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Abstract

This paper studies the training data selection problem, focusing on the selection of effec-
tive samples to improve model training using data affected by distributional shifts (i.e.,
data drifts). Existing drift-detection-based methods struggle with local drifts, while recent
drift-localization-based methods lack theoretical support for the problem and are often in-
effective. To tackle these issues, this paper proposes TSJD, a training data soft selection
method based on joint density ratio estimation. TSJD assigns training weights (i.e., soft
selects) to samples based on the estimated joint density ratio to align the selected data
with the recent data distribution. By evaluating each sample independently of time, TSJD
effectively addresses local data drifts. We also provide theoretical guarantees by deriving an
upper bound on the generalization error for models trained with data selected by TSJD. In
numerical experiments with four real-world datasets, TSJD shows great versatility, achiev-
ing the best or comparable results over baseline methods in all of the experiments.

Keywords: Training data selection; data drift; joint density ratio estimation;

1. Introduction

Supervised learning aims at training a prediction model to minimize test error, assuming
that the data distribution is consistent between the training and test data. However, real-
world applications often violate this assumption and the data distribution changes over
time, known as data drift. These drifts make it ineffective to directly use the given training
data (Awasthi et al., 2024; Shimodaira, 2000; Quionero-Candela et al., 2009). As a result,
a problem of training data selection arises, i.e., selecting effective samples from drifting
data to improve the prediction performance of models trained with (Hinder et al., 2022; Liu
et al., 2017).

A naive approach to the problem just uses recent samples, assuming that the data
distribution is approximately consistent for a short time span (Wang et al., 2003; Woźniak,
2013; Brzezinski and Stefanowski, 2014). However, this approach discards all the older
samples, which is potentially effective for model training. Drift detection methods (Bifet
and Gavaldà, 2007; Page, 1954) improve this approach by determining when to separate
the recent and old samples, performing concept drift detection from the present to the past,
and utilizing the samples up to the time when a drift is detected. However, they still select
samples only based on time, failing to adapt to local concept drifts that occurred in a small
part of the input space, as well as recurring concept drifts (Hinder et al., 2022).

Recent studies propose drift localization methods (Hinder et al., 2022; Liu et al., 2017),
which detect local data drift in the sample space based on recent data, and we can select
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samples based on the input and output of each sample, aligned with the recent data dis-
tribution for model training. Although these approaches are capable of flexibly selecting
samples from old samples, the theoretical properties of models trained with the selected
samples remain unknown, limiting their validity to the problem. Indeed, the empirical
performance of these methods is inferior to naive baselines, as shown in our experiments.

To address this, we propose TSJD, a Training data soft Selection method based on Joint
Density ratio estimation. TSJD first trains a joint density ratio estimator between recent
and old data distributions. It then assigns training weights to each sample (i.e., soft-selects)
based on the estimated ratio, effectively addressing local data drifts by utilizing both inputs
and outputs. In addition, we provide a theoretical upper bound on the generalization error
of models trained with our method, ensuring the validity of our method for the training
data selection problem. Experiments on four real-world datasets show TSJD consistently
achieves the best or comparable results across all 30 settings, demonstrating its effectiveness
and versatility.

Our contributions are summarized as follows;

• We propose TSJD, a training data soft selection method using a joint density ratio
estimator to effectively handle local data drifts (Section 3).

• We offer theoretical analysis and establish a generalization error upper bound to support
the validity of TSJD (Section 4).

• We conduct extensive numerical experiments and provide empirical evidences which high-
light the superiority of TSJD over various baseline methods (Section 5).

Due to the space limitation, all proofs of theorems and lemmas are presented in the supple-
mentary material. We also report comprehensive experiments on seven real-world datasets
across 126 settings in our supplementary material.

2. Preliminary

In this section, we explain the problem formulation as well as related works briefly.

2.1. Problem Formulation

We consider a supervised classification problem. The input space is X ⊆ Rd and the output
space is Y = [K], where [K] denotes the set of integers from 1 to K, i.e., [K] := {1, ...,K}
and the integer K ∈ Z≥2 is the number of classes. Let pt(x, y) be a joint distribution
over X ×Y at time t ∈ Z≥1. A sample (xt, yt) is sampled from pt(x, y) at every time step
t ∈ [T ], where T ∈ Z≥1 is the current time. All samples available at the training phase
form a datasets D := {(xt, yt)}Tt=1. A standard approach for classification tasks is to train
a model by minimizing the cross-entropy loss, i.e.,

ℓCE(h(x), y) := − log(h(y|x)), (1)

where h : X → ∆K−1 is a probabilistic classification model, ∆K−1 := {p ∈ RK
≥0 |∥p∥1 =

1} ⊂ RK is the (K − 1) dimensional probability simplex, and h(y|x) = (h(x))y computes
the probability that an input x ∈ X belongs to a class y ∈ Y. The model h predicts a class
of x ∈ X by arg max

y∈Y
h(y|x).
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Let H be the hypothesis space of a classification model h. We aim to find h∗ ∈ H that
maximizes accuracy over the next M steps, i.e., t = T + 1, . . . , T + M . To achieve this, we
seek to minimize the expected zero-one loss over the distributions pT+1(x, y), . . . , pT+M (x, y)
(a.k.a. the zero-one risk), denoted by R01;

R01(h) :=
1

M

T+M∑
t=T+1

E
pt(x,y)

[ℓ01(h(x), y)], (2)

where ℓ01(h(x), y) = I[arg max
k

h(k|x) ̸= y] and I[P ] is the Iverson bracket, which

is 1 if the proposition P is true and 0 otherwise. The notation Ep(x,y)[f(x, y)] :=∫
X ×Y f(x, y)p(x, y)dxdy is the expectation of a function f : X ×Y → R over the joint

distribution p(x, y).

Obtaining h∗ is challenging because the future distribution pt for t > T is unknown.
Additionally, if there are concept drifts (changes in the conditional distribution of y given x,
p(y|x), a.k.a. conditional shift) with in D, the naive use of all of D (a.k.a. ERM: empirical
risk minimization) is unsuitable for finding h∗. A common practical approach is to use
the most recent N samples from D, i.e., {(xt, yt)}Tt=T−N+1, as training data (Wang et al.,
2003; Woźniak, 2013; Brzezinski and Stefanowski, 2014). Here, N ∈ [T ] is determined based
on domain knowledge or set as a hyperparameter. This approach is based on an implicit
assumption as follows.

Assumption 1 (Temporal consistency of the joint distribution) There exists an
integer N ∈ [T ] and small constants τX , τY |X ≥ 0 such that for any t ∈ {T −N + 1, ..., T}
and t′ ∈ {T + 1, ..., T + M} each of the followings holds;

dX(pt, pt′) ≤ τX (3)

∀x ∈ X , dY |X(pt(·|x), pt′(·|x)) ≤ τY |X , (4)

where dX and dY |X compute the distances of two marginal (pt(x) and pt′(x)) and conditional
(pt(y|x) and pt′(y|x)) distributions, respectively.

We define pt(·|x) as pt(·|x) := [pt(y = 1|x), . . . , pt(y = K|x)]T ∈ ∆K−1. Specifically, in
our analysis in Section 4, we use the Wasserstein 1-distance (Edwards, 2011) (a.k.a. earth
mover’s distance) W1 for dX and the L2-norm for dY |X . Various choices of τX and τY |X
have been explored in examples such as the following;

Example 1 The traditional ERM (Hastie et al., 2001) assumes τX = τY |X = 0.

Example 2 Covariate shift (Shimodaira, 2000) assumes τX > 0 and τY |X = 0.

The naive approach under Assumption 1 selects the recent samples {(xt, yt)}Tt=T−N+1 and
discards older samples from t = 1 to t = T −N . Although the older samples might worsen
the training of h due to data drifts, selecting effective ones can enhance its performance. To
tackle this, we employ a soft selection method by assigning positive weights to each sample
in D. In summary, this paper formulates the problem as follows.
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Definition 1 (Training Data Soft Selection Problem) Given a dataset D =
{(xt, yt)}Tt=1, where (xt, yt) is independently sampled from pt and assume Assumption 1
holds, the task is to find sample weights W ∗ = {wt}Tt=1 ∈ RT

≥0 which minimizes the zero-one
risk of the trained model with, i.e.,

W ∗ = arg min
W∈RT

≥0

R01

(
arg min

h∈H

T∑
t=1

wtℓCE(h(xt), yt)

)
, (5)

where H is an arbitrary hypothesis space.

Remark 2 In our problem formulation, H is given after choosing W . If H were given
before deciding W , we could optimize both W and h simultaneously, likely improving R01

risk (Zhang et al., 2020; Bassily et al., 2024; Mohri and Muñoz Medina, 2012). In practice,
however, AutoML tools, such as auto-sklearn1 and PyCaret,2 often handle the training of h,
limiting customization of the training. In addition, H is often composed of different models
with different behaviors, including decision trees, linear models, gradient boosting models,
and neural networks, making the optimization of W along with h unstable. Furthermore, in
MLOps frameworks (Kreuzberger et al., 2023; Ruf et al., 2021), data preparation and model
training are separate steps. These conditions make joint optimization impractical, while our
formulation remains usable.

2.2. Related Works

We review drift detection methods, drift localization methods, and density ratio estimation
methods as related works as follows;

Drift Detection Methods. Drift detection methods identify change points in data distri-
bution and have been studied for over a half century (Page, 1954; Bifet and Gavaldà, 2007;
Gama et al., 2004; Mayaki and Riveill, 2022). Concept drift can be detected by applying
these drift detection methods to the stream of the prediction losses (Mehmood et al., 2021;
Gonçalves et al., 2014) and this can be applied to our problem by detecting concept drift
from the present t = T backward to the past t = 1 and selecting samples until a drift is
detected. However, as noted by Hinder et al. (2022), “... if a drift only occurs in a small re-
gion of the entire feature space, the other non-drifted regions may also be suspended, thereby
reducing the learning efficiency of models.”, these time-based methods often fail to flexibly
select samples, which can decrease the efficiency of learning models.

Drift Localization Methods. Unlike traditional drift detection methods that determine
when drift occurs, recent drift localization techniques identify where drift happens. Liu et al.
(2017) introduce LDD-DIS, which detects local drift by comparing the number of recent
and old samples in the k-nearest neighbors among the data. Building on this, LDD-DSDA
is developed to select samples for the problem. Hinder et al. (2022) propose a theoretical
framework called LCD, which reframes drift localization as a supervised classification prob-
lem, offering improved detection performance over LDD-DIS. However, both methods lack
theoretical analysis for model training and often struggle to select samples effectively.

1. https://automl.github.io/auto-sklearn/master/
2. https://pycaret.org/

https://automl.github.io/auto-sklearn/master/
https://pycaret.org/
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Density Ratio Estimation. The density ratio, which compares two probability distri-
butions, has been a research focus for over two decades (Shimodaira, 2000). Kernel based
methods, such as KLEIP (Sugiyama et al., 2007a), uLSIF (Kanamori et al., 2009), RuL-
SIF (Yamada et al., 2013), KMM (Schölkopf et al., 2007), and other methods (Sugiyama
et al., 2012; Kato and Teshima, 2021; Zhang et al., 2020) have been proposed and utilized
not only for covariate shift adaptation (Shimodaira, 2000; Sugiyama et al., 2007a), but also
for generative models (Goodfellow et al., 2014), mutual information approximation (Suzuki
et al., 2009), and change point detection (Liu et al., 2013). Various extensions exist, such as
joint-to-marginal (Matsushita et al., 2022), conditional distribution given input (Sugiyama
et al., 2010) and output (Sugiyama, 2010), and continuous covariate shift (Zhang et al.,
2023). However, joint density ratio estimation, crucial for addressing our problem, remains
insufficiently explored.

3. Proposed Method

This section introduces our method, TSJD, a training data soft selection method based
on joint density ratio estimation. Section 3.1 explains the notation and assumptions while
Section 3.2 present the algorithm of TSJD. Section 3.3 describes training of the joint density
estimator, and Section 3.4 offers details on modeling and hyperparameter tuning.

3.1. Notation and Assumption

We define the marginalization of the N -recent data distribution as

p̄T (x, y) :=
1

N

T∑
t=T−N+1

pt(x, y), (6)

where we use the subscript T to denote Target. We consider the data DT :=
{(xt, yt)}Tt=T−N+1 to be approximately i.i.d. samples from the distribution p̄T (x, y). Simi-
larly, we define

p̄S(x, y) :=
1

T −N

T−N∑
t=1

pt(x, y), (7)

as the old data distribution, and DS := {(xt, yt)}T−N
t=1 is considered as samples of size

(T −N) from the distribution p̄S(x, y). Here, the subscript S is short for Source. Moreover,
we define the test distribution pte as

pte(x, y) :=
1

M

T+M∑
T+1

pt(x, y). (8)

and assume that R01(h) = Epte(x,y)[ℓ01(h(x), y)].

