. Other
factors are controlled by the different degree of variability in the input distributions of each group. In
other cases the imbalance is hidden and can only be recognised by looking at the joint distribution of
inputs and labels. For example, the balance between the positive/negative labels might differ among
the groups and may be strongly correlated with the group membership. Even similar individuals with
different group memberships might be labelled differently. The present work aims at modelling the
data structure observed in these types of experiments, to obtain detailed understanding of the various
sources of bias in these problems.

2To be mindful on the Ethical Considerations of using the CelebA datast, we don’t use protected attributes
like binary genders and age Denton et al.|(2019)
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C REAL DATA VALIDATION

In this section, we provide extra details concerning the experiment conducted on the CelebFaces
Attributes (CelebA) dataset and described in the main text. We also show how the phenomena
presented in the main text are quite general and can be observed even in lower-dimensional datasets,
such as the Medical Expenditure Panel Survey (MEPS) dataset Blewett et al.| (2021).

C.1 ADDITIONAL DETAILS ON THE CELEBA EXPERIMENTS

The CelebA dataset is a collection of 202.599 face images of various celebrities, accompanied by
40 binary attributes per image (for instance, whether a celebrity features black hairs or not) [Liu
et al.|(2015)). To obtain the results presented in the main text we apply the following pre-processing
pipeline: We first downsample CelebA up to 20.000 images. Notice that this is done with the purpose
of considering settings with limited amount of available data. Indeed, as we have seen in the main
manuscript, data scarcity is one of the main bias-inducing ingredients. We are thus not interested to
consider the entire CelebA dataset, especially for simple classification tasks like the one described in
the main text. By exploiting the deep learning framework provided by Tensorflow |Abadi et al.[(2015)),
we then pre-process the dataset using the features extracted from an Xception convolutional network
Chollet (2017) pre-trained on Imagenet|Deng et al.|(2009). Finally, we collect the extracted features
together with the associated binary attributes in a json file.
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Figure C.1: Clustering CelebA according to attributes. We show 6 of the 40 attributes in CelebA
demonstrating a neat clustering.

By applying PCA on the pre-processed dataset, we observe a clustering structure in the data when
projected to the space of the PCA principal components. The clusters appear to reflect a natural
correspondence with the binary attributes associated to each input data point, however this is not a
general implication and many datasets show clustering with a non interpretable connection to the
attributes. The clusters can be clearly seen in Fig. [C.I] where we use colours to show whether a
celebrity features a given attribute (green dots) or not (orange dots). In the plot, the axes correspond to
the directions traced by the two PCA leading eigenvectors. As we can see from Fig. the two sub-
populations are overlapping and hard to disentangle. This situation precisely corresponds to the high-
noise regime the T-M model is meant to describe. Among the various clustering depicted in Fig. [C.T}
we decided to disregard those corresponding to ethically questionable attributes, such as ”Attractive”,
”Male” or ”Young”. Finally, we chose as sensitive attribute — determining the membership in the
subpopulations — the ”Wearing_Lipstick” feature since it gives a more homogeneous distribution of
the data points in the two clusters.
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Figure C.2: Relative representation across attributes. The panels show the generalisation error
depending on the relative representation in different attributes. The sub-populations + (green) —
(orange) are obtained splitting according to the attribute "Wearing_Lipstick”. The simulations are
averaged over 100 samples.

Anyone of the other attributes can be considered as a possible target, and thus be used to label the
data points. The final pre-processing step consist in downsampling further the data in order to have
the same ratio of 0 and 1 labels in the two subpopulations. This step helps mitigating bias induced
by the different ratio of label in the two subpopulations and simplifies the identification of the other
sources of bias. The general case can be addressed in the T-M model, in Sec. E] we comment more on
the bias induced by different label ratios.

As Fig.[C.2)illustrates, there is a large number of possible outcomes concerning the behaviour of the
test error as a function of the relative representation. Indeed, as we have seen in the main text, the
presence and the position of the crossing point strictly depends on both the cluster variances and the
amount of available data. Despite all these behaviours are fully reproducible in the T-M model by
means of its corresponding parameters, we here decided to chose the “Wavy_Hair” as target feature
because it shows a nicely symmetric profile of the test error that is more suitable for illustration
purposes. To get the learning curves in Fig.[C.2] we train a classifier with logistic regression and
Ly-regularization. In particular, we use the LogisticRegression class from scikit-learn Pedregosa et al.
(2011). This class implements several logistic regression solvers, among which the /bfgs optimizer.
This solver implements a second order gradient descent optimization which can consistently speed-up
the training process. The training algorithm stops either if the maximum component of the gradient
goes below a certain threshold, or if a maximum number of iterations is reached. In our case, we set
the threshold at 1e — 15 and the maximum number of iterations to 10°. The parameter penalty of
the LogisticRegression class is a flag determining whether an Ls-regularization needs to be added to
the training or not. The C hyper-parameter corresponds instead to the inverse of the regularization
strength. In our experiments, we chose the value of the regularization strength by cross-validation in
the interval (102, 103) with 30 points sampled in logarithmic scale.

