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A NOTATION

We denote the extended reals by R ≡ R ∪ {−∞,∞}. We let (Ω,M) be a measurable space
and P(Ω) be the set of probability measures on (Ω,M). For P ∈ P(Ω) we let EP denote the
expectation with respect to P and VarP denote the variance with respect to P . We let Qn, Pn be
n-sample empirical measures, constructed using i.i.d. samples from Q and P respectively. A set
Ψ ⊂ P(Ω) will be called P(Ω)-determining if whenever Q,P ∈ P(Ω) satisfy EQ[g] = EP [g] for
all g ∈ Ψ we have Q = P . A map D : P(Ω)×P(Ω)→ [0,∞] will be said to have the divergence
property if D(Q‖P ) = 0 if and only if Q = P .

B DIVERGENCE PROPERTY

In this appendix we prove the divergence property for the variance-penalized divergences introduced
in Section 3.1 (the definition of the divergence property is found in Appendix A). The techniques we
use are based on the proof of Theorem C.3 in Birrell et al. (2020). Though we focus on the Rényi,
KL, and f -divergences the same techniques can be adapted to other divergences with a variational
formulation, such as integral probability metrics.

Theorem 1 (Divergence Property for RΓ,λ
α ). Let α > 0, α 6= 1, Γ ⊂ Mb(Ω), λ ≥ 0, and suppose

there exists a nonempty set Ψ ⊂Mb(Ω) such that

1. Ψ is P(Ω)-determining,

2. for all ψ ∈ Ψ there exists ε0 > 0 with εψ ∈ Γ for all |ε| < ε0.

Then RΓ,λ
α has the divergence property.

Remark 2. The definition of P(Ω)-determining can be found in Appendix A.

Proof. Let Q,P ∈ P(Ω). The second assumption on Ψ implies 0 ∈ Γ so we can bound equation
(15) below by the value at g = 0, which implies RΓ,λ

α (Q‖P ) ≥ 0. The variance penalty is non-
negative and so we have

0 ≤ RΓ,λ
α (Q‖P ) ≤ RΓ

α(Q‖P ) ≤ Rα(Q‖P ) , (1)

where we used equation (1). Rα is known to satisfy the divergence property and so if Q = P then
Rα(Q‖P ) = 0, hence RΓ,λ

α (Q‖P ) = 0 as well.

Finally, suppose RΓ,λ
α (Q‖P ) = 0. Given ψ ∈ Ψ let gε = εψ ∈ Γ for |ε| < ε0 (here we are using the

second assumption on Ψ). Then we can bound equation (15) below as follows

0 =RΓ,λ
α (Q‖P ) (2)

≥ 1

α− 1
logEQ[e(α−1)εψ]− 1

α
logEP

[
eαεψ

]
− λ

(
1

(α− 1)2

VarQ[e(α−1)εψ]

(EQ[e(α−1)εψ])2
+

1

α2

VarP [eαεψ]

(EP [eαεψ])2

)
≡ h(ε) .
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It is straightforward to calculate h(0) = 0 and h′(0) = EQ[ψ] − EP [ψ] (in particular, the first
derivative of the variance penalty vanishes at ε = 0). These, together with the fact that h(ε) is C1

and h(ε) ≤ 0 for all |ε| < ε0 imply

0 = h′(0) = EQ[ψ]− EP [ψ] . (3)

This holds for all ψ ∈ Ψ and Ψ was assumed to be P(Ω)-determining, hence we conclude that
Q = P . This completes the proof of the divergence property for RΓ,λ

α .

Theorem 3 (Divergence Property for DΓ,λ
KL ). Let Γ ⊂ Mb(Ω), λ ≥ 0, and suppose there exists a

nonempty set Ψ ⊂Mb(Ω) such that

1. Ψ is P(Ω)-determining,

2. for all ψ ∈ Ψ there exists ε0 > 0 with εψ ∈ Γ for all |ε| < ε0.

Then DΓ,λ
KL has the divergence property.