These formulation and assumption allow us to view the problem of Definition 1 as one
that to relate the three distributions p̄S , p̄T , and pte. With this understanding, we present
our method in the next section.
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3.2. Algorithm of TSJD

To derive our proposed method, we establish a key theorem that links the zero-one risk R01

with the squared L2-norm of the difference between h(x) and p̄T (·|x) over p̄T , as follows.

Theorem 3 For any h ∈ H, the following holds.

R01(h)−B01 = O
(

E
p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
+ Z(h)τX + τ2Y |X

)
, (9)

where we define Z(h) := supx∈X

∥∥∥∇∥p̄T (·|x)− h(x)∥22
∥∥∥
2
and B01 := minf R01(f) as the

Bayes error, i.e., B01 is the lowest value of R01 among any possible classification model
f : X → ∆K−1.

Theorem 3 indicates that fitting h(x) to p̄T (·|x) is sufficient for the problem, i.e., selecting
samples to make h learn p̄T solves the problem of Definition 1.

Remark 4 Although we have another h-related term Z(h)τX beside the first term

Ep̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
in Eq. (9), it can be considered negligible due to the following

reasons;
• Small τX Assumption: The value of τX is assumed to be a small constant, e.g., τX ≪ 1,

inherently reducing the impact of the term Z(h)τX .
• Convergence of Z(h): Even if τX is not particularly small, Z(h) → 0 holds with the

first term in Eq. (9) converges to zero, i.e., Ep̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
→ 0, further

diminishing the significance of the term Z(h)τX .

This understanding makes us to use the following weighting strategies;

Weights for the recent samples. We set the weight wt ∝ 1 for all t ∈ {T −N +1, ..., T},
as the naive approach does. Since DT is assumed to be sampled from p̄T , this weights enable
us to empirically approximate the the expected cross-entropy loss of h over p̄T , denoted by
LCE(h) as

LCE(h) := E
p̄T (x,y)

[ℓCE(h(x), y)] ≈ 1

|DT |
∑

(x,y)∈DT

ℓCE(h(x), y). (10)

By the strict-properness of the the cross-entropy loss (Gneiting and Raftery, 2007) and
Theorem 3, the minimization of Eq. (10) leads to minimize R01(h).

Weights for the old samples. For the old samples with t ∈ [T − N ], we apply the im-
portance weighting technique (Shimodaira, 2000; Sugiyama et al., 2007a), initially proposed

for covariate shift adaptation; Let r(x, y) := p̄T (x,y)
p̄S(x,y)

be the joint density ratio of p̄T over p̄S .
Then, we have

E
p̄T (x,y)

[f(x, y)] =

∫
f(x, y)

p̄T (x, y)

p̄S(x, y)
p̄S(x, y)dxdy = E

p̄S(x,y)
[r(x, y)f(x, y)]. (11)

Hence, setting a sample weight wt to be wt ∝ r(xt, yt) converts the expectation over p̄S into
that over p̄T . With the same logic for the recent samples, the minimization of ℓCE(h(xt), yt)
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Algorithm 1 Main algorithm of TSJD

Input: Data D = ((x1, y1), ..., (xT , yT )) ∈ (X ×Y)T , Number of recent samples N ∈ [T−1]
w.r.t. Assumption 1
// Step 1

1: ∀t ∈ {T −N + 1, ..., T}, wt ← 1
2N

// Step 2
2: Train a joint density ratio estimator ĝ : X ×Y → R≥0 based on DT and DS

3: ∀t ∈ [T −N ], wt ← 1
2(T−N) ĝ(xt, yt)

Output: Sample weights W = [w1, ..., wT ]T ∈ RT
≥0

with the weight wt = r(xt, yt) over p̄S leads to minimize R01(h). Since r(x, y) is not
explicitly available, we train a joint density ratio estimator ĝ : X ×Y → R≥0 and use
wt ∝ ĝ(xt, yt) for the weight for all t ∈ [T −N ].

Algorithm 1 summarizes our method for the training data selection problem, where we
normalize the weights using N and T . By our Algorithm 1, the model h will be trained to
minimize L̂CE(h;DS , DT ) defined as

L̂CE(h;DS , DT ) :=
1

2

 1

|DT |
∑

(x,y)∈DT

ℓCE(h(x), y) +
1

|DS |
∑

(x,y)∈DS

ĝ(x, y)ℓCE(h(x), y)

,

(12)

with our joint density ratio estimator ĝ. Next, we specify how to train ĝ based on DS and
DT .

3.3. Training the Density Ratio Estimator ĝ

We train a density ratio estimator g : X ×Y → R≥0 which approximates the true density

ratio r(x, y) = p̄T (x,y)
p̄S(x,y)

by minimizing the expected squared error J(g) over p̄S (Kanamori

et al., 2009; Zhang et al., 2020);

J(g) := E
p̄S(x,y)

[
(g(x, y)− r(x, y))2

]
, (13)

whose empirical version Ĵ(g;DS , DT ) is defined as

Ĵ(g;DS , DT ) :=
1

|DS |
∑

(x,y)∈DS

g(x, y)2 − 2

|DT |
∑

(x,y)∈DT

g(x, y) + Cr, (14)

where Cr := Ep̄S(x,y)

[
r(x, y)2

]
= Ep̄T (x,y)[r(x, y)] is an independent constant and can be

ignored to train g. In addition, g needs to satisfy

1 = E
p̄S(x,y)

[g(x, y)] ≈ 1

|DS |
∑

(x,y)∈DS

g(x, y) (15)
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to be a proper density ratio due to the fact Ep̄S(x,y)[r(x, y)] =
∫
p̄T (x, y)dxdy = 1. Hence,

we add an empirical constraint with a hyperparameter β > 0. The final loss function to
train g is defined as

L(g;DS , DT ) :=
1

|DS |
∑

(x,y)∈DS

g(x, y)2 − 2

|DT |
∑

(x,y)∈DT

g(x, y)

+ β

 1

|DS |
∑

(x,y)∈DS

g(x, y)− 1

2

, (16)

and we denote the minimizer of L(g;DS , DT ) by ĝ.

Remark 5 The constraint Eq. (15) is often overlooked in existing methods (Kanamori
et al., 2009; Yamada et al., 2013; Zhang et al., 2020), as claimed by Sugiyama et al. (2007b)
“... the normalization constraint (Eq. (15)) is not generally satisfied exactly ... this may
not be critical in practice since the scale of the importance is often irrelevant in subsequent
learning algorithms.”. However, since we use both DS and DT , the correct scale is vital
to control and balance the effects of the sample weights. Additionally, in our analysis,
we assume p̄S(x, y)g(x, y) is a probability density. Therefore, contrary to the claim, the
constraint term is crucial in our problem.

3.4. Implementation and Hyperparameter Tuning of ĝ

We employ a linear-in-parameter model (Zhang et al., 2020) (a.k.a. linear basis expansion)
with the softplus activation; softplus(x) := log(1 + exp(x)) for g as

g(x, y) = softplus

(
NM∑
i=1

aiϕi(x, y)

)
, (17)

where ai ∈ R is the learning parameter, ϕi : X ×Y → R is the i-the feature mapping (a.k.a.
basis function), and NM = 200 is the number of the feature mappings. The feature mapping

ϕi is modeled using the Gaussian RBF as ϕi(x, y) := exp
(
−∥x−xi∥22

σx

)
max(σy, I[y = yi]),

where (xi, yi) is the kernel center, sampled from DT uniformly at random, σx > 0 and
σy ≥ 0 are the hyperparameters. The parameters {ai}NM

i=1 are optimized using gradient
descent.

The hyperparameters of TSJD, i.e., σx, σy, and β, are tuned by a grid search and ones

that minimize Ĵ(ĝ;DS , DT ), satisfying the following constraint is selected;∣∣∣∣∣∣ 1

|DS |
∑

(x,y)∈DS

ĝ(x, y)− 1

∣∣∣∣∣∣ ≤ G

√
log 2

δ

2|DS |
, (18)

where ĝ is obtained by minimizing Eq. (16) with each set of the hyperparameters, and we
set G = 10 and δ = 0.05. Note this constraint is different from the term inside Eq. (16);
This is based on the following lemma, that states that even the training is perfect, i.e.,

ĝ = r, the constraint Eq. (15) can only be satisfied with a margin G

√
log 2

δ
2|DS | in probability.

The proof is omitted since it is trivial by Hoeffding’s inequality.
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Lemma 6 Assume r(x, y) ≤ G for any (x, y) ∈ X ×Y. Then, for any δ ∈ (0, 1), the
following holds with probability at least 1− δ.∣∣∣∣∣∣ 1

|DS |
∑

(x,y)∈DS

r(x, y)− 1

∣∣∣∣∣∣ ≤ G

√
log 2

δ

2|DS |
(19)

4. Theoretical Analysis

In this section, we provide our theoretical analysis, bounding the generalization error of
models trained with our method. Before presenting our analysis, we clarity the notation
and assumption used in our analysis as follows;
• Let G+ be the hypothesis space for the joint density ratio predictor g : X ×Y → [0, G]

with a constant G ≥ 1 and assume that ∀g ∈ G+, Ep̄S(x,y)[g(x, y)] = 1 holds.
• Let G be defined as G := G+ ∪{g′ : (x, y) 7→ −g(x, y)|g ∈ G+}.
• Assume that ∀(x, y, h) ∈ X ×Y ×H : ℓCE(h(x), y) ≤ U holds with a constant U ≥ 0.

4.1. Main Result

Our analysis yields an upper bound on the zero-one risk of ĥ, trained with weights
computed by our method. The main theorem detailing the generalization error bound
and its order is presented in Theorem 7 and Corollary 8, respectively. Notably,
C4(δ) = O(RN (H) + RT−N (H)) and C3(δ) = O(RN (G) + RT−N (G)) are defined using the
Rademacher complexity R (Koltchinskii, 2001; Cortes et al., 2016; Maurer, 2016; Ledoux
and Talagrand, 2013; Mohri et al., 2018). The exact definitions and notation will be pro-
vided in the subsequent sections.

Theorem 7 (Generalization error bound) For any δ ∈ (0, 1), the following inequality
holds with probability at least 1− δ;

R01(ĥ)−B01

≤ 4Kη−2
min

(
TKL(h∗) + U

√
J(g∗) + C4(δ/5) + U

√
C3(δ/5) +

1

K
Z(ĥ)τX +

1

K
τ2Y |X

)
, (20)

where TKL(h) is the expected Kullback-Leibler divergence between p̄T (·|x) and h(x) over
p̄T (x), i.e.,

TKL(h) := E
p̄T (x)

[DKL(p̄T (·|x)||h(x))]. (21)

Corollary 8 Assume that Rn(G) = O(n−1/2) and Rn(H) = O(n−1/2), then following
order holds;

R01(ĥ)−B01 = O
(
TKL(h∗) +

√
J(g∗) + Z(ĥ)τX + τ2Y |X

)
+Op

(
N− 1

4 + (T −N)−
1
4

)
,

(22)

where Op denotes the order in probability.
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Remark 9 Theorem 7 and Corollary 8 show that if p(y|x) = h∗(y|x) and r(x, y) = g∗(x, y)
hold for any (x, y) ∈ X ×Y, then as N and T increase, the difference between R01(ĥ) and

the Bayes error B01 approaches O
(
Z(ĥ)τX + τ2Y |X

)
, which is inevitable due to data drift.

Therefore, the generalization error of ĥ can be considered optimal, theoretically validating
our method of Algorithm 1.

In the following sections, we introduce the key lemmas and theorems for deriving Theorem
7.

4.2. Generalization Error Bound of ĝ

We first establish the generalization error bound of our joint density ratio estimator ĝ :
X ×Y → R≥0 in terms of the expected squared error J .

Theorem 10 Let ĝ and g∗ be the minimizers of Ĵ(g;DS , DT ) and J(g) among G+, re-
spectively. Then, for any δ ∈ (0, 1), the following inequality holds with probability at least
1− δ;

J(ĝ) ≤ J(g∗) + C3(δ), (23)

where C3(δ) := 4GR|DS |(G) + 4R|DT |(G) + 4G2

√
log 3

δ
2

(
1√
|DS |

+ 1√
|DT |

)
and Rn(G) is the

Rademacher complexity (Koltchinskii, 2001) of G with sampling size n.

The following corollary is obvious from Theorem 10.