C.2 OTHER DATASETS

The observations made on the CelebA dataset are quite general and can be further extended to lower-
dimensional datasets. To demonstrate this, we considered the Medical Expenditure Panel Survey
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Figure C.3: MEPS dataset. (Left) Clustering in the MEPS dataset, according to be above or
below the average age. (Right) Crossing of the generalisation error as the relative representation p is
changed. The simulations are averaged over 100 samples.

(MEPS) dataset. This is a dataset containing a large set of surveys which have been conducted across
the United States in order to quantify the cost and use of health care and health insurance coverage.
The dataset consists of about 150 features, including sensitive attributes, such as age or medical sex,
as well as attributes describing the clinical status of each patient. The label is instead binary and
measures the expenditure on medical services of each individual, assessing whether the total amount
of medical expenses is below or above a certain threshold. As it can be seen in Fig.[C.3] the behaviour
is qualitatively similar to the one already observed in the CelebA dataset of celebrity face images.
Indeed, even in this case, PCA shows the presence of two distinct clusters when considering the age
as the sensitive attribute and then splitting the dataset in two sub-populations, according to the middle
point of the age distribution. Moreover, the generalisation error per community exhibits a crossing
according to the relative representation.
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D REPLICA APPROACH AND ANALYSIS

DATA MODEL

alN
p=1
with x* € RY, y# € {0,1} and o = O(1). Note that here we are employing the statistical physics
notation, indicating the number of features (and the number of trained parameters) with N, whereas
in the main text we used the statistics notation d.

We consider a classification problem defined by a set of input-output associations D = {(x*, y*)}

The data is generated according to the Teacher-Mixture (T-M) model described in the main text.
The inputs x* are distributed as in a Gaussian mixture: first, one samples the group-membership
according to:

cH~pd(ct—1)+(1—p)d(c*+1) (D.1)

where 0 < p < 1 is the fraction of samples from the first Gaussian. Then, the inputs are generated as:

- c“% 42k (D.2)

where the shift-vector v and the noise-vector z* have i.i.d. components v; ~ N (0,1),z; ~

N (0, A.), with a variance Ax that is group dependent. The 1/+v/N scaling for the shift of the
centres is the interesting one where the Gaussians might have a large overlap.

The ground-truth labels y# are instead assigned by a tuple of teacher vectors, each acting on the
patterns in the relative community:

Top - xH ~

K = sign C+bu) (D.3)
y g ( \/N C

where T; ~ N(0,1) and b« are bias terms of order O(1). Note that the 1/v/N scaling ensures that

the activation is O(1) overall. The teacher vectors are assumed to have a fixed overlap with the centres

direction, m, = Tj\}”, and mutual overlap ¢ = % Since the geometry of the problem is completely

determined by these quantities, in the following we will call them the generative parameters.

LEARNING MODEL

We will directly present the most general setting for this calculation, where the learning model is
composed of two linear classifiers, coupled by an elastic penalty of intensity . This allows us to
characterise the novel mitigation strategy proposed in this work, while the standard case with a single
learning model can be obtained by setting v = 0. The derivation presents elements of novelty that
are interesting per se and we will publish a more technical version of the paper to highlight these new
results.

Each student, denoted by the index s = 1, 2, is trained only on a fraction of the full dataset D,, and
obtains information on the rest through the coupling with the second learning model. Note that the
data split is not assumed to be perfectly aligned with the group structure, despite our intuition that
this might allow the best generalisation performance.

The loss function for the coupled learning model reads:

T -x¥ -  w,-xh A (X 5
E(wl;w2) - Z Z l (\/N + bc‘ﬁ W + b5> + Z 5 <ngl> _§Hw1_w2||2
i=1

s=1,2 peD; s=1,2
(D.4)

Specifically in the following we will focus on the cross-entropy loss:

{(y,q) = O (y)loga(q) = (1 - O (y))log (1 - o(q)) (D.5)

where O(+) is the Heaviside step function, which outputs 1 for positive arguments and 0 for negative

ones, and o () = (1 + exp (—z)) " is the sigmoid activation function. The calculation holds also
for alternative losses, e.g. the Hinge loss or the MSE loss, since the only affected part is the numerical
optimisation of the proximal operator, as we show below.
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AVERAGE OVER THE MEASURE OF COUPLED TEACHERS

In the T-M model, the label distribution is non-trivially dependent on the mutual alignment of the
shift vector v, determining the means of the two Gaussians in the input mixture, and the two teacher
vectors T 2. As in most problems in high-dimension, we are allowed to fix a Gauge for one of these
vectors (compatible with its distribution), since an average over all its possible realisations would just
record the same contribution from each one of them. In this case, for simplicity, we choose v = [ to
be a vector with all entries equal to 1 (this is still a vector on a sphere of radius V). Once this degree
of freedom is fixed, the invariance is resolved so we still need to account for the average over the
remaining vectors.