The proof of Theorem 3 follows the same template as the proof of Theorem 1; we omit the details.
The proof for DΓ,λ

f divergences is slightly more nuanced than the Rényi or KL cases, and so we
provide a proof below.

Theorem 4 (Divergence property for DΓ,λ
f ). Let λ > 0, Γ ⊂ Mb(Ω), and f : R → (−∞,∞] be

lower semicontinuous and convex, with f(1) = 0. Suppose f and Γ also satisfy the following:

1. There exist a nonempty set Ψ ⊂ Γ with the following properties:

(a) Ψ is P(Ω)-determining.
(b) For all ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0.

2. f is finite and strictly convex on a neighborhood of 1.

3. f∗ is finite and C1 on a neighborhood of ν0 ≡ f ′+(1).

Then DΓ,λ
f has the divergence property.

Remark 5. f ′+ denotes the right derivative.

Proof. The assumptions on f imply that f∗(ν0) = ν0 and (f∗)′(ν0) = 1 (see Lemma A.9 in Birrell
et al. (2020)). Assumption 1 implies there exists c0 ∈ Γ ∩ R, hence we can bound equation (12)
below by its value at g = c0, ν = c0 − ν0 to find

DΓ,λ
f (Q‖P ) ≥ EQ[ν0]− EP [f∗(ν0)] = 0 (4)

(note that the variance penalty vanishes here). We clearly have DΓ,λ
f ≤ DΓ

f ≤ Df . Df (Q‖P ) = 0

when Q = P , hence DΓ,λ
f (Q‖P ) = 0 as well.

Finally, suppose DΓ,λ
f (Q‖P ) = 0. From assumption 1.b, given ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0

such that gε ≡ c0 + εψ ∈ Γ for all |ε| < ε0. Therefore

0 = DΓ,λ
f (Q‖P ) ≥EQ[gε − (c0 − ν0)]− EP [f∗(gε − (c0 − ν0))] (5)

− λ(VarQ[gε − (c0 − ν0)] + VarP [f∗(gε − (c0 − ν0))])

=ν0 + εEQ[ψ]− EP [f∗(ν0 + εψ)]− λ(VarQ[ν0 + εψ] + VarP [f∗(ν0 + εψ)])

≡h(ε) .

As computed in equation (4), we have h(0) = 0. Together with the fact that h(ε) is C1 and h(ε) ≤ 0
for all |ε| < ε0 we can conclude that

0 = h′(0) = EQ[ψ]− EP [(f∗)′(ν0)ψ] = EQ[ψ]− EP [ψ] (6)

(again, the first derivative of the variance penalty vanishes at ε = 0). Equation (6) holds for all
ψ ∈ Ψ, a P(Ω)-determining set. Hence Q = P . This completes the proof of the divergence
property for DΓ,λ

f .
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We end this appendix by presenting several examples of P(Ω)-determining sets that can be used to
construct Γ’s satisfying the assumptions of the above theorems.

1. Exponentials, ec·x, c ∈ Rn, i.e., the moment generating function; see Section 30 in
Billingsley (2012).

2. The set of bounded continuous functions on a metric space.

3. The set of continuous functions on a metric space with ‖g‖∞ ≤ 1 (‖ · ‖∞ denotes the
supremum norm).

4. The set of bounded 1-Lipschitz functions on a metric space.

5. The set of bounded 1-Lipschitz functions, g, on a metric space with ‖g‖∞ ≤ 1 (items 2-5
follow from Theorem 2.1 in Billingsley (2013)).

6. The unit ball in a reproducing kernel Hilbert space, under appropriate assumptions (see
Sriperumbudur et al. (2011)).

7. The set of ReLU neural networks. This follows from the universal approximation theorem
(Cybenko, 1989) and also applies to other activation functions, e.g., sigmoid.

8. The set of ReLU neural networks with spectral normalization (Miyato et al., 2018).

C CONVERGENCE PROOFS

In this appendix we consider the limit of the variance-penalized divergences as the penalty strength
approaches 0 or ∞. First we consider the easier case where the penalty strength approaches zero.
For this we will use the following general convergence result.