Corollary 11 Assume that Rn(G) = O(n−1/2), then following order holds;

J(ĝ) = J(g∗) +Op

(
N−1/2 + (T −N)−1/2

)
, (24)

Remark 12 Corollary 11 indicates that if G+ is properly chosen and r = g∗ ∈ G+, the
right hand of Eq. (24) decreases to 0 at the rate of (T − N)−1/2 + N−1/2 in probability.
This ensures that ĝ converges to r as N and T approach infinity, confirming the theoretical
soundness of our method for training g.

4.3. Generalization Error Bound of h Trained with Our Method

Next, we analyze the generalization error of ĥ, a clasification model trained with our selected
training sample using ĝ ∈ G+. The following Lemma 13 and Lemma 14 provide the relation
between LCE(h) and empirical error of a classification model h.

Lemma 13 For any δ ∈ (0, 1) and h ∈ H, over the draw of i.i.d. samples ST from p̄T ,
the following inequality holds with probability at least 1− δ;

LCE(h) ≤ 1

|ST |
∑

(x,y)∈ST

ℓCE(h(x), y) + C1(δ) (25)

where C1(δ) := 2
√

2 exp(U)R|ST |(H)+U

√
log 1

δ
2|ST | and Rn(H) is the vector-valued Rademacher

complexity (Maurer, 2016; Cortes et al., 2016) of H with sampling size n.
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Table 1: Dataset statistics.

Data set Samples Features Classes

Weather 18159 8 2
Smartmeter 22950 96 10
Powersupply 29928 2 24
Forest 581012 54 2

Lemma 14 For any δ ∈ (0, 1) and any h ∈ H, over the draw of i.i.d. samples S from p̄S,
the following inequality holds with probability at least 1− δ:

LCE(h) ≤ 1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y) + C2(δ) + U

√
E

p̄S(x,y)

[
(r(x, y)− g(x, y))2

]
(26)

where C2(δ) := 2(2U + G) exp(U)R|S|(H) + 2(U + 2G)R|S|(G) + MG

√
log 1

δ
2|S| .

Based on Lemma 13 and Lemma 14, we obtain the generalization error bound w.r.t. LCE.

Theorem 15 Let ĥ and h∗ be the minimizers of L̂CE(h) and LCE(h) among H, respectively.
Then, for any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ;

LCE(ĥ)− LCE(h∗) ≤ U
√
J(g∗) + C4(δ/5) + U

√
C3(δ/5) (27)

where we define

C4(δ) :=
√

2 exp(U)R|DT |(H) + U

√
log 1

δ

2|DT |
+ (2U + G) exp(U)R|DS |(H)

+ (U + 2G)R|DS |(G) + GU

√
log 1

δ

2|DS |
. (28)

Based on Theorem 15 and Theorem 3, we derive the generalization upper bound for the
risk R01(ĥ), which is our final target to minimize. The bound is presented in Section 4.1,
and we have already discussed its implication, showing theoretical validity of our method.

5. Numerical Experiments

We conducted experiments to test the empirical effectiveness of our method on real-world
datasets.

Dataset. We use four real-world multi-class classification datasets obtained from USP DS
Repository (Souza et al., 2020)3. We select two severely drifting (Powersupply and Forest)
and two relatively stationary datasets (Weather and Smartmeter), as shown in Table 1.

3. https://sites.google.com/view/uspdsrepository, Accessed: 2025-06-24

https://sites.google.com/view/uspdsrepository
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Table 2: Average zero-one loss (↓) over 30 random trials. Boldfaces with star∗ high-
light the lowest errors and basic boldfaces show comparable results based on the
Wilcoxon signed-rank test (Wilcoxon, 1945) with the significance level of 1%.

Data Model N T
Naive Baseline Time-based Cov.shift Drift Localization (Ours)
DT D PHT ADWIN uLSIF LDD-DSDA LCD TSJD

W
ea
th
er

L
G
B
M 200 2000 29.57 21.97∗ 22.00 22.30 28.33 24.60 22.53 22.90

500 5000 19.90 17.73 17.73 17.60∗ 19.63 18.70 18.33 18.43
1000 10000 23.70 20.57 21.13 21.30 22.93 21.03 20.43∗ 21.37

N
N

200 2000 27.50 20.63 21.13 20.47∗ 26.43 22.73 20.63 22.03
500 5000 19.90 17.57 17.63 17.53∗ 17.83 18.47 17.80 18.00

1000 10000 20.70 18.93∗ 19.10 19.37 21.03 19.93 19.60 19.23

S
m
a
rt
m
et
er

L
G
B
M

200 2000 26.67 19.90 20.07 20.10 27.40 21.77 20.13 17.67∗

500 5000 22.97 13.50 17.33 19.90 24.80 16.73 14.33 12.83∗

1000 10000 21.13 13.13 17.40 19.57 21.90 15.40 12.70 12.07∗

2000 20000 22.23 15.20 17.43 17.80 23.23 16.53 15.67 13.37∗

N
N

200 2000 36.30 36.80 36.73 33.23 40.00 37.77 36.43 31.00∗

500 5000 35.27 33.33 35.27 36.43 37.43 34.27 33.27 29.20∗

1000 10000 36.10 31.53 39.13 37.83 37.13 34.83 31.80 30.13∗

2000 20000 37.23 32.17 33.80 36.10 37.97 34.33 31.60 30.07∗

P
ow

er
su
p
p
ly

L
G
B
M

200 2000 80.43∗ 85.20 85.33 85.60 84.70 85.10 85.53 83.43
500 5000 79.60∗ 83.60 83.70 84.10 83.77 83.43 84.73 81.80

1000 10000 82.57∗ 84.20 86.17 85.57 85.00 84.10 85.37 83.30
2000 20000 81.63 80.53∗ 82.93 82.00 81.87 80.57 81.53 82.07

N
N

200 2000 85.30 83.27 83.27 83.60 84.70 86.20 83.90 82.23∗

500 5000 81.33 82.57 82.77 82.93 80.63 81.87 83.90 78.83∗

1000 10000 80.67 83.77 85.07 83.80 81.17 82.47 84.03 79.77∗

2000 20000 78.40 78.77 79.13 78.37 77.60∗ 78.60 79.67 78.23

F
o
re
st L
G
B
M

200 2000 34.00 3.13 4.37 12.40 31.83 9.93 2.77∗ 2.93
500 5000 14.77 4.40 4.00∗ 4.33 15.47 5.40 4.20 4.80

1000 10000 3.07 3.43 3.63 3.00 3.43 3.53 3.60 2.77∗

2000 20000 5.07 6.67 6.50 5.00 6.20 6.40 7.03 4.43∗

N
N

200 2000 35.90 3.80 6.17 16.10 32.70 9.40 3.43∗ 4.07
500 5000 14.53 4.73 5.03 3.93∗ 15.40 5.20 4.43 3.97

1000 10000 4.00 5.07 5.20 4.20 4.27 4.87 4.70 3.60∗

2000 20000 5.83 8.60 8.57 6.27 8.17 8.77 8.87 5.63∗

Average Rank 5.27 3.40 4.93 4.43 6.00 5.03 4.37 2.40∗

#Best 3 3 1 4 1 0 3 15∗

#Best or Comparable 14 19 13 18 10 14 20 30∗

Setting. We vary N among 200, 500, 1000, and 2000, setting T = 10N . The number
of test data, M , is consistently set to 100 across all settings. In each dataset, we select
continuous T samples starting from a randomly chosen index and use them for D. The
subsequent M samples form the test data, Dte. Using each baseline and our method, we
select the training data from D and then train a classifier ĥ. The classifier is either modeled
by LightGBM (Ke et al., 2017) or a three-layer neural network with 100 hidden units as
two representative classification models. The evaluation is based on the average zero-one

loss on Dte, i.e., R̂01(ĥ;Dte) = 1
|Dte|

∑
(x,y)∈Dte ℓ01

(
ĥ(x), y

)
. We repeat each setting for 30

times with different random seeds, and report the average.
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Comparison methods. We compare our method with seven various baselines, including
naive baselines, drift detection, covariate shift adaptation, and drift localization methods
as follows;

• DT , D: Naive baselines. Naively use each of the recent data DT and whole data D.
• PHT (page-hinkley test) (Page, 1954), ADWIN (Bifet and Gavaldà, 2007): Representa-

tive time-based drift detection methods. First train a LightGBM classification model on
DS and then apply drift detection to the prediction loss from the present to the past.
We select samples until a drift is detected.

• uLSIF (Kanamori et al., 2009): Covariate shift adaptation method; a variant of our
approach, not with joint density ratio, but with covariate density ratio. Efficient hyper-
parameter tuning proposed by the authors is conducted for each experiment.

• LDD-DSDA (Liu et al., 2017): An existing method for training data selection, which se-
lects samples based on drift localization method, LDD-DIS. Default parameters provided
by the authors are used.

• LCD (Hinder et al., 2022): A drift localization method; we use all DT and no-drifting
samples (p-value of drift ≥ 0.05) in DS . Parameters provided by the authors are used.

• TSJD: Our method detailed in Section 3. Hyperparameters are pre-tuned for each dataset
and N pair using the entire dataset based on Section 3.4.

Results. The results are presented in Table 2. Our method achieves the best average
rank of 2.40 and consistently shows the best or comparable results across all datasets and
settings. Among the baselines, LCD achieves the best or comparable results 20 times.
However, its average rank is 4.37, which is worse than the naive baseline using D. This
highlights the weakness of LCD and underscores the superiority of TSJD. Overall, these
findings empirically demonstrate the effectiveness and versatility of our method for the
problem of training data selection.

6. Conclusion

This paper studied the training data selection problem, focusing on the selection of effective
samples to improve model training from drifting data. We proposed TSJD, which assigns
training weights for each sample based on joint density ratio estimation. We provide a theo-
retical analysis that bounds the generalization error of our method. Extensive experiments
on real-world datasets demonstrate the superiority of TSJD over baseline methods.
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Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine learning operations
(mlops): Overview, definition, and architecture. IEEE Access, 11, 2023.



Training Data Soft Selection via Joint Density Ratio Estimation

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and
Processes. Classics in Mathematics. Springer Berlin Heidelberg, 2013.

Anjin Liu, Yiliao Song, Guangquan Zhang, and Jie Lu. Regional concept drift detection
and density synchronized drift adaptation. In International Joint Conference on Artificial
Intelligence, 2017. doi: 10.24963/ijcai.2017/317.

Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point detection
in time-series data by relative density-ratio estimation. Neural Networks, 43, 2013. doi:
10.1016/j.neunet.2013.01.012.

Yukitoshi Matsushita, Taisuke Otsu, and Keisuke Takahata. Estimating density ratio of
marginals to joint: Applications to causal inference. Journal of Business and Economic
Statistics, 2(41), 2022.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Algorith-
mic Learning Theory, 2016.

Mansour Zoubeirou A. Mayaki and Michel Riveill. Autoregressive based drift detection
method. International Joint Conference on Neural Networks, 2022.

Hassan Mehmood, Panos Kostakos, Marta Cortes, Theodoros Anagnostopoulos, Susanna
Pirttikangas, and Ekaterina Gilman. Concept drift adaptation techniques in dis-
tributed environment for real-world data streams. Smart Cities, 4(1), 2021. doi:
10.3390/smartcities4010021.
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Supplementary Material

This is the supplementary material of the paper “Training Data Soft Selection via Joint
Density Ratio Estimation”. We provide useful lemmas in Supplementary A and missing
proofs of theorems and lemmas presented in the main body of the paper Supplementary
B. Supplementary C presents detailed experimental results, including running time and
analysis of hyperparameter sensitivity.

Supplementary A. Useful Lemmas

Lemma A.1 Let p, q be distributions over X and f : X → R be a Lipschitz continuous
differentiable function. Then, following inequality holds.∣∣∣∣ Ep(x)[f(x)]− E

q(x)
[f(x)]

∣∣∣∣ ≤ (sup
x∈X
∥∇f(x)∥2

)
W1(p, q) (A.1)

Proof . Obvious by Kantorovich-Rubenstein duality (Edwards, 2011). □

Proposition A.2 For any p, q ∈ [0, 1], the following holds.

(p− q)2 ≤ DBKL(p||q), (A.2)

where DBKL is defined as the binary Kullback-Leibler (KL) divergence, defined with the
binary cross entropy (CE) HB as

DBKL(p||q) := HB(p, q)−HB(p, p), (A.3)

HB(p, q) := −p log q − (1− p) log(1− q). (A.4)

Proof . Let p be fixed to any number in [0, 1]. We aim at finding the minimum of the
difference d(q), defined as

d(q) := DBKL(p||q)− (p− q)2 = p log
p

q
+ (1− p) log

1− p

1− q
− (p− q)2. (A.5)

Regarding the differential, we have the following.

d

dq
d(q) = (q − p)× 1 + (−1 + 2q)2

2q(1− q)
(A.6)

By letting d
dqd(q) = 0, we see that d(q) is minimized when p = q and the minimum is 0.