Let’s define the partition function for the teacher vectors as:
Zp = /dp(T+,T_) - / I1 [du (T.) 6 (|Tc|2 - NQ) §(T,-1— Ni,)| §(Ty - T — N§),
c==+

where the measures p are in this case assumed to be factorised normal distributions. The Dirac’s
d-functions ensure that the geometrical disposition of the model vectors is the one defined by the

chosen magnetizations 4 and the overlap ¢, and that the vectors are normalised to Q. (we are
setting Q. = 1).

At this point, and throughout this section, we use the integral representation of the §-function:

da ol o
5(x — aN) = —ia(f—a) D.6
@=aN) = [ e 7 D.6)
where a is a so-called conjugate field that plays a role similar to a Lagrange multiplier, enforcing the
hard constraint contained in the §-function. We can rewrite:

. déc dine Nop ({Qe g} AQe s 4}
T—/Cl:_[i 27T/N/H 27 /N 27r/Ne ( )

where the action @ represents the entropy of configurations for the teacher that satisfy the chosen
geometrical constraints. Given that the components of the teacher vectors are i.i.d., the entropy
easily factorises over them. In high-dimensions, i.e. when N — oo, the integral will be dominated
by typical” configurations for the vectors, and the integral Zp can be computed through a saddle-
point approximation. We Wick rotate the fields in order to avoid dealing explicitly with imaginary
quantities, and decompose ®7 = gr; + grs:

—— (Z heme + > QeQc + éq> , (D7)
— log / DT, / DT exp (Z QI+ i T + §T+T_> .

After a few Gaussian integrations the computation of the second term yields:

(1—2(2_1) ﬁz%—&— (1—2@1) ) + 2gmim_1

g1s = 2((172@1) (172@) 752) %log((l—Qél) (1 —252,1> —52).

Now, in order to complete the computation of the partition function Z, we have impose the saddle
point condition for @7, which is realised when the entropy is extremised with respect to the fields we
introduced. The saddle point equations for the teacher conjugate parameters give:

s By =0 — 1, = (120 >mctéfni (D.8)
C ((1-20-) (1-20:) - @)
) o\ S (12200 ) + 2 (1-20-) -2,
B ) Y ey () )
D.9)
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i m2 (120 ) + 2@y A

((1-20-) (1-204) - &) ((1 —20.) (1-204) - &)

(D.10)

By moving around the terms in these equations one can find two identities that will be useful later in
the computation:

0:07 =0— =

5. 2 — <1 _ 2é_c> (D.11)
T () () - )
B GBI DR

FREE ENTROPY OF THE LEARNING MODEL

In this section we aim to achieve analytical characterisation of typical learning performance in the
T-M, i.e. to describe the solutions of the following optimisation problem:

w7, w; = argmin L(w;, we; D), (D.13)

w1, w2

where D represents a realisation of the data and £(-) was defined in Eq. In typical statistical
physics fashion, we can associate this problem with a Boltzmann-Gibbs probability measure, over
the possible configurations of the student model parameters:
o~ BL (w1, wa;D)

A ’
where the loss £ plays the role of an the energy function, 3 is an inverse temperature and Zyy is the
partition function (normalisation of the Boltzmann-Gibbs measure).

P(’U)l, w2, D) = (D14)

Since the loss is convex in the student parameters, when the inverse temperature is sent to infinity,
B — oo, the probability measure focuses on the unique minimiser of the loss, representing the
solution of the learning problem. In the asymptotic limit N — oo, the behaviour of this model
becomes predictable since the overwhelming majority of the possible dataset realisations (with the
same configuration of the generative parameters) will produce solutions with the same macroscopic
properties (norm, test performance, etc). We therefore need to consider a self-averaging quantity,
which is independent of the specific realisation of the dataset so that the typical learning scenario can
be captured.

Thus, we compute the average free-energy:

1
(I)W = J\;E)noohglm <10g ZW(wl,wg;Dl,DQ»DLDQ . (DIS)
This type of quenched average is not easily computed because of the log function in the definition.
The replica trick, based on the simple identity lim,,_,o(z™ — 1)/n = log(x), provides a method to
tackle this computation. One can replicate the partition function, introducing n independent copies of
the original system. Each of them, however, sees the same realisation of the data D (the “disorder”
of the system, in the statistical physics terminology). When one takes the average over D, the n
replicas become effectively coupled, and can be intuitively interpreted as i.i.d. samples from the
Boltzmann-Gibbs measure of the original problem. At the end of the computation, one takes the
analytic continuation of the integer n to the real axis and computes the limit lim,,_,, re-establishing
the logarithm and the initial expression.

