
A Further analysis1

A.1 Other datasets2

To estimate the generalization ability of FFDesign, we extend FFDesign on various real-world3

datasets, TS50, TS500 [1], and Ollikainen [2] datasets. The first two datasets include randomly4

selected 50 and 500 non-redundant proteins from PISCES server [3], respectively. Ollikainen dataset5

has 40 proteins sampled from diverse protein domains to explore structural constraints on amino6

acid covariation. For a download issue, 37 proteins are used in this work. We evaluate CATH4.27

pre-trained PiFold and DNDesign-PiFold in a zero-shot setting. All results are shown in Table 1. In8

the case of a TS50 dataset with a small number of 50 proteins, DNDesign performs worse. However,9

when handling a larger dataset of 500 points in TS500, a gain in perplexity is observed. The Olikainen10

dataset demonstrates performance gains in both perplexity and sequence recovery.11

Table 1: Protein sequence design comparison on TS50, TS500, and Ollikainen. PP and SR indicate
perplexity and sequence recovery, respectively.

Model TS50 TS500 Ollikainen
PP SR PP SR PP SR

PiFold 3.71±0.08 57.37±1.32 3.38±0.03 59.74±0.11 3.70±0.10 56.95±0.44
DNDesign-PiFold 3.77±0.02 55.58±0.37 3.34±0.01 59.55±0.45 3.68±0.06 57.42±0.32

A.2 Multi-chain sequence design12

Designing a specific part of a protein assembly, which is a complex of single proteins, is one13

of the most common and important problems in protein design, such as the problem of fixing14

complementarity determining region (CDR) loop in an antigen-antibody complex [4]. To evaluate15

the performance of the inverse-folding models for these scenarios, we design the task of designing16

subunit protein sequences of protein assemblies. Following ProteinMPNN [5], we train models17

using protein assemblies from PDB [6]. In training, models are tasked to generate amino acids of a18

target chain when given a whole protein complex. For evaluation, we select 178 protein assemblies19

containing more than four protein chains from the test set, and conduct sequence design on multiple20

chains in alphabetical chain order. As shown in Table 2, DNDesign gives marginal gains.21

Table 2: Comparison of FFDesign with previous models on multimer sequence design of protein
heteromer assemblies. All results are newly calculated.

Model 1 2 3 4 Avg

PiFold 46.75 46.75 46.75 46.75 46.75
DNDesign-PiFold 46.70 46.90 46.94 46.74 46.82

A.3 Inference speed22

We compared the inference time on the same machine (single V100) for all proteins in CATH4.3 test23

set. As shown in Table 3, there is no significant inference time difference compared to the previous24

methods. While DNDesign-PiFold performs better than ESM-IF (53.75% vs 51.60%) and have25

several times less parameters (5M vs 140M), DNDesign-PiFold has twice the faster inference rate.26

Table 3: Inference speed on CATH 4.3 test set.

Model Type Time(min)

ProteinMPNN 19
PiFold 20
DNDesign-PiFold 22
ESM-IF 67
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A.4 Ablation study27

In order to understand the effectiveness of each proposed operation, we conduct an ablation study as28

shown in Table 4. All models are trained in the same setting for CATH 4.2 benchmark. Without29

our proposed operations, the baseline model shows 4.70 and 48.06% of perplexity and recovery,30

respectively. The best effective module is ForceEdge, which boosts improvements of -0.12 and 1.27%31

over the baseline. Also, ForceInit and ForceNode modules benefit models on both perplexity and32

recovery by -0.08, -0.06, and 0.46%, 0.70%, respectively. Other operations also show performance33

gains over baselines. All results confirm that our proposed operations effectively transfer learned34

folding physics knowledge to the entire networks.35

Table 4: Ablation of five components of DNDesign.

Perplexity ↓ Recovery % ↑
Baseline 4.70 48.06
ForceInit 4.62 (-0.08) 48.52 (+0.46)
ForceNode 4.64 (-0.06) 48.76 (+0.70)
ForceEdge 4.58 (-0.12) 49.33 (+1.27)
GlobalForce 4.65 (-0.05) 48.51 (+0.45)
ForceLogits 4.64 (-0.06) 48.76 (+0.70)
ForceInit + ForceNode 4.52 (-0.18) 49.66 (+1.60)
ForceInit + ForceNode + ForceEdge 4.52 (-0.18) 49.52 (+1.46)
ForceInit + ForceNode + ForceEdge + GlobalForce 4.52 (-0.18) 50.00 (+1.94)
ForceInit + ForceNode + ForceEdge + GlobalForce + ForceLogits 4.46 (-0.24) 50.00 (+1.94)

Table 5: Comparison of sequence recovery on CATH 4.2 with regard to structrual environment: core
and surface. We categorize residues by density of neighboring Cα atoms within 10 angstroms of the
central residue Cα atom. Core and surface residues have more than 24 and less than 16 neighbors,
respectively.

Model Recovery % ↑
Core Surface

PiFold 66.67 40.00
DNDesign-PiFold 66.67 40.74

Table 6: Comparison of sequence recovery on CATH 4.3 with regard to structrual environment: core
and surface.