Hence we have d(q) ≥ 0, which concludes the proof. □

Proposition A.3 For any p,q ∈ ∆K−1, i ∈ [K], the following inequality holds.

(pi − qi)
2 ≤ DBKL(pi, qi) ≤ DKL(p,q), (A.7)

where DKL is the KL divergence, defined with the cross entropy (CE) H as

DKL(p,q) := H(p,q)−H(p,p), (A.8)

H(p,q) := −
K∑
k=1

pk log qk. (A.9)
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Proof . By Proposition A.2, (pi − qi)
2 ≤ DBKL(pi, qi) holds.

DKL(p,q) =

K∑
k=1

pk log
pk
qk

= pi log
pi
qi

+
∑
k ̸=i

pk log
pk
qk

(A.10)

By the log sum inequality, we have∑
k ̸=i

pk log
pk
qk
≥ (1− pi) log

1− pi
1− qi

. (A.11)

Combining these we have

DKL(p,q) ≥ pi log
pi
qi

+ (1− pi) log
1− pi
1− qi

= DBKL(pi, qi) (A.12)

as desired to conclude the proof. □

Lemma A.4 For any p,q ∈ ∆K−1, i ∈ [K], the following inequality holds.

1

K
∥p− q∥22 ≤ DKL(p,q) (A.13)

Proof . By Proposition A.3, we have

1

K
∥p− q∥22 =

1

K

K∑
i=1

(pi − qi)
2 ≤ 1

K

K∑
i=1

DKL(p,q) = DKL(p,q), (A.14)

as desired. □

Supplementary B. Missing Proofs

B.1. Proof of Theorem 3

We provide two lemmas, Lemma B.5 and Lemma B.6 below, where the proof of Theorem 3
is based.

Lemma B.5 Assume that x 7→ p̄T (y|x) is differentiable w.r.t. x for any x ∈ X and y ∈ Y.
Then, the following inequality holds for any h ∈ H.

1

2
E

pte(x)

[
∥pte(·|x)− h(x)∥22

]
≤ E

p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
+ Z(h)τX + τ2Y |X . (B.1)

Proof . By the Cauchy–Schwarz inequality, we have

∥pte(·|x)− h(x)∥22 = 2
(
∥pte(·|x)− p̄T (·|x)∥22 + ∥p̄T (·|x)− h(x)∥22

)
. (B.2)
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Based on this, we have

1

2
E

pte(x)

[
∥pte(·|x)− h(x)∥22

]
≤ E

pte(x)

[
∥pte(·|x)− p̄T (·|x)∥22

]
+ E

pte(x)

[
∥p̄T (·|x)− h(x)∥22

]
(B.3)

≤ τ2Y |X + E
pte(x)

[
∥p̄T (·|x)− h(x)∥22

]
, (B.4)

where ∥p̄T (·|x)− h(x)∥2 ≤ τY |X by Assumption 1. By applying Lemma A.1 to the second
term in the right hand of Eq. (B.4), we have

E
pte(x)

[
∥p̄T (·|x)− h(x)∥22

]
≤ E

p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
+

(
sup
x∈X

∥∥∥∇∥p̄T (·|x)− h(x)∥22
∥∥∥
2

)
W1(pte, p̄T ) (B.5)

≤ E
p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
+ Z(h)τX . (B.6)

Combining Eq. (B.4) and Eq. (B.6), we obtain

1

2
E

pte(x)

[
∥pte(·|x)− h(x)∥22

]
≤ E

p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
+ Z(h)τX + τ2Y |X (B.7)

as desired. □

Lemma B.6 (Relation between zero-one loss and L2-norm.) Let us define max(2)

as the operator to take the second best, i.e., for some f : Y → R,

max(2)
k∈Y

f(k) := max
k∈{y∈Y |f(y)̸=maxk′ f(k

′)}
f(k), (B.8)

and use arg max(2) to take the point of the second best. Assume that assume that ηmin > 0
where

ηmin := min
x∈X

(
max
k

pte(k|x)−max(2)
k

pte(k|x)

)
. (B.9)

Then, for any h ∈ H, the following holds.

R01(h) ≤ B01 + 2η−2
min E

pte(x)

[
∥pte(·|x)− h(x)∥22

]
(B.10)

where we define B01 as the Bayes error, i.e., B01 := minf R01(f) is the lowest R01 among
any possible f : X → ∆K−1.

Proof .

R01(h) = E
pte(x,y)

[
I
[
y ̸= arg max

k∈Y
h(k|x)

]]
= E

pte(x)

[
E

pte(y|x)

[
I
[
y ̸= arg max

k∈Y
h(k|x)

]]]
(B.11)
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It is obvious that

(y = arg max
k

pte(k|x)) ∧ (arg max
k

pte(k|x) = arg max
k

h(k|x))

⇒ (y = arg max
k

h(k|x)). (B.12)

By taking its contraposition, we have

(y ̸= arg max
k

h(k|x))

⇒ (y ̸= arg max
k

pte(k|x)) ∨ (arg max
k

pte(k|x) ̸= arg max
k

h(k|x)). (B.13)

Hence, we have

E
pte(y|x)

[
I
[
y ̸= arg max

k∈Y
h(k|x)

]]
≤ E

pte(y|x)

[
I
[
y ̸= arg max

k
pte(k|x)

]]
+ I
[
arg max

k
pte(k|x) ̸= arg max

k
h(k|x)

]
(B.14)

The first term is the Bayes error. Regarding the second term, the best way to achieve
arg max

k
pte(k|x) ̸= arg max

k
h(k|x) with minimum ∥pte(·|x)− h(x)∥22 is to make h(x) to be

h(arg max
k

pte(k|x)|x) = max
k

pte(k|x)− η(x)

2
(B.15)

h(arg max(2)
t

pte(k|x)|x) = max(2)
k

pte(k|x) +
η(x)

2
(B.16)

where

η(x) := max
k

pte(k|x)−max(2)
k

pte(k|x). (B.17)

Hence, we have

I
[
arg max

k
pte(k|x) ̸= arg max

k
h(k|x)

]
≤ 2

η(x)2
∥pte(·|x)− h(x)∥22. (B.18)

Combining these, we have

R01(h) ≤ B01 + 2η−2
min E

pte(x)

[
∥pte(·|x)− h(x)∥22

]
, (B.19)

as desired. □

Finally, we prove Theorem 3 as follows.

Proof (Proof of Theorem 3). We obtain Theorem 3 by direct combination of Lemma B.5
and Lemma B.6. □
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B.2. Proof of Theorem 10

Before proving Theorem 10, we establish Lemma B.7. The proof is inspired by Lemma 3 in
(Zhang et al., 2020).

Lemma B.7 For any δ ∈ (0, 1) and any g ∈ G+, over the draws of SS from p̄S and ST

from p̄T , the following inequality holds with probability at least 1− δ;

J(g)− Ĵ(g;SS , ST ) ≤ 4GR|SS |(G) + 4R|ST |(G) + 2G2

√
log 1

δ

2

(
1√
|SS |

+
1√
|ST |

)
. (B.20)

Proof . Let Z := (SS , ST ), Φ(Z) := supg∈G

(
J(g)− Ĵ(g;SS , ST )

)
and Z ′ = (S′

p, S
′
q) differ

exactly one sample from Z, i.e., Z \ Z ′ := (SS \ S′
p) ∪ (ST \ S′

q) = {z} and Z ′ \ Z = {z′}.
Since the difference of suprema does not exceed the supremum of the difference, we have

Φ(Z ′)− Φ(Z) = sup
g∈G+

(
J(g)− Ĵ(g;Z ′)

)
− sup

g∈G

(
J(g)− Ĵ(g;Z)

)
(B.21)

≤ sup
g∈G

((
J(g)− Ĵ(g;Z ′)

)
−
(
J(g)− Ĵ(g;Z)

))
(B.22)

= sup
g∈G

(
Ĵ(g;Z)− Ĵ(g;Z ′)

)
. (B.23)

If z ∈ SS ,

Φ(Z ′)− Φ(Z) =
supg∈G+

g(z′)2 − g(z)2

|SS |
≤ 1

|SS |
G2 ≤ 2G2

|SS |
(B.24)

otherwise z ∈ ST ,

Φ(Z ′)− Φ(Z) =
supg∈G+

2g(z)− 2g(z′)

|ST |
≤ 2

|ST |
G ≤ 2G2

|ST |
(B.25)

Hence, by McDiarmid’s inequality, the following holds with probability at least 1− δ;

Φ(Z) ≤ E
Z

[Φ(Z)] +

√
log 1

δ

2

(
|SS |

4G4

|SS |2
+ |ST |

4G4

|ST |2

)
(B.26)

= E
Z

[Φ(Z)] + 2G2

√
log 1

δ

2

(
1√
|SS |

+
1√
|ST |

)
(B.27)
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Next, we bound EZ [Φ(Z)] from above. By the fact that the supremum of sum is equal
to or less than sum of suprema, we have

Φ(Z) = sup
g∈G+

(
J(g)− Ĵ(g;SS , ST )

)
(B.28)

= sup
g∈G+

 E
p̄S(x,y)

[
(g(x, y))2

]
− 1

|SS |
∑

(x,y)∈SS

g(x, y)2


+2

 1

|ST |
∑

(x,y)∈ST

g(x, y)− E
p̄T (x,y)

[g(x, y)]

 (B.29)

≤ sup
g∈G+

 E
p̄S(x,y)

[
(g(x, y))2

]
− 1

|SS |
∑

(x,y)∈SS

g(x, y)2


+ 2 sup

g∈G+

 1

|ST |
∑

(x,y)∈ST

g(x, y)− E
p̄T (x,y)

[g(x, y)]

. (B.30)

Hence, We have

E
Z

[Φ(Z)] ≤ E
SS

 sup
g∈G+

 E
p̄S(x,y)

[
(g(x, y))2

]
− 1

|SS |
∑

(x,y)∈SS

g(x, y)2


+ 2 E

ST

 sup
g∈G+

 1

|ST |
∑

(x,y)∈ST

g(x, y)− E
p̄T (x,y)

[g(x, y)]

 (B.31)

= A + 2B, (B.32)

where we define A and B as

A := E
SS

 sup
g∈G+

 E
p̄S(x,y)

[
(g(x, y))2

]
− 1

|SS |
∑

(x,y)∈SS

g(x, y)2

 (B.33)

B := E
ST

 sup
g∈G+

 1

|ST |
∑

(x,y)∈ST

g(x, y)− E
p̄T (x,y)

[g(x, y)]

. (B.34)

By the proof of lemma 3 (II) and (III) in (Zhang et al., 2020), we have uppor bounds
of A and B as

A ≤ 4GR|SS |(G) (B.35)

B ≤ 2R|ST |(G). (B.36)

Combined Eq. (B.27), Eq. (B.32), Eq. (B.35), and Eq. (B.36), we have

sup
g∈G+

(
J(g)− Ĵ(g;SS , ST )

)
≤ 4GR|SS |(G) + 4R|ST |(G) + 2G2

√
log 1

δ

2

(
1√
|SS |

+
1√
|ST |

)
(B.37)
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as desired. □

The proof of Theorem 10 is as follows.