We start by working on the replicated volume (product over the n partition functions) Q" (D), which
is still explicitly dependent on the sampled dataset:

T ol _ wa . o
Qn(D) /dli v, T /H db“dw o — B |ws —w ||? H e BK + +beu, \ﬁ +b) 7

HED,
(D.16)
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where s = 1, 2 indexes the two coupled student models and a = 1, ..., n is the replica index.

To make progress we have to take the disorder average, i.e. the expectation over the distribution of x*
as defined in the T-M model. However, at this time the inputs appear inside the loss terms and taking
a direct average is not feasible. We can exploit J-functions in order to replace with dummy variables,
uy, and A, the dot products in the loss and isolate the input dependence in simpler exponential terms:

1—/Hdu“ (u# T w“)/ I axio (Aa T/N ) (D.17)

a,s,u€Dg
Ten i %4 3 Safya wd el
duuduu Wu( wu=30, T) d)\Zd)\z Z/\u(/\u* e N )
5 te (D.18)
™
a,s,uED

We can now evaluate the expectation over the input distribution, collecting all the terms where each
given input appears. By neglecting terms that vanish in the N — oo limit, for each pattern © we get:

=M

R T
s AM N gu K i i N ch iy
Egue i3, AL i N iy, 305 VN = (D.19)

N . L wd vi o T ot . sl o Ters
I (v itaen ey i(m e geen, o) o
%

WX wl wh spZiwon i Tem i i c P
“<ZQMD’#+M“EMZ = +(ar)? = i

ik (Ea 5\5 ; Su Qg u T 7]:;;#,1>_A
=e

(D.20)
To get Eq. [D.20] we used the fact that the noise z* is i.i.d. sampled from centred Gaussians of
variance determined by the group, and explicitly used our Gauge choice v = . In this expression we
see appearing the relevant order parameters of the model, describing the overlaps between the student
vectors, the shift vector and the teacher vectors. We are thus going to introduce via §-functions the
following parameters:

* ml = wji,ﬂ me = T;\‘,'H: magentisations in the direction of the + group centre of the
students and the teachers.

. g = X w“w“ : self-overlap between different replicas of each student.

* RY = L overlap between student and teacher vectors.

QC = T : norm of the teacher vectors (= 1 by assumption).

After the introduction of these order parameters (via the integral representation of the §-function) the
replicated volume can be expressed as:

n dm?dn dR%,dR?, g dge ) .
- JIRE IS L5 e s
| - N (D.21)

where «. N indicates the number of patterns from group c contained in the data slice D, given to
student s. We also introduced the interaction, the entropic and the energetic terms:

Gr=exp | — Z mimd +> g+ ReRS, (D.22)

s,ab sc,a
5= / [[P7.exp (Z QT+ > T, + §T+T>
/H dp (w®) e=Pr(wi= wg)? exp Zm wy + Z G2 wrw® + Z R wOT. (D.23)
s,a

s,ab sc,a
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Gr(s,c) —/dUdu ; /H (dA e lma) e~ % Tap hadoai’ —AG T, AaRE— 5 (0)°Qe

~ He—BZ(u+c’r~nc+56,)\a-‘rcm:-‘rb:) (D24)

a

N

zZ
2

The shorthand notation Dx = is used to indicate a normal Gaussian measure.

@

REPLICA SYMMETRIC ANSATZ

To make further progress, we have to make an assumption for the structure of the introduced order pa-
rameters. Given the convex nature of the optimisation objective[D.4] the simplest possible ansatz, the
so-called replica symmetric (RS) ansatz, is fortunately exact. Replica symmetry introduces a strong
constraint for the overlap parameters, requiring the n replicas of the students to be indistinguishable
and the free entropy to be invariant under their permutation. Mathematically, the RS ansatz implies
that:

* m? =my foralla = 1, ..., n (same for the conjugate)
* R? = R, foralla =1,...,n (same for the conjugate)

e ¢ =g, forall a > b, ¢?* = Q, for all @ = b (same for the conjugate)
e b =bsforalla=1,..,n

Moreover, since we want to describe the minimisers of the loss, we are going to take the § — oo
limit in the Gibbs-Boltzmann measure. The replicas, which represent independent samples from it,
will collapse on the unique minimum. This is represented by the following scaling law with (3 for the
order parameters, which will be used below:

Q—-q=20q/8; Q—q=-PB6¢ G~p*¢G m~pPin; R~PBR (D.25)
INTERACTION TERM

We now proceed with the calculation of the different terms in[D.21] where we can substitute the RS
ansatz. In the interaction term, neglecting terms of O(n?), we get:

G; = exp (—n (Z <mm + ) ReeRie + QZQS - qéqs > )) (D.26)

S

In the 8 — oo limit the expression becomes:

IOg(Gz)/n =0i= _6 (Z (m ms + Z RscRsc + = (QS(SQS 6@5(15))) (D.27)

S
ENTROPIC TERM

In the entropic term the computation is more involved, due to the couplings between the Gaussian
measures for the teachers and for those of the students. We substitute the RS ansatz in expression

[D.23]to get:
Gs _/Dﬂ/DT exp (ZQCT +chT +{T,T >/Hdﬂ o~ 3 (wf —wg)?
2
X Hexp mszw + - ( —qs) Z(w?)Q + %cjs (Zw;f) +ZRSCZw;LTC
(D.28)
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We perform a Hubbard-Stratonovich transformation to remove the squared sum in the previous
equation, 1ntr0ducmg the Gaussian fields z;. Then, we rewrite coupling term between the teachers as

qr T = a LTy +T)?— (T2 +T?), and perform a second Hubbard-Stratonovich transformation,
with field Z, to remove the exphclt coupling between 7'y and 7_. Similarly, the elastic coupling
between the students can be turned into a linear term with fields z{:

:/Dé/l:[’Dzs %exp <; C (172Q:c+é’) Tf+¥ (fnCJr\/éz) Tc> /E[Dz?z
X /Hdu (w?)HeXP (; (Qs - (is) Z(w§)2 + <ﬁ’Ls + ZRSCTC +V/qszs +isﬁzf2> Zw?)

‘ (D.29)

After rescaling the variances of the teacher measures and centring them, one can factorise over the
replica index and take the n — 0 limit, obtaining the following expression for gg = log Gg/n:

gs = A+/HDZS/HDTC/D2 log/Dzlg/Hdu (ws) exp (; (Qs — qu) wf + Bsws>
) ‘ ) (D.30)
where:

Som? (1 —A2éfc) +2 (o)
: (gl ~20) (1-20-) - @)

(Ty, 24,2, 25) +i5y/7212 (D.32)

A, Vi Ao,

A (D.31)

B,

bs - Th5+ quZs'i_Z mcRsc + = = z ~
¢ \/(1—2Qc+q \/ B (=T ) (1-20+4)
(D.33)

In the § — oo limit, and considering the Lo-regularisation on the student weights du (w) =

B2
%e 2" we get:

gngJr/Hsz/HDT /Dzlog/Dzlgexp (Zn;lﬂax< A+ 64, erBSwS))

(D.34)
and the maximisation gives:
Bs A+0Gs 5 B?
* . _ Bs s | = 5 — D.35
Y= Nk ag) Hiflx< SRR R Yo W (D.35)

Substituting the above described scaling laws for the order parameters in the 5 — oo limit one finds
that the A term becomes sub-dominant and can be ignored. The remaining steps are quite tedious,
but the procedure to obtain the final result for the entropic channel is straightforward:

* Expand the sums in Eq[D.34]
* Perform the z;2 Gaussian integration and take the log of the result.

¢ Identify the terms that have even powers in the Hubbard-Stratonovich Gaussian fields and in
the teacher variables. The Gaussian integrations will kill all the remaining cross terms, so
they can be ignored.

* Perform the remaining Gaussian integrations.

* Use identities and to remove the dependence on the conjugate fields appear-
ing in the Teacher measure and only retain a dependence on m., @, and q.

The final expression reads:

9570 (HS(A+f+ 532) — 1) KZ <m +chﬁzsc> (A+7 + 8G-) +27H (mg +ZWCR%)>

S

(D.36)
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+ (Z g A+ + (m)) - (Z (Qc — ) (Z R (A +v+06d-6)+2v]] ﬁfsc> ) (D.37)

c

+ <2 (G—mym_) (Z (H Roe (M + 5q:5>> + (H (Z R))))] (D.38)

ENERGETIC TERM

We can compute the energetic channel for a generic student s and a generic data group c. Each term
will be multiplied by c s, determining the fraction of inputs from group c in the dataset D, of student
s. For simplifying the notation in this section we drop the indices s, ¢, with the understanding that
the all the order parameters, and model parameters, appearing in the following expressions are those
corresponding to a specific pair of these indices.