Model Recovery % ↑
Core Surface

ESM-IF 39.00 72.00
DNDesign-PiFold (scaled-up) 43.48 75.00

Recovery depending on the structural context Table 5 shows the sequence recovery performance36

of PiFold and DNDesign-PiFold on the core and surface residues of test proteins in the CATH4.2.37

We observe that both models perform better in core residue design than the surface. The results are in38

line with [7]. Also, we see that DNDesign-PiFold benefits on surface scenario. This is meaningful in39

terms of applications because many protein applications, such as enzymes and antibody-antigens,40

occur on surface residues rather than core residues. Also, Table 6 reveal that DNDesign-PiFold41

effectively generate sequences in core and surface compared to ESM-IF, which has several times42

larger parameters compared to DNDesign-PiFold.43

Force logit ratio ablation study In order to confirm the inverse folding performance according to44

the force logits during training and inference, we train DNDesign-PiFold on CATH4.2 by varying45

the ratio (0.2, 0.4, 0.6, 0.8) during training. As shown in Table 7, all models have same sequence46

recovery performance, meaning that mixing force logits to inverse-folding logits benefits with any47

ratio. Also, the model with 0.2 force ratio shows the best performance. In addition to this, we ablate48

the force ratio during inference using a model trained with 0.2 force logits ratio during training. As49

shown in Table 8, 0.2 ratio gives best performance. WIth the empirical results, we use force logit50

ratio of 0.2 for both training and inference.51
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Table 7: CHyper-parameter search of force logit ratio during training.

Ratio 0.2 0.4 0.6 0.8

Perplexity 4.46 4.47 4.51 4.50
Sequence recovery 50.0 50.0 50.0 50.0

Table 8: Hyper-parameter search of force logit ratio during inference.

Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Perplexity 4.58 4.48 4.46 4.56 4.84 5.38 6.32 7.87 10.33

B Others52

B.1 Limitations53

Inverse-folding, a powerful method that enables fine-grained protein engineering when a known54

structure exists, has been used in various protein engineering. Therefore, it has a limitation that55

it can be performed only when a known structure exists. Fortunately, the limitation is somewhat56

alleviated because models like AlphaFold2 [8], RoseTTAFold [9], and ESMFold [10] correctly57

predict structures of proteins that have not yet been experimentally characterized. However, there are58

proteins that these models fail, such as orphan proteins and antibody-antigen complexes, because59

the proteins lacks multiple sequence alignments that is key inputs for those models. Additionally,60

the requirement that the structures in the dataset need to be locally optimized (with low energy) is61

the bottleneck for FFDesign training. We think that numerous samples in the predicted structures do62

not meet the requirement. So, we suspect that these structures may negatively impact the learning of63

the local minimized structure distribution if included in the training dataset. However, we believe64

that the two constraints brought by the aforementioned structure dependency can be resolved with65

better structure prediction. Meanwhile, recently, Dauparas et al [5] has experimentally verified in66

web-lab that protein design is possible more successfully than previously widely used computational67

methods by combining an inverse-folding model with a structure generation model. In conclusion,68

even though inverse-folding has structural dependencies, the design method is still a powerful strategy69

for designing multiple proteins that match the target fixed structure.70

B.2 Broader impact71

Proteins are a promising material used in numerous fields, such as drug development, enzymes, and72

carbon capture. Therefore, designing proteins that meet specific objectives is crucial but challenging73

because even a single amino acid change can lead to significant property changes. However, one74

structure can have numerous sequence combinations of 20 amino acids. Optimizing and narrowing75

candidates ultimately allows us to save considerable human and material resources required for76

extensive experiments in candidate screening through wet-lab experiments, which leads to significant77

environmental and economic benefits. We expect that our approach is a promising solution to gain78

the mentioned advantages.79

C Training details80

We provide the main hyperparameters of DNDesign below.81

D Node and Edge Featurization82

Distance features Distances between atom pairs are essential for quantum mechanical inter-83

actions. We use euclidian distances between atom pairs. When computing inter-residue dis-84

tances for node features, we sample intra-residue atom pairs from A ∈ {Ci, Cαi, Ni, Oi} and85

B ∈ {Ci, Cαi, Ni, Oi}. When computing inter-residue distances for edge features, we adopt pairs86

using from A ∈ {Ci, Cαi, Ni, Oi} and B ∈ {Cj , Cαj , Nj , Oj}. To enrich the distance information,87
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Table 9: DNDesign-PiFold hyperparameters.

DNDesign-PiFold DNDesign-PiFold (uniref)

Strutcure encoder layers 2 4
Sequence decoder layers 2 4
Folding physics learning layers 4 4
Transformer embedding dim 128 128
Attention heads 4 4
Top K neighbors 30 30

Batch size (tokens per GPU) 6000 6000
GPUs 1 1
CATH:AF2 mixing ratio 1:0 1:6
Epochs 100 150

Optimizer Adam Adam
β1 0.9 0.9
β2 0.999 0.999
Learning rate schedule OneCycleLR OneCycleLR
Learning rate 1e-3 1e-3
Annealing strategy Cosine Cosine
Increasing learningrate steps percent 30% 30%

we apply radial basis function on the distances as follows:88

Dj→i,r = exp (− (∥xj − xi∥)2

σ2
) (1)

We use 16 basis so that there are each pair has 16 distance-related features. Unlike [11], we do not89

use virtual atoms.90

Angle features We use the bond angles αi, βi, γi and torsion angles ψi, πi, ωi from91

Ci−1, Ni, Cαi, Ci, and Ni+1 as node features between adjacent (i− 1, i, i+ 1) residues. For angle-92

related edge features, we adopt the quaternions of relative rotation between their local coordinate93

systems as follows:94

qij = q(gTi gj) (2)

where q is the quaternion encoding operation.95

Direction features We use relative directional information between orientation Qi of a residue i96

and directions of intra-residue i or inter-residue j atoms to Cαi as follows:97

Ri = gTi
ai − Cαi

∥ai − Cαi∥
, Rji = gTi

aj − Cαi

∥aj − Cαi∥
(3)

We note that a includes C,N,Cα, O and C,N,Cα, O for node features and edge features, respec-98

tively.99
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