Proof (Proof of Theorem 10). We decompose J(ĝ)− J(g∗) as

J(ĝ)− J(g∗) =
(
J(ĝ)− Ĵ(ĝ;DS , DT )

)
+
(
Ĵ(ĝ;DS , DT )− Ĵ(g∗;DS , DT )

)
+
(
Ĵ(g∗;DS , DT )− J(g∗)

)
(B.38)

The first term is upper bounded by Lemma B.7 with probability at least 1− δ
3 as

J(ĝ)− Ĵ(ĝ;DS , DT )

≤ 4GR|DS |(G) + 4R|DT |(G) + 2G2

√
log 3

δ

2

(
1√
|DS |

+
1√
|DT |

)
. (B.39)

The second term is at most 0 by the definition of ĝ. The third term is upper bounded by
Hoeffding’s inequality and the following holds with probability at least 1− 2δ

3

Ĵ(g∗;DS , DT )− J(g∗) =

 1

|DS |
∑

(x,y)∈DS

g(x, y)2 − E
p̄S(x,y)

[
g(x, y)2

]
+ 2

 1

|DT |
∑

(x,y)∈DT

g(x, y)− E
p̄S(x,y)

[g(x, y)]

 (B.40)

≤ G2

√
log 3

δ

2|DS |
+ 2G

√
log 3

δ

2|DT |
(B.41)

≤ 2G2

√
log 3

δ

2

(
1√
|DS |

+
1√
|DT |

)
. (B.42)

Combining these with the union bound, we obtain

J(ĝ)− J(g∗) ≤ 4GR|DS |(G) + 4R|DT |(G) + 4G2

√
log 3

δ

2

(
1√
|DS |

+
1√
|DT |

)
, (B.43)

which concludes the proof. □

B.3. Proof of Lemma 13

Proof (Proof of Lemma 13). Based on Theorem 3.3 in (Mohri et al., 2018), we have

E
p̄T (x,y)

[ℓCE(h(x), y)] ≤ 1

|ST |
∑

(x,y)∈DT

ℓCE(h(x), y) + 2R|ST |(L) + U

√
log 1

δ

2|ST |
, (B.44)
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where L := {(x, y) 7→ ℓCE(h(x), y) : h ∈ H}. Then based on the vector-contraction in-
equality for vector-valued Rademacher complexities (Maurer, 2016; Cortes et al., 2016), we
have

R|ST |(L) ≤
√

2LR|ST |(H), (B.45)

where L = suph,x,y∥∇ℓCE(h(x), y)∥2 = suph,x,y
1

h(y|x) ≤ exp(U) by the assumption. Com-
bining these, we conclude the proof. □

B.4. Proof of Lemma 14

We first establish Lemma B.8 for the proof of Lemma 14. As well as Lemma B.7, Lemma
B.8 is related to Lemma 3 in (Zhang et al., 2020).

Lemma B.8 For any δ ∈ (0, 1) with probability at least 1−δ over the draw of i.i.d. samples
S from p̄S, the following inequality holds for any h ∈ H and g ∈ G+:

E
p̄S(x,y)

[g(x, y)ℓCE(h(x), y)] ≤ 1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y) + C2(δ). (B.46)

Proof (Proof of Lemma B.8). Let us define V and V̂ as

V (h, g) := E
p̄S(x,y)

[g(x, y)ℓCE(h(x), y)] (B.47)

V̂ (h, g;S) :=
1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y). (B.48)

Let Φ(S) := supg∈G

(
V (h, g)− V̂ (h, g;S)

)
and S′ differ exactly one sample from S, i.e.,

S \ S′ = {s} and S′ \ S = {s′}. Since the difference of suprema does not exceed the
supremum of the difference, we have

Φ(S)− Φ(S′) = sup
h∈H,g∈G+

V̂ (g;S)− sup
h,g

V̂ (g;S′) (B.49)

≤ sup
h∈H,g∈G+

(
V̂ (h, g;S)− V̂ (h, g;S′)

)
(B.50)

=
suph∈H,g∈G+

g(s)ℓCE(s)− g(s′)ℓCE(s′)

|S|
≤ MG

|S|
(B.51)

Hence, by McDiarmid’s inequality, the following holds with probability at least 1− δ;

Φ(S) ≤ E
S

[Φ(S)] + MG

√
log 1

δ

2|S|
(B.52)
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Next, we upper bound ES [Φ(S)]. Let S̄ be another i.i.d. samples from p̄S whose size is

|S| and σ = {σi}|S|i=1 ∈ {−1, 1}|S| is a set of Rademacher random variables. We have

E
S

[Φ(S)]

= E
S

 sup
g∈G+

 E
p̄S(x,y)

[g(x, y)ℓCE(h(x), y)]− 1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y)

 (B.53)

= E
S

[
sup
g∈G+

(
Ē
S

 1∣∣S̄∣∣ ∑
(x,y)∈S̄

g(x, y)ℓCE(h(x), y)

− 1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y)

)]
(B.54)

≤ E
S,S̄

[
sup
g∈G+

(
1∣∣S̄∣∣ ∑

(x,y)∈S̄

g(x, y)ℓCE(h(x), y)− 1

|S|
∑

(x,y)∈S

g(x, y)ℓCE(h(x), y)

)]
(B.55)

(The expectation of suprema exceeds the supremum of expectation.)

= E
S,S̄

 sup
g∈G+

 1

|S|

|S|∑
i=1

(g(x̄i, ȳi)ℓCE(h(x̄i), ȳi)− g(xi, yi)ℓCE(h(xi), yi))

 (B.56)

≤ E
S,S̄

 sup
g∈G+

∣∣∣∣∣∣ 1

|S|

|S|∑
i=1

(g(x̄i, ȳi)ℓCE(h(x̄i), ȳi)− g(xi, yi)ℓCE(h(xi), yi))

∣∣∣∣∣∣
 (B.57)

= E
S,S̄,σ

 sup
g∈G+

∣∣∣∣∣∣ 1

|S|

|S|∑
i=1

σi(g(x̄i, ȳi)ℓCE(h(x̄i), ȳi)− g(xi, yi)ℓCE(h(xi), yi))

∣∣∣∣∣∣
 (B.58)

(By the property of Rademacher variables.)

≤ 2 E
S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σig(xi, yi)ℓCE(h(xi), yi)

 (B.59)

= E
S,σ

[
sup
g∈G

1

|S|

|S|∑
i=1

σi

(
(ℓCE(h(xi), yi) + g(xi, yi))

2 − (ℓCE(h(xi), yi))
2 − (g(xi, yi))

2

)]
(B.60)

(By the identity: 2ab = (a + b)2 − a2 − b2.)

≤ E
S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σi(ℓCE(h(xi), yi) + g(xi, yi))
2


+ E

S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σi(ℓCE(h(xi), yi))
2

+ E
S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σi(g(xi, yi))
2

 (B.61)

(To the next page.)
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(From the previous page.)

≤ 2(U + G)

 E
S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σiℓCE(h(xi), yi) + sup
g∈G

1

|S|

|S|∑
i=1

σig(xi, yi)


+ 2U E

S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σiℓCE(h(xi), yi)

+ 2G E
S,σ

sup
g∈G

1

|S|

|S|∑
i=1

σig(xi, yi)

 (B.62)

(By the Ledoux-Talagrand contraction lemma (Ledoux and Talagrand, 2013).)

≤ 2(U + G)(exp(U)R|S|(H) + R|S|(G)) + 2U exp(U)R|S|(H) + 2GR|S|(G) (B.63)

(By the Ledoux-Talagrand contraction lemma.)

= 2(2U + G) exp(U)R|S|(H) + 2(U + 2G)R|S|(G). (B.64)

Combining these, we have

sup
g∈G

(
V (h, g)− V̂ (h, g;S)

)
≤ 2(2U + G) exp(U)R|S|(H) + 2(U + 2G)R|S|(G) + MG

√
log 1

δ

2|S|
, (B.65)

as desired. □

Lemma B.9 Assume that we have g ∈ G+ such that Ep̄S(x,y)[g(x, y)] = 1 holds and
p̄S(x, y)g(x, y) is a distribution over X ×Y. The following inequality holds for any h ∈ H;

E
p̄T (x,y)

[ℓCE(h(x), y)]− E
p̄S(x,y)

[ℓCE(h(x), y)g(x, y)] ≤ U

√
E

p̄S(x,y)

[
(r(x, y)− g(x, y))2

]
(B.66)

Proof . By direct calculation, we have

E
p̄T (x,y)

[ℓCE(h(x), y)]− E
p̄S(x,y)

[ℓCE(h(x), y)g(x, y)] (B.67)

=

∫
(p̄T (x, y)− p̄S(x, y)g(x, y))ℓCE(h(x), y)dxdy (B.68)

≤
∫
|p̄T (x, y)− p̄S(x, y)g(x, y)|ℓCE(h(x), y)dxdy (B.69)

≤ U

∫
|p̄S(x, y)r(x, y)− p̄S(x, y)g(x, y)|dxdy (B.70)

= U E
p̄S(x,y)

[|r(x, y)− g(x, y)|] (B.71)

≤ U

√
E

p̄S(x,y)

[
(r(x, y)− g(x, y))2

]
(B.72)

as desired. □

Finally, we prove Lemma 14 as follows.
Proof (Proof of Lemma 14). The proof is obvious by the combination of Lemma B.8 and
Lemma B.9. □
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B.5. Proof of Theorem 15

Proof (Proof of Theorem 15).

We decompose LCE(ĥ)− LCE(h∗) as

LCE(ĥ)− LCE(h∗) =
(
LCE(ĥ)− L̂CE(ĥ)

)
+
(
L̂CE(ĥ)− L̂CE(h∗)

)
+
(
L̂CE(h∗)− LCE(h∗)

)
(B.73)

≤ A + B, (B.74)

where the second term in the right hand of Eq. (B.73) does not exceed 0 by definition of ĥ
and we denote A and B as

A := LCE(ĥ)− L̂CE(ĥ), (B.75)

B := L̂CE(h∗)− LCE(h∗). (B.76)

We upper bound each of A and B as follows.

The term A is further decomposed as

A =
1

2

LCE(ĥ)− 1

|DT |
∑

(x,y)∈DT

ℓCE(ĥ(x), y)


+

1

2

LCE(ĥ)− 1

|DS |
∑

(x,y)∈DS

ĝ(x, y)ℓCE(ĥ(x), y)

. (B.77)

By Lemma 13, the first term is upper bounded with probability at least 1− δ by

LCE(ĥ)− 1

|DT |
∑

(x,y)∈DT

ℓCE(ĥ(x), y) ≤ C1(δ). (B.78)

By Lemma 14, the second term is upper bounded with probability at least 1− δ by

LCE(ĥ)− 1

|DS |
∑

(x,y)∈DS

ĝ(x, y)ℓCE(ĥ(x), y) ≤ C2(δ) + U

√
E

p̄S(x,y)

[
(r(x, y)− ĝ(x, y))2

]
.

(B.79)

By Theorem 10, with probability at least 1− δ, we have

E
p̄S(x,y)

[
(r(x, y)− ĝ(x, y))2

]
≤ J(g∗) + C3(δ). (B.80)

Combining Eq. (B.78), Eq. (B.79), and Eq. (B.80), the term A is upper bounded with
probability at least 1− 3δ as

A ≤ 1

2

(
C1(δ) + C2(δ) + U

√
J(g∗) + U

√
C3(δ)

)
. (B.81)
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Next, we upper bound the term B.

B =
1

2

 1

|DT |
∑

(x,y)∈DT

ℓCE(h∗(x), y)− LCE(h∗)


+

1

2

 1

|DS |
∑

(x,y)∈DS

ĝ(x, y)ℓCE(h∗(x), y)− E
p̄S(x,y)

[ĝ(x, y)ℓCE(h∗(x, y))]


+

1

2

(
E

p̄S(x,y)
[ĝ(x, y)ℓCE(h∗(x, y))]− LCE(h∗)

)
(B.82)

The first term is bounded by Hoeffding’s inequality. With probability at least 1 − δ, we
have

1

|DT |
∑

(x,y)∈DT

ℓCE(h∗(x), y)− LCE(h∗) ≤ U

√
log 1

δ

2|DT |
. (B.83)

The second term is similarly bounded with probability at least 1− δ as

1

|DS |
∑

(x,y)∈DS

ĝ(x, y)ℓCE(h∗(x), y)− E
p̄S(x,y)

[ĝ(x, y)ℓCE(h∗(x, y))] ≤ GU

√
log 1

δ

2|DS |
. (B.84)

The third term is bounded similarly with Eq. (B.80), i.e., by combining Lemma B.9 and
Theorem 10, we have

E
p̄S(x,y)

[ĝ(x, y)ℓCE(h∗(x, y))]− E
p̄T (x,y)

[ℓCE(h∗(x, y))] ≤ U
√

J(g∗) + U
√
C3(δ). (B.85)

Combining Eq. (B.83),Eq. (B.84), and Eq. (B.85), the term B is bounded with probability
at least 1− 2δ as

B ≤ 1

2

U

√
log 1

δ

2|DT |
+ GU

√
log 1

δ

2|DS |
+ U

√
J(g∗) + U

√
C3(δ)

. (B.86)

Combining Eq. (B.81), Eq. (B.86), and the definition of C1 and C2, we have

2(A + B)

≤ C1(δ) + C2(δ) + 2U
√
J(g∗) + 2U

√
C3(δ) + U

√
log 1

δ

2|DT |
+ GU

√
log 1

δ

2|DS |
(B.87)

= 2U
√
J(g∗) + 2

√
2 exp(U)R|DT |(H) + 2U

√
log 1

δ

2|DT |

+ 2(2U + G) exp(U)R|DS |(H) + 2(U + 2G)R|DS |(G) + 2GU

√
log 1

δ

2|DS |
+ 2U

√
C3(δ)

(B.88)

= 2U
√
J(g∗) + 2C4(δ) + 2U

√
C3(δ), (B.89)
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which holds with probability at least 1 − 5δ by union bound. By replacing δ with δ/5, we
obtain

LCE(ĥ)− LCE(h∗) ≤ U
√
J(g∗) + C4(δ/5) + U

√
C3(δ/5), (B.90)

which holds with probability at least 1− δ, as desired. □

B.6. Proof of Theorem 7

The following lemma relates the cross-entropy loss with L2 norm. Note the definition of the
KL divergence DKL and the cross entropy H is provided in Proposition A.3.