Substituting the RS ansatz in Eq.[D.24] we get:

G — / dudi i /H (dA A mﬁl) 5 Tap Aareqg—AAR Y, Aa— 5 (2)°Q (D.39)

> H e~ u+c7rz+b )\“+<,m+b) (D40)

We can start by evaluating the Gauss1an in 4, then performing a Hubbard-Stratonovich transformation,
with field z, to remove the squared sums on the replica index. Following up with the Gaussian

integration in \ we find that the argument of the integrations factorises over the replica index. Up to
first order in » when n — 0, we find for gp = log Gg/n:

75E<\/Aéu+cﬁ1+l~)m/A(qu))wk@irﬂ/A(qiRz)z+cm+b>
/Dz/Du log/D)\e Ve “ (D.41)

9E =

and in the the 5 — oo limit we can solve the integral by saddle-point:
—54(\/AQu-‘rcm-Q—E,\/A(Q—q)/\-&-@u-&-w/A@z-‘rcm-‘rb)
log / De Ve “ — —BM (D.42)

with:

2 . - _ P2
M:m/\in%%-ﬁ \/AQu—f—cm—kb,\/Adq)\—k\/\/Efu+1/A((]C2~]%)z+cm+b (D.43)
Q

To simplify further, we can shift ‘/Fu + /A R =), A q7z'. Then, given the definition

of the logistic loss we can split the v integration over the intervals 4/ AQu + cri, > 0 and
1/ AQu + cmi. < 0 and eventually get (re-establishing the s, ¢ indices):

qs cﬁ\y@iéc + \/FCRSCZ
r(s,c) = Z/DZH —y ACC — Mg (y, s,¢) (D.44)

Where H (z) = 3 erfc(z/+/2) is the Gaussian tail function and we defined the proximal:

2
Mg (y,s,c) = m}z\%x *% -1 (y7 VADGA + \/Acgsz + cms + bs) (D.45)

Note that this simple 1D optimisation problem has to be solved numerically in correspondence of
each point evaluated in the integral.

The reweighing strategy is easily embedded in this calculation by explicitly changing the definition
of ¢, adding a different weight W, ,, for each combination of label and group membership. Defining a
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one-hot encoding vector for the teacher-produced label, Y € R?, and a output probability (constructed

from the sigmoid function) for the student, P(Y"), the reweighed cross-entropy loss can be written as:
LD) = > (W)(yYylog P(Y,). (D.46)
c==£y=0,1
For the sake of simplicity we reduced the degrees of freedom to two, parameterising these weights as:
Wy w w (1 —wy)
W =2 + D.47
((1 —wiwr (1-wy)(1 - w) (0.47)
where w4, wy € [0, 1] can be used to increase the relative weight of a misclassification errors in the
group + and label 1 respectively.

Different losses could be chosen instead of the cross-entropy and, again, only the numerical optimisa-
tion of the proximal would be affected.

SADDLE-POINT OF THE FREE-ENTROPY

We thus have found that the free-entropy Py can be written as a simple function of few scalar
order parameters. In the high-dimensional limit, the integral in is dominated by the typical
configuration of the order parameters, which is found by extremising the free-entropy with respect to
all the overlap parameters:

Oy = extr { gr +9gs+ Z as.cge(s,c) } (D.438)
0.p.

s,c

The saddle-point is typically found by fixed-poimnt iteration: setting each derivative, with respect
to the order parameters, to zero returns a saddle-point condition for the conjugate parameters, and
vice-versa.

The fixed-point is uniquely determined by the value of the generative parameters m.,Q,d and the
pattern densities o .. In the main text, for simplicity we parameterise o . through the fraction 7,
which represents the percentage of patterns from group + assigned to the first student model.

The special case of a single student model is obtained from this calculation by setting v = 0 and
assigning all the inputs in the first dataset D;.

TEST ACCURACY

All the performance assessment metrics employed in this paper can be derived from the confusion
matrix, which measures the TP, FP, TN, FN rates on new samples from the T-M. These quantities can
be evaluated analytically and are easily expressed as a function of the saddle-point order parameters
obtained in the previous paragraphs.

Suppose we obtain a new data point with label y from group c. The probability of obtaining an output
¢ from the trained model s is given by:

P(Y =y.Y =@) = Ex(o) <@ (y <T\ﬁ;(c) +5)> © (y (VV\FJ)\?(C) +b))>p(T,w)

(D.49)

dudii g (y—sN | Tizi d)\dj\ iN(A=S"N  wizi - )

:Ex(c)</ udd ( it m)/iek(A 2iza m)>@(y(u+b))@(y(/\+b))
27 2w

(D.50)

where, following the same lines as in the free-entropy computation, we used J-functions to extract

the dependence on the input, to facilitate the expectation:

i wam(e) o Tox(e)
Eoo) <e VU > (D.51)
_ e—ic(&mwm)e—%(X2Q+2aXR+a2Q)_ (D.52)
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We have substituted the overlaps that come out of the average with their typical values in the
Boltzmann-Gibbs measure of the T-M. Note that we can substitute ¢ = () since they are equal to first
order in the f — oo limit.