Lemma B.10 For any h ∈ H, the following inequality holds.

1

K
E

p̄T (x)

[
∥p̄T (·|x)− h(x)∥22

]
≤ E

p̄T (x)
[DKL(p̄T (·|x)||h(x))] (B.91)

= E
p̄T (x,y)

[ℓCE(h(x), y)]− E
p̄T (x)

[H(p̄T (·|x), p̄T (·|x))]. (B.92)

Proof . By direct calculation, we have

E
p̄T (x)

[DKL(p̄T (·|x)||h(x))] = E
p̄T (x)

[H(p̄T (·|x), h(x))−H(p̄T (·|x), p̄T (·|x))] (B.93)

= E
p̄T (x,y)

[ℓCE(h(x), y)]− E
p̄T (x)

[H(p̄T (·|x), p̄T (·|x))] (B.94)

where we use the fact that

H(p̄T (·|x), h(x)) = −
K∑
k=1

p̄T (·|x)k log h(x)k = E
p̄T (y|x)

[ℓCE(h(x), y)]. (B.95)

By combining Lemma A.4 and Eq. (B.94), we conclude the proof. □

We prove Theorem 7 as follows.

Proof (Proof of Theorem 7). By Lemma B.5 and Lemma B.10, we have

1

2K
E

pte(x)

[∥∥∥pte(·|x)− ĥ(x)
∥∥∥2
2

]
− TKL(h∗)

≤ 1

K

(
E

p̄T (x)

[∥∥∥p̄T (·|x)− ĥ(x)
∥∥∥2
2

]
+ Z(ĥ)τX + τ2Y |X

)
− TKL(h∗) (B.96)

≤
(

E
p̄T (x,y)

[
ℓCE(ĥ(x), y)

]
− E

p̄T (x)
[H(p̄T (·|x), p̄T (·|x))]

)
+

1

K

(
Z(ĥ)τX + τ2Y |X

)
−
(

E
p̄T (x,y)

[ℓCE(h∗(x), y)]− E
p̄T (x)

[H(p̄T (·|x), p̄T (·|x))]

)
(B.97)

= LCE(ĥ)− LCE(h∗) +
1

K
Z(ĥ)τX +

1

K
τ2Y |X . (B.98)
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By combining Eq. (B.98) with Lemma B.6, we obtain

R01(ĥ)−B01 ≤ 4Kη−2
min

(
TKL(h∗) + U

√
J(g∗) + C4(δ/5) + U

√
C3(δ/5)

+
1

K
Z(ĥ)W1(pte, p̄T ) +

1

K
τ2Y |X

)
, (B.99)

which concludes the proof. □

Supplementary C. Experimental Details

This section reports the full experimental results over seven real-world datasets. In addition,
details of the experiments are provided.

C.1. Environment

The implementation of our method is based on PyTorch4, NumPy5, and scikit-learn6. All
experiments are carried out on a computational server equipping four Intel Xeon Platinum
8260 CPUs with 192 logical cores in total and 1TB RAM.

C.2. Full Experimental Results

We conduct extensive experiments to verify the effectiveness of our method over seven real-
world datasets. While we have reported a part of the results in the main part of this paper,
we present the full results for completeness.

Dataset. We use seven real-world datasets in our extensive experiment. The statistics
are presented in Table C.1. All datasets are obtained from USP DS Repository (Souza
et al., 2020)7. We exclude datasets whose number of samples are less than 15000 or whose
number of features are more than 100 for feasibility of the experiments. We also exclude
datasets with highly imbalanced data in terms of overall class-balance and class-balance
w.r.t. the sample orders; these nature of imbalance often make training data only contain
a single labels and/or test data contain novel labels which do not appear in training data.
For Forest dataset, we convert the original 7 class classification into binary classification
by letting labels be whether the original label is 1 (majority class) or not for better label
balances. The inputs and outputs are normalized to have a mean of zero and a variance of
one as a preprocess.

4. https://pytorch.org/
5. https://numpy.org/
6. https://scikit-learn.org/stable/
7. https://sites.google.com/view/uspdsrepository, Accessed: 2025-06-24

https://pytorch.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://sites.google.com/view/uspdsrepository
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Table C.1: Dataset statistics.

Dataset Samples Features Classes

Weather 18159 8 2
Smartmeter 22950 96 10
Powersupply 29928 2 24
Electricity 45312 8 2
Rialto 82250 27 10
Airlines 539383 7 2
Forest 581012 54 2

Settings. The experimental settings are generally the same with Section 5. On the other
hand, we have tested T = 5N for each value of N ∈ {200, 500, 1000, 2000, 5000}. It should
be noted that when the ratio T/N < 5 where there are less flexibility for selecting old
samples, the sample selection computed by comparison methods becomes almost the same
and the differences among the methods cannot be observed.

Results. Before discussing on the results, we would like to remark following notes w.r.t.
the results and evaluation.

• Variances of the results are generally very high by nature. Real-world datasets are not
always drifting and there exist relatively stationary periods. Then, the performance
over drifting periods and stationary periods differs significantly. This indicates that
no matter how many experiments are conducted (we run 30 independent experiments
for stable results), high variances certainly appear. Thus, we evaluate the results
based on the statistical tests to examine the significances.

• Results are very competitive. The performance of the methods has saturated and there
might less spaces for improvement. Hence, we mainly interpret the results based on
average ranks over the experiments to take the versatility of the methods into account.

We present all results in Table C.2 to Table C.5. We conduct experiments under 126
settings in total. Our TSJD achieves 37 best results and 119 best or comparable results, with
an average rank of 3.06, which is the best among all baselines. These results confirm the
effectiveness and superiority of TSJD. All other baseline methods perform worse than the
naive baseline of using D, highlighting the challenge of selecting effective training samples
from drifting data.
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Table C.2: Average zero-one loss (↓) over 30 random trials. Decoration follows Table 2.

Data Model N T
Naive Baseline Time-based Cov.shift Drift Localization (Ours)
DT D PHT ADWIN uLSIF LDD-DSDA LCD TSJD

W
ea

th
er

L
G
B
M

200
1000

30.23 23.07 23.13 22.47∗ 29.13 24.93 23.10 24.47
(9.25) (6.50) (6.57) (5.73) (10.07) (7.63) (7.32) (7.73)

2000
29.57 21.97∗ 22.00 22.30 28.33 24.60 22.53 22.90
(9.18) (7.60) (7.48) (7.38) (9.50) (9.20) (8.17) (8.06)

500
2500

25.80 22.70 22.87 22.67∗ 25.67 23.63 23.20 24.33
(6.93) (6.51) (6.55) (6.40) (5.93) (6.22) (6.88) (5.77)

5000
19.90 17.73 17.73 17.60∗ 19.63 18.70 18.33 18.43
(6.36) (5.02) (5.02) (4.85) (6.09) (5.84) (5.73) (5.72)

1000
5000

19.33 18.27 18.60 18.33 18.97 18.37 18.10∗ 18.27
(6.16) (5.94) (6.12) (5.55) (6.09) (5.19) (5.84) (5.95)

10000
23.70 20.57 21.13 21.30 22.93 21.03 20.43∗ 21.37
(6.75) (4.58) (5.53) (5.74) (6.29) (6.00) (5.08) (5.70)

2000 10000
21.67 20.43 20.70 20.93 21.17 21.03 20.13∗ 21.10
(5.19) (4.38) (4.40) (5.25) (4.77) (4.78) (5.66) (5.44)

N
N

200
1000

27.97 21.87 21.70∗ 21.70∗ 29.17 23.07 21.73 23.17
(9.50) (6.32) (6.35) (6.42) (11.73) (6.57) (6.26) (7.45)

2000
27.50 20.63 21.13 20.47∗ 26.43 22.73 20.63 22.03
(8.70) (7.15) (7.97) (7.90) (8.52) (9.19) (7.68) (7.86)

500
2500

23.63 21.23∗ 21.40 21.27 22.93 21.87 21.47 21.27
(6.83) (5.93) (5.94) (5.83) (6.16) (6.14) (5.67) (5.19)

5000
19.90 17.57 17.63 17.53∗ 17.83 18.47 17.80 18.00
(6.23) (5.44) (5.55) (5.51) (4.75) (5.35) (5.09) (5.75)

1000
5000

18.27 17.27 17.17∗ 17.67 18.33 17.93 17.60 17.40
(4.70) (4.34) (4.19) (4.46) (5.54) (5.35) (4.42) (5.47)

10000
20.70 18.93∗ 19.10 19.37 21.03 19.93 19.60 19.23
(5.44) (4.55) (4.85) (5.12) (5.48) (5.16) (5.28) (5.41)

2000 10000
20.20 19.27 19.07 18.80∗ 20.23 20.33 19.57 20.20
(5.50) (5.32) (5.23) (4.91) (5.11) (5.99) (5.25) (5.29)

S
m
a
rt
m
et
er

L
G
B
M

200
1000

28.23 19.27 19.27 19.53 28.53 23.83 19.63 18.50∗
(9.78) (8.19) (8.19) (8.44) (14.52) (10.81) (8.81) (8.60)

2000
26.67 19.90 20.07 20.10 27.40 21.77 20.13 17.67∗
(8.10) (9.40) (9.32) (7.81) (10.49) (10.14) (9.72) (8.36)

500
2500

23.83 19.90 20.33 21.07 25.23 21.33 20.13 18.80∗
(8.91) (9.83) (10.07) (9.96) (11.14) (11.02) (9.27) (9.63)

5000
22.97 13.50 17.33 19.90 24.80 16.73 14.33 12.83∗
(8.40) (7.23) (9.09) (10.60) (13.80) (8.79) (8.09) (6.40)

1000
5000

21.73 13.87 17.17 17.73 21.20 15.73 13.83 13.30∗
(8.45) (7.54) (9.73) (7.86) (10.97) (7.82) (7.53) (6.89)

10000
21.13 13.13 17.40 19.57 21.90 15.40 12.70 12.07∗
(9.02) (7.23) (9.46) (10.26) (11.97) (9.14) (7.68) (7.61)

2000
10000

19.83 12.97∗ 14.93 17.17 19.67 14.87 13.20 13.20
(11.38) (7.37) (7.32) (9.87) (9.61) (7.87) (7.68) (7.38)

20000
22.23 15.20 17.43 17.80 23.23 16.53 15.67 13.37∗
(9.32) (5.69) (7.09) (6.22) (9.85) (5.42) (5.94) (5.40)

N
N

200
1000

37.30 34.63 34.63 34.50 40.10 36.80 34.30 32.10∗
(10.22) (9.98) (9.98) (9.85) (12.46) (10.77) (10.12) (10.44)

2000
36.30 36.80 36.73 33.23 40.00 37.77 36.43 31.00∗
(10.49) (10.66) (10.65) (10.27) (9.41) (9.12) (9.96) (8.96)

500
2500

36.97 35.47 35.97 35.20 38.03 37.33 35.73 32.20∗
(12.23) (12.26) (12.48) (12.17) (12.48) (12.56) (11.91) (10.85)

5000
35.27 33.33 35.27 36.43 37.43 34.27 33.27 29.20∗
(9.98) (9.60) (9.80) (10.66) (8.82) (8.49) (8.55) (6.88)

1000
5000

36.87 33.27 34.73 35.37 37.20 35.90 32.90 31.17∗
(10.44) (9.09) (10.75) (8.92) (8.97) (10.29) (8.64) (8.09)

10000
36.10 31.53 39.13 37.83 37.13 34.83 31.80 30.13∗
(10.80) (10.13) (8.69) (9.29) (10.85) (11.07) (9.19) (8.61)

2000
10000

38.53 32.00 35.20 38.43 39.37 34.37 32.03 31.20∗
(9.58) (10.25) (7.92) (7.68) (10.14) (9.20) (10.60) (9.79)

20000
37.23 32.17 33.80 36.10 37.97 34.33 31.60 30.07∗
(8.39) (5.45) (5.97) (7.50) (8.72) (4.92) (5.12) (4.45)
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Table C.3: Average zero-one loss (↓). Continued from Table C.2.

Data Model N T
Naive Baseline Time-based Cov.shift Drift Localization (Ours)
DT D PHT ADWIN uLSIF LDD-DSDA LCD TSJD

P
o
w
er
su

p
p
ly

L
G
B
M

200
1000

81.50∗ 81.97 81.97 82.13 83.83 83.03 82.47 81.87
(7.20) (7.62) (7.62) (7.63) (7.33) (6.58) (7.28) (6.52)

2000
80.43∗ 85.20 85.33 85.60 84.70 85.10 85.53 83.43
(9.52) (7.24) (7.22) (7.08) (7.17) (7.06) (7.55) (7.27)

500
2500

83.37∗ 87.33 87.47 86.57 85.43 87.60 88.10 85.27
(8.72) (5.80) (5.66) (6.17) (7.11) (5.15) (5.58) (6.93)

5000
79.60∗ 83.60 83.70 84.10 83.77 83.43 84.73 81.80
(8.44) (6.92) (6.34) (5.91) (7.69) (6.49) (6.82) (6.72)

1000
5000

81.57∗ 83.63 83.90 83.33 84.10 83.37 84.33 82.37
(7.66) (7.44) (6.95) (7.54) (7.07) (8.28) (7.77) (7.60)

10000
82.57∗ 84.20 86.17 85.57 85.00 84.10 85.37 83.30
(7.02) (7.19) (7.33) (6.80) (6.41) (7.37) (5.52) (7.41)

2000
10000

84.93 83.87∗ 85.03 85.53 84.73 84.37 84.10 84.13
(7.55) (7.14) (6.67) (6.76) (7.27) (6.37) (7.13) (7.74)

20000
81.63 80.53∗ 82.93 82.00 81.87 80.57 81.53 82.07
(5.57) (4.22) (4.66) (5.12) (4.77) (4.28) (3.86) (5.16)

5000 25000
82.63 82.40 81.03∗ 82.00 81.97 82.47 82.23 81.50
(4.87) (4.26) (4.03) (4.97) (4.63) (3.97) (4.70) (5.02)

N
N

200
1000

83.70 81.93 81.93 81.97 82.33 84.83 81.93 81.10∗
(6.11) (7.65) (7.65) (7.63) (7.22) (6.13) (7.01) (6.94)

2000
85.30 83.27 83.27 83.60 84.70 86.20 83.90 82.23∗
(4.90) (9.21) (9.21) (8.94) (7.71) (7.10) (9.04) (8.74)

500
2500

83.77∗ 87.37 87.57 87.53 84.17 87.00 87.00 84.07
(7.39) (6.29) (5.74) (5.90) (6.29) (5.30) (5.85) (6.89)

5000
81.33 82.57 82.77 82.93 80.63 81.87 83.90 78.83∗
(8.77) (8.32) (7.18) (7.85) (7.77) (8.90) (8.82) (8.36)

1000
5000

81.33 82.50 83.07 81.57 81.77 82.20 82.63 80.60∗
(7.43) (9.38) (8.70) (9.06) (8.68) (8.39) (9.26) (9.00)

10000
80.67 83.77 85.07 83.80 81.17 82.47 84.03 79.77∗
(9.01) (7.47) (7.70) (8.16) (8.69) (7.52) (6.83) (9.95)

2000
10000

83.67 83.57 84.37 84.03 82.53 83.67 83.53 82.17∗
(7.75) (7.18) (7.36) (7.66) (8.48) (7.28) (7.51) (8.87)

20000
78.40 78.77 79.13 78.37 77.60∗ 78.60 79.67 78.23
(7.13) (4.50) (6.26) (6.13) (6.64) (5.07) (4.58) (7.00)

5000 25000
80.87 80.17 79.07∗ 80.50 80.80 80.73 80.33 80.93
(5.37) (5.35) (5.95) (6.91) (4.95) (5.53) (5.79) (5.45)

E
le
ct
ri
ci
ty

L
G
B
M

200
1000

23.77 22.80 22.53 21.57∗ 21.60 24.10 22.43 23.60
(15.13) (12.49) (12.53) (13.20) (13.63) (14.11) (13.07) (16.37)

2000
20.27 18.57 18.53 21.23 21.03 20.00 18.07∗ 18.43
(11.58) (11.11) (11.52) (14.74) (11.09) (11.52) (11.24) (10.75)

500
2500

21.90 20.80 19.77∗ 20.20 22.23 20.10 21.07 21.30
(13.05) (12.37) (13.11) (11.94) (12.79) (12.79) (12.75) (12.43)

5000
21.07 19.80 19.97 20.80 22.17 19.97 19.53∗ 19.77
(14.52) (13.51) (12.77) (14.19) (14.43) (13.50) (13.67) (14.63)

1000
5000

20.47 19.13 20.43 20.20 19.67 19.03 19.23 18.53∗
(13.26) (13.43) (13.32) (13.31) (12.91) (13.17) (13.58) (13.69)

10000
21.67 19.87∗ 21.10 21.70 21.30 21.30 21.07 20.67
(12.60) (11.30) (11.78) (12.39) (12.29) (10.59) (11.11) (11.51)

2000
10000

20.50 20.63 21.00 21.23 21.23 20.20 20.03∗ 21.37
(11.50) (10.56) (11.16) (10.43) (11.99) (9.00) (11.12) (10.66)

20000
20.50 20.83 21.00 20.47 20.13∗ 22.30 20.60 20.53
(15.45) (14.57) (14.68) (14.73) (14.30) (14.61) (14.29) (14.57)

5000 25000
19.33∗ 23.33 21.80 21.93 23.03 21.20 23.07 20.93
(10.75) (14.96) (11.20) (11.49) (12.92) (11.29) (13.59) (12.31)

N
N

200
1000

24.67 26.77 26.33 24.40∗ 24.87 27.03 26.97 26.73
(15.31) (17.18) (16.98) (14.20) (13.25) (15.07) (17.60) (15.85)

2000
27.33 23.60 22.43 26.73 22.67 21.73∗ 24.77 24.00
(13.38) (12.82) (12.12) (16.34) (10.47) (14.48) (13.70) (11.69)

500
2500

24.53 24.80 24.40 22.10∗ 26.67 24.47 24.53 25.53
(12.89) (14.80) (15.46) (14.80) (15.95) (16.15) (16.10) (15.63)

5000
24.03 23.50 22.00∗ 24.10 24.03 24.03 23.00 22.83
(14.41) (12.67) (12.98) (14.90) (11.29) (13.32) (13.08) (13.80)

1000
5000

23.77 24.00 21.20 22.23 23.50 20.27∗ 23.17 23.43
(14.47) (13.03) (11.46) (12.52) (12.40) (11.62) (12.16) (14.16)

10000
24.47 23.23 22.20 22.97 21.80 22.80 23.23 20.60∗
(12.79) (11.39) (11.83) (13.09) (12.39) (12.46) (11.50) (10.03)

2000
10000

20.07∗ 22.90 21.23 21.43 22.93 22.30 22.97 22.83
(11.41) (11.87) (12.33) (11.13) (11.46) (11.67) (11.65) (10.76)

20000
24.50 21.97 19.67∗ 21.33 23.37 20.90 22.23 20.23
(16.19) (12.70) (11.58) (13.41) (14.36) (12.28) (13.10) (12.04)

5000 25000
24.93 23.43 25.17 21.87∗ 30.40 23.33 23.83 23.03
(9.67) (11.98) (10.57) (9.41) (15.01) (10.98) (11.91) (12.17)
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Table C.4: Average zero-one loss (↓). Continued from Table C.3.

Data Model N T
Naive Baseline Time-based Cov.shift Drift Localization (Ours)
DT D PHT ADWIN uLSIF LDD-DSDA LCD TSJD

R
ia
lt
o

L
G
B
M

200
1000

29.80∗ 32.13 32.33 30.83 39.53 32.67 32.37 33.20
(20.34) (20.89) (21.02) (20.30) (19.46) (20.69) (21.58) (21.86)

2000
38.80 32.20 32.13 35.00 41.83 35.20 32.43 31.70∗
(24.47) (20.66) (20.45) (23.40) (19.92) (23.04) (20.70) (20.20)

500
2500

36.53 33.10 33.63 36.43 40.43 37.13 32.73∗ 33.13
(22.25) (19.88) (19.40) (21.23) (21.92) (21.84) (20.15) (19.73)

5000
40.47 29.03∗ 34.93 38.13 42.83 32.03 29.43 30.10
(23.26) (22.07) (23.04) (24.16) (23.15) (24.06) (22.07) (22.50)

1000
5000

40.03 28.70 31.53 38.60 39.47 30.10 27.50∗ 28.83
(24.49) (22.01) (19.50) (24.29) (21.64) (23.76) (20.71) (21.89)

10000
34.13 16.10∗ 24.87 32.37 30.67 20.67 16.50 16.37
(16.84) (16.79) (17.99) (16.49) (20.95) (21.12) (16.78) (16.73)

2000
10000

31.40 16.20 21.80 31.07 30.43 20.17 15.30∗ 16.03
(17.60) (17.29) (15.88) (18.60) (20.79) (21.16) (16.36) (16.72)

20000
38.13 17.33∗ 28.50 36.53 39.60 23.33 17.70 17.50
(22.03) (16.12) (22.67) (24.36) (23.10) (22.44) (16.37) (16.29)

5000
25000

22.23 13.60 20.17 20.83 19.90 14.37 13.63 13.00∗
(18.53) (14.59) (18.10) (18.15) (19.56) (15.79) (15.00) (14.10)

50000
20.93 12.03 19.83 20.83 21.50 12.50 12.47 11.57∗
(21.88) (19.42) (21.07) (21.67) (22.35) (19.63) (19.32) (18.11)

N
N

200
1000

30.37∗ 32.43 32.50 31.47 37.40 32.40 32.90 33.10
(25.13) (24.60) (24.77) (24.33) (27.50) (23.25) (26.01) (26.02)

2000
36.47 36.40 36.73 36.40 45.40 35.33∗ 39.20 35.50
(25.59) (22.84) (23.52) (26.17) (25.94) (24.90) (23.94) (22.88)

500
2500

38.10 42.90 41.03 37.50∗ 46.50 40.80 43.40 39.93
(26.29) (24.53) (24.65) (24.98) (24.62) (26.96) (25.49) (26.37)

5000
44.67 43.03 51.63 44.73 51.23 41.77∗ 44.37 42.83
(27.26) (28.01) (26.77) (27.25) (27.70) (29.56) (27.91) (27.93)

1000
5000

48.67 42.50 49.43 49.90 55.47 42.63 42.67 42.40∗
(26.73) (27.07) (25.73) (27.44) (28.86) (29.44) (27.11) (27.09)

10000
38.20 30.33 39.70 41.43 45.90 31.37 32.80 30.10∗
(22.22) (25.49) (21.97) (23.18) (24.69) (25.25) (24.55) (25.77)

2000
10000

41.87 34.27 41.97 45.90 45.50 34.10 33.10 32.60∗
(24.20) (26.06) (24.85) (23.83) (28.43) (28.05) (26.78) (25.18)

20000
46.20 35.60∗ 41.73 45.67 52.83 39.43 37.17 36.63
(27.70) (29.34) (29.86) (30.12) (28.50) (30.71) (29.09) (29.27)

5000
25000

34.20 30.17 35.17 34.53 40.03 29.20∗ 32.10 31.03
(25.97) (26.53) (27.20) (26.15) (27.13) (24.74) (28.95) (27.85)

50000
32.53 27.47 32.07 31.77 37.50 25.60∗ 27.07 25.70
(25.90) (27.52) (24.27) (26.30) (27.16) (25.55) (26.65) (25.15)

A
ir
li
n
es

L
G
B
M

200
1000

36.80 33.73 33.73 33.60 36.60 35.03 33.33∗ 35.13
(8.12) (6.41) (6.41) (6.40) (8.43) (7.55) (6.49) (7.59)

2000
37.27 33.73 33.33∗ 33.63 37.33 35.23 33.77 36.57
(8.27) (6.43) (6.20) (6.28) (6.80) (6.50) (6.38) (5.84)

500
2500

35.30 32.43 32.67 31.90∗ 37.43 32.50 32.57 33.57
(8.68) (5.44) (5.40) (5.61) (10.33) (6.98) (5.90) (5.71)

5000
35.73 32.57∗ 33.33 32.83 36.17 32.97 33.07 36.53
(8.64) (9.64) (9.76) (8.38) (8.76) (7.19) (9.73) (9.86)

1000
5000

34.17 34.43 34.47 33.70 34.37 34.97 33.47∗ 34.77
(7.23) (9.94) (10.05) (7.87) (7.41) (8.81) (9.39) (9.89)

10000
33.50 30.53 31.20 30.77 35.23 31.70 30.43∗ 32.90
(7.03) (6.19) (5.67) (5.05) (7.89) (7.00) (6.10) (6.96)

2000
10000

31.47 31.20 30.93 30.77 32.13 31.93 30.33∗ 31.37
(5.86) (6.13) (5.34) (5.30) (5.42) (7.24) (6.14) (6.22)

20000
35.23 32.33 33.17 33.10 34.90 31.70∗ 32.30 33.90
(7.10) (5.74) (5.64) (6.02) (7.42) (5.47) (5.46) (6.21)

5000
25000

32.63 30.97 31.07 31.67 32.33 31.93 30.73 30.67∗
(8.19) (8.09) (7.88) (7.89) (7.58) (8.27) (8.27) (7.85)

50000
35.37 33.47∗ 34.23 35.10 35.80 34.10 33.67 33.87
(7.57) (6.40) (6.70) (6.94) (7.06) (6.83) (6.32) (7.01)
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Table C.5: Average zero-one loss (↓). Continued from Table C.4.