The Gaussian integrals can be computed and one gets the final expression:

P(Y:y’f/:ﬁ) Z/_Zpu@ (y (@u+cmc+50>)H <_g\/ERSCU+cms+bs>

AC (qS - REC)
(D’53)

Similarly, one can also obtain e.g. the label 1 frequency:

SRUETUT BT Y (D.54)

VALQ+ A Q-

P(Y =1)=pH

and the generalisation error:

> : ~ 7 \/AicRscu + CMs + bs
€g = /_OO DuH (Slgn ((\/Acu + eme + bc>) A ) > . (D.55)
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E EXPLORATION OF THE PARAMETER SPACE

E.1 PARAMETERS USED IN THE FIGURES

This section present a list of the parameters used in for the T-M model in the figures of the paper.
Some of the parameters are already discussed in the figures’ captions, so this list will characterise
only the remaining parameters:

* Fig.[T|(center): AL =0.5,A_ =2¢.5,&0 = 2.5,q7 — 0.2.

* Fig. ] (first two panels): m4 = 0.2, « = 0.5,A4 = 0.5,A_ = 0.5,b; =0,b_ = 0.
Fig. 2| (last two panels): & = 0.5, AL = 0.5,A_ =0.5,b; = 0,b_ = 0.
* Fig.f « =0.5,gr =1,m =0.5,b; =0,b_ = 0.
* Fig.ff p=0.1,m=02,A1 =05A_=0.5,b; =0,b_ =0.

* Fig. 5] and Fig. [0 (first two panels): p = 0.1,gr = 0.8,A, = 2.0,A_ = 0.5, =
0.5,m4 = 0.3,m_ = 0.1,b; = 0.5,b_ = 0.5.

E.2 SUPPORTING RESULTS

This section presents supporting results on the sources of bias. In Fig. [E-I]l we re-propose the the
study of the disparate impact (DI) depending on the relative representation p and the rule similarity
qr, paying close attention to the role of the group-label correlation my, m_. Interestingly, if
m4 = m_ = 0, when the rules become identical (g = 1) the bias is removed. However if
my = m_ # 0 this is no longer true. This shows once again that it is not sufficient for a classifier to
be able of reproducing the rule, as bias can appear in reason of other concurring factors.

my=m_=0.0 my=m_=0.2 my;=m_=0.5
1.00 1.0
0.95 0.9
0.90 0.8
0.85 0.7
0.80
0.6
0.5 1.0 0.5 1.0 0.5 1.0
ar ar ar

Figure E.1: Bias with two different rules to be learned. The three phase diagrams give the DI
depending on p (y-axis) and ¢r (x-axis). Moving from the left panel to the right panel m. and m;
are increased. The other parameters are: a = 0.5, A, =0.5,A_ =0.5,b, =0,b_ = 0.

The main difference with respect to the case with g # 1 is that, if ¢ = 1, increasing the amount of
training data can be a solution. In fact, bias at g = 1 is due to overfitting with respect ot the largest
sub-population, and this effect can be cured by increasing in . This is illustrated in Fig.[E:2] that
extends the figure of the main text showing the effect of &. Moving from left to right, o increases and
the area where the 80% rule is violated shrinks down.

The results shown until this point are agnostic with respect to the relative fraction of labels inside
the sub-populations. When this quantity is strongly varied across the groups, it can contribute to
an additional source of bias, especially if combined with a small relative representation. Indeed,
the classifier can simply bias its prediction towards the most likely outcome reaching an accuracy
that apparently exceeds random guessing, without effectively doing any informed prediction. Many
factors play a role in deciding the relative fraction of labels in the T-M model, the bias terms (b and
b_) are the most relevant since they directly shift the decision boundaries. We consider these two
parameters in Fig. [E-3]to exemplify this concept.
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Figure E.2: Bias with a learnable rule. We show the accuracy gain as function of the proportion of
group + (p) and the correlation between label and group (m.., m_). The different figures show how
of increasing the dataset size (increasing from left to right) mitigates the bias. The other parameters
are: g = 1.0,A4 =0.5,A_ =0.5,by =0,b_ =0.

0.5¢ 0.6¢ 0.7¢
1.0 1.0 1.0
0.5¢ 0.4( 0.0
0.8
0.8 0.5
0.6 0.6
0.0
0.4 0.4
0.2 0.2 -0.5

Figure E.3: Labels within groups and classifier bias. The first row shows the DI as faction of
by and b_ with A,y = A_ = 0.5, a = 0.5, my = m_ = 0.5. From left to right, the relative
representation p moves from equally represented groups to having group + under-represented. The
80% threshold is denoted by the dotted line. The dashed line indicates equal within-group label
fraction. The second row shows the average labelling in + (left), — (centre), and their difference
(right). Notice that these diagrams are independent of p and therefor apply to the three settings shown
in the first row.