Data Model N T
Naive Baseline Time-based Cov.shift Drift Localization (Ours)
DT D PHT ADWIN uLSIF LDD-DSDA LCD TSJD

A
ir
li
n
es

N
N

200
1000

39.10 37.93∗ 37.93∗ 37.93∗ 42.53 38.00 38.23 38.97
(9.21) (8.63) (8.63) (8.61) (9.90) (10.37) (8.53) (9.34)

2000
38.90 38.87 38.83 38.60∗ 42.90 39.17 38.70 41.40
(8.61) (7.08) (7.12) (7.66) (8.08) (7.86) (7.21) (6.95)

500
2500

38.63 37.17∗ 37.23 37.30 41.20 38.37 37.23 37.50
(10.32) (8.39) (8.40) (8.26) (8.97) (10.60) (8.07) (8.92)

5000
39.30 36.03∗ 36.20 36.23 41.57 38.37 36.30 37.13
(9.74) (7.99) (8.36) (8.23) (10.14) (9.17) (8.65) (9.03)

1000
5000

36.27 36.10 36.17 36.30 37.87 37.93 35.03∗ 36.30
(8.99) (8.45) (8.34) (8.51) (9.35) (10.02) (8.20) (8.29)

10000
37.40 33.93 34.57 34.50 38.97 35.47 33.70∗ 37.10
(9.00) (6.93) (7.43) (7.73) (9.89) (7.98) (7.30) (10.14)

2000
10000

37.30 33.80 34.63 34.27 36.13 35.87 33.93 33.67∗
(8.66) (6.95) (7.39) (7.38) (8.28) (8.42) (6.77) (6.82)

20000
39.30 36.40 35.57∗ 36.37 39.37 36.43 35.63 36.10
(7.46) (7.29) (7.06) (6.69) (7.52) (8.05) (6.95) (7.10)

5000
25000

36.27 34.43∗ 34.43∗ 35.80 36.17 35.53 34.77 34.67
(9.07) (8.27) (7.71) (9.09) (9.33) (8.32) (8.40) (8.15)

50000
39.13 36.43 36.27∗ 37.37 40.63 38.53 36.80 36.50
(7.21) (8.37) (7.83) (8.19) (7.98) (7.75) (8.61) (6.27)

F
o
re
st

L
G
B
M

200
1000

35.07 4.73 3.97∗ 14.83 34.27 11.63 4.53 4.67
(27.43) (4.38) (3.40) (20.42) (24.90) (11.48) (4.26) (4.05)

2000
34.00 3.13 4.37 12.40 31.83 9.93 2.77∗ 2.93
(27.24) (3.95) (7.99) (16.17) (25.22) (15.15) (3.09) (4.24)

500
2500

9.37 3.70 3.80 4.00 13.27 3.63∗ 3.97 3.63∗
(9.52) (4.48) (4.54) (4.88) (17.71) (4.81) (5.13) (4.80)

5000
14.77 4.40 4.00∗ 4.33 15.47 5.40 4.20 4.80
(20.18) (4.39) (4.20) (5.48) (19.89) (5.24) (4.45) (6.64)

1000
5000

4.33 4.27 4.27 4.07∗ 5.13 4.97 4.30 4.83
(6.56) (4.26) (4.26) (4.98) (7.38) (4.92) (4.42) (7.33)

10000
3.07 3.43 3.63 3.00 3.43 3.53 3.60 2.77∗
(3.92) (4.56) (4.67) (3.56) (4.58) (5.01) (4.68) (3.45)

2000
10000

2.93∗ 3.33 3.40 3.07 3.50 3.43 3.47 2.97
(3.57) (4.57) (4.64) (3.66) (3.99) (4.27) (4.39) (3.88)

20000
5.07 6.67 6.50 5.00 6.20 6.40 7.03 4.43∗
(4.58) (6.07) (5.77) (4.34) (7.61) (5.20) (5.94) (3.87)

5000
25000

5.57 7.90 7.40 4.93∗ 6.23 7.80 8.07 6.10
(7.19) (7.90) (7.44) (5.56) (6.64) (8.19) (7.65) (6.12)

50000
3.93∗ 9.03 7.43 4.27 6.03 10.23 9.07 4.70
(4.01) (9.18) (7.80) (4.71) (6.79) (10.13) (9.02) (5.01)

N
N

200
1000

26.40 5.43 4.47 16.47 33.53 10.63 4.23∗ 5.90
(20.64) (5.16) (4.26) (22.93) (24.08) (9.33) (3.58) (5.38)

2000
35.90 3.80 6.17 16.10 32.70 9.40 3.43∗ 4.07
(24.98) (4.75) (9.32) (19.68) (21.27) (12.52) (4.35) (4.49)

500
2500

13.87 4.33 4.17 4.50 13.20 4.30 4.23 3.90∗
(16.94) (5.77) (5.77) (5.86) (15.25) (4.70) (5.61) (4.17)

5000
14.53 4.73 5.03 3.93∗ 15.40 5.20 4.43 3.97
(18.94) (3.72) (5.03) (3.35) (18.62) (3.91) (3.86) (3.12)

1000
5000

4.07∗ 5.03 5.03 4.63 5.23 5.00 5.07 4.43
(3.31) (4.44) (4.44) (4.98) (5.06) (4.60) (4.95) (4.32)

10000
4.00 5.07 5.20 4.20 4.27 4.87 4.70 3.60∗
(4.47) (5.79) (6.21) (5.40) (5.75) (5.66) (6.60) (4.64)

2000
10000

4.17 4.70 4.77 3.87∗ 4.30 4.70 4.83 4.00
(5.48) (5.73) (5.76) (5.10) (5.71) (5.82) (6.10) (5.20)

20000
5.83 8.60 8.57 6.27 8.17 8.77 8.87 5.63∗
(5.99) (7.76) (6.90) (6.19) (8.95) (7.93) (8.40) (5.80)

5000
25000

4.80∗ 7.90 7.60 5.37 6.90 8.23 7.50 6.10
(5.00) (7.46) (7.55) (6.06) (7.84) (8.66) (7.28) (7.11)

50000
4.60∗ 8.67 7.50 5.03 7.27 10.07 7.60 4.87
(5.69) (8.53) (7.62) (5.76) (8.49) (10.27) (7.70) (5.18)

Average Rank 5.59 3.37 4.27 4.21 6.48 4.84 3.88 3.06∗

#Best 16 17 14 19 2 8 18 37∗

#Best or Comparable 70 106 86 95 53 88 108 119∗
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C.3. Running Time

We evaluate the running time of each method on Rialto dataset with T/N = 10 as a
representative setting. Actual running times are shown in Figure C.1.
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Figure C.1: Average running time [s] (↓) over 30 trials. Shades represent the 90% confidence
intervals.

PHT, TSJD, and ADWIN have similar running times, less affected by the sample size
T . uLSIF takes longer due to hyperparameter tuning, but speeds up if the hyperparameters
are fixed. Theoretically, LDD-DSDA has the highest computational complexity at O(T 3),
since it performs a O(T )-nearest neighbor search for each sample in D. Indeed, its running
time increases significantly with larger T . LCD is also influenced by T and slows down for
large T , but remains faster than LDD-DSDA.

C.4. Hyperparameters

Table C.6 shows the all hyperparameters of TSJD used in Section 5 and Supplementary
C.2. Each of them are tuned in the way described in Section 3.4 using each entire data set.
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Table C.6: Hyperparameters

Data N T σx σy β

Weather

200 1000 0.1 0.2 10.0
200 2000 0.05 0.05 100.0
500 2500 0.05 0.5 100.0
500 5000 0.2 0.0 10.0

1000 5000 2.0 0.5 10.0
1000 10000 0.2 0.0 10.0
2000 10000 2.0 0.5 10.0

Smartmeter

200 1000 0.5 0.01 0.1
200 2000 1.0 0.01 1.0
500 2500 2.0 0.0 0.1
500 5000 1.0 0.01 1.0

1000 5000 2.0 0.0 0.1
1000 10000 5.0 0.0 10.0
2000 10000 10.0 0.0 0.1
2000 20000 10.0 0.0 1.0

Powersupply

200 1000 0.0002 0.1 100.0
200 2000 0.0002 0.1 100.0
500 2500 0.01 0.02 0.1
500 5000 0.0001 0.5 10.0

1000 5000 0.1 0.2 0.1
1000 10000 0.002 0.05 0.1
2000 10000 0.1 0.2 0.1
2000 20000 0.01 0.1 1.0
5000 25000 0.02 0.2 1.0

Electricity

200 1000 0.2 0.0 10.0
200 2000 0.2 0.0 10.0
500 2500 0.5 0.1 10.0
500 5000 0.5 0.0 100.0

1000 5000 1.0 0.5 10.0
1000 10000 0.5 0.5 100.0
2000 10000 2.0 0.5 10.0
2000 20000 5.0 0.5 10.0
5000 25000 5.0 0.5 10.0

Rialto

200 1000 0.2 0.5 1.0
200 2000 1.0 0.1 10.0
500 2500 1.0 0.5 100.0
500 5000 0.5 0.02 100.0

1000 5000 10.0 0.5 10.0
1000 10000 0.2 0.0 100.0
2000 10000 1.0 0.05 10.0
2000 20000 0.1 0.0 10.0
5000 25000 0.5 0.01 1.0
5000 50000 0.2 0.05 1.0

Airlines

200 1000 0.05 0.5 100.0
200 2000 10.0 0.5 1.0
500 2500 10.0 0.5 10.0
500 5000 0.2 0.5 1.0

1000 5000 1.0 0.5 10.0
1000 10000 5.0 0.0 10.0
2000 10000 0.5 0.5 10.0
2000 20000 10.0 0.5 10.0
5000 25000 1.0 0.5 100.0
5000 50000 2.0 0.01 100.0

Forest

200 1000 0.05 0.5 0.1
200 2000 0.05 0.1 10.0
500 2500 0.1 0.5 0.1
500 5000 0.2 0.2 10.0

1000 5000 0.5 0.02 1.0
1000 10000 0.2 0.5 10.0
2000 10000 0.2 0.0 0.1
2000 20000 0.5 0.0 100.0
5000 25000 1.0 0.01 10.0
5000 50000 2.0 0.01 100.0
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C.5. Hyperparameter Sensitivity

We analyze the parameter sensitivities of our method on seven real-world datasets. Using
the tuned hyperparameters from the previous section, we individually vary σx, σy, and β to
evaluate their impacts. For all experiments, N = 1000 and T = 10000 are fixed, and both
NN and LGBM models are tested. Each hyperparameter setting is repeated 30 times, and
we report the mean and 90% confidence interval.

Results are displayed in Figure C.2 to Figure C.8. Sensitivity varies across datasets
and models; for example, hyperparameter changes have little effect on the Rialto dataset,
whereas the Airlines dataset shows significant fluctuation. Additionally, sensitivities are
higher for NN models compared to LGBM models.
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Figure C.2: Parameter sensitivity of our method for Weather dataset. Orange dashed lines
indicate the best results among the baselines, reported in Supplementary C.2.
Shades represent the 90% confidence intervals over 30 trials.
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Figure C.3: Parameter sensitivity for Smartmeter dataset.
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Figure C.4: Parameter sensitivity for Powersupply dataset.
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Figure C.5: Parameter sensitivity for Electricity dataset.
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Figure C.6: Parameter sensitivity for Rialto dataset.
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Figure C.7: Parameter sensitivity for Airlines dataset.
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Figure C.8: Parameter sensitivity for Forest dataset.
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