When the sub-populations are equally represented p = 0.5, the separations between bias towards
+ or — is clearly marked by two straight lines. One separation is simply given by the line of equal
label fraction, the other is given by the uncertainty of the classifier, receiving contrasting inputs from
the two groups. As the relative representation p decreases, the classifier accommodates the inputs
from the largest group and the separation line is distorted. Finally, observe that the line of equal label
fraction (bottom right panel) is not centred in the diagram because m, = m_ # 0.
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F MITIGATION STRATEGIES

In this section we summarise few well-established criteria in Table Il The common denominator
among them is that they make a requirement of independence between the distribution of a certain
type of prediction outcome and the group-membership. From a probabilistic point of view, denoting
with F an random variable that represents the outcome, and with C' the group membership, the
classifier has to satisfy P (E|C') = P (E). For instance, Equal Opportunity requires the ML model
to achieve equal true positive rates, independent of the sub-population.

FAIRNESS METRIC CONDITION
Statistical Parity PlY = y|C =] =P[Y = y] Vy,c
Equal Opportunity PY =1C=¢Y =1 =PY =1]Y =1] Ve
Equal Accuracy PY =y|C =c¢,Y =y] =PY =y|Y =y] Vy,c
PY =1|C=¢,Y =1]=PY =1]Y =1]N
Equal Odd - ’ .
quaraas P[Y =1|C =¢,Y = 0] = P[V = 1|Y = 0] Ve
. . Py =1/C=+,Y =gy =P[Y =1|C = —,Y =]
Predicted P -
redicted Parity _Ply — 1|V = 4] Wy

Table 1: List of Fairness Metrics. Statistical Parity: Equal fractions of each group should be treated
as belonging to the positive class Dwork et al.| (2012); [Kleinberg et al|(2016)); Corbett-Davies et al.
(2017). Equal Opportunity: Each group need to achieve equal true positive rategHardt et al.| (2016)).
Equal Accuracy: Each group is required to achieve the same level of accuracy. Equal Odds: Each
group should achieve equal true positive and false positive ratesFeldman et al.| (2015); Zafar et al.
(2017b). Predicted Parity. Given the inputs are classified with label y, the fraction of input with
true label y* should be consistent across sub-populations. This gives two methods: predicted parity
1 requires the condition only for y* = 1, while predicted parity 10 requires the condition for both
y* = 1 and y* = 0/Chouldechoval(2017).

F.1 ADDITIONAL RESULTS ON MITIGATION STRATEGIES

Some strategies require information concerning the group membership of each data point. Depending
on the situation, this information may contain errors or it may even be unavailable. Consequently we
should take into account the robustness of the mitigation strategies with respect to these errors. Call n
the fraction of points for which the group was correctly assessed. The phase diagrams in Fig.[F.3h
show the DI under the reweighing mitigation scheme (controlling the group importance in the loss)
and the coupled classifier mitigation. We can clearly observe a greater resilience to the error rates
in the case of our strategy. The reweighing strategy appears to have low DI only in extreme cases,
where the accuracy on the largest sub-population is greatly deteriorated.

We can understand the larger picture by looking at the different fairness metrics described in the
main text, Fig. [.3p, for which the same observations apply. Since 7 is not an actual hyper-parameter,
but rather represents an imperfect imputation of the group structure, we consider the maximum for
each value of 7. The picture seems quite robust on the side of reweighing (upper group): for every
7 the maximum is achieved for different values of the parameters. Instead, the picture changes for
the coupled classifiers (lower group): the method is robust to this perturbation until a critical value
(roughly 25% of mismatched inputs), where the minima of the MI become inconsistent and therefore
the fairness metrics cannot be optimised all at once.

Validation of re-weighting result. In the main text we show the effect of reweighing in the
synthetic model. The same analysis can be applied to real data, yielding similar results. In particular,
in line with the other validations, we present in Fig. [F4]the result for the CelebA dataset when the
splitting is done according to the "Wearing_Lipstick™ and the target feature is “Wavy_Hair”.
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Figure F.1: DI with errors in the group membership.
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Figure F.2: MI with errors in the group membership.
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Figure F.3: (a) The diagrams show the DI for the re-weighting according to membership (left) and
the coupled classifiers (right). The colormaps are matched: the maximum is set to 1 (indicating
absence of bias), the minimum is given by minimum DI registered by the two methods (i.e. the one of
re-weighting). We also add ticks on the two colormaps, to indicate the extremes achieved by the two
methods. (b) The upper group refers to re-weighting in the subpopulations, the lower group refers to
the coupled classifiers. Refer to Fig.6 of the main text for more details.
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Figure F.4: Mitigation using re-weighting on real data.
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