Lemma 6. Let H[g] ∈ R, V [g] ∈ [0,∞) where g ∈ Γ is an arbitrary index set. Define D =
supg∈ΓH[g] and for λ > 0 define Dλ = supg∈Γ{H[g]− λV [g]}. Then

lim
λ→0+

Dλ = D. (7)

Proof. The V [g] are non-negative, hence Dλ is non-increasing in λ. Therefore

lim
λ→0+

Dλ = sup
λ>0

Dλ = sup
λ>0

sup
g∈Γ
{H[g]− λV [g]} = sup

g∈Γ
sup
λ>0
{H[g]− λV [g]} = D . (8)

The objective functionals of DΓ,λ
KL and RΓ,λ

α satisfy the assumptions of Lemma 6, as does DΓ,λ
f ’s if

f∗(y) <∞ for all y ∈ R. Therefore Theorem 2 follows as a corollary to Lemma 6.

Next we investigate the limit as λ→∞. The proofs in this case are more involved than the λ→ 0+

limit. We start with the following lemma.

Lemma 7. Let H[g] ∈ R, V [g] ∈ [0,∞) where g ∈ Γ is an arbitrary index set. Define D =
supg∈ΓH[g] and for λ > 0 define Dλ = supg∈Γ{H[g] − λV [g]}. Suppose Dλ ≥ 0 and D < ∞.
Then for n ∈ Z+ there exists gn ∈ Γ with

0 ≤ Dn ≤ H[gn] + 1/n and lim
n→∞

V [gn] = 0 . (9)

Proof. We have 0 ≤ Dλ ≤ D <∞ and so the Dλ are finite. The definition of Dλ then implies that
there exists gn with

Dn − 1/n ≤ H[gn]− nV [gn] (10)

for all n. The assumptions V [gn] ≥ 0 and Dn ≥ 0 then imply 0 ≤ Dn ≤ H[gn] + 1/n. The
inequality (10) also implies

0 ≤ V [gn] ≤ H[gn]/n−Dn/n+ 1/n2 ≤ H[gn]/n+ 1/n2 ≤ D/n+ 1/n2 → 0 (11)

as n→∞. Therefore limn→∞ V [gn] = 0 as claimed.
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Next we consider the implications of V [gn] → 0 when V takes the form of one of the variance
penalties from Section 3.1.

Lemma 8. Let P ∈ P(Ω) and hn ∈Mb(Ω).

1. If

lim
n→∞

VarP [hn] = 0 (12)

then there exists a subsequence hnj
such that

hnj
− EP [hnj

]→ 0 P -a.s. (13)

2. If c ∈ R \ {0} and

lim
n→∞

VarP [echn ]/(EP [echn ])2 = 0 (14)

then there exists a subsequence hnj
such that

hnj
− 1

c
logEP [echnj ]→ 0 P -a.s. (15)

Proof. Equation (13) is a direct consequence of Corollary 2.32 in Folland (2013). As for
the second claim, we can write

VarP [echn ]/(EP [echn ])2 = VarP [echn/EP [echn ]] (16)

and so the first item implies there exists a subsequence with

echnj /EP [echnj ]− EP [echnj /EP [echnj ]]→ 0 P -a.s., (17)

i.e.,

echnj /EP [echnj ]− 1→ 0 P -a.s. (18)

Adding 1 to both sides, taking the logarithm, and then dividing by c gives the claimed
result.

We are now ready to prove the following limit results as λ→∞.

Theorem 9. Let Q,P ∈ P(Ω) with Q� P and Γ ⊂Mb(Ω).

1. If 0 ∈ Γ and DΓ
KL(Q‖P ) <∞ then limλ→∞DΓ,λ

KL (Q‖P ) = 0.

2. Let α > 0, α 6= 1. If 0 ∈ Γ and RΓ
α(Q‖P ) <∞ then limλ→∞RΓ,λ

α (Q‖P ) = 0.

3. Let f : R → (−∞,∞] be lower semicontinuous, convex, finite on a neighborhood of 1
with f(1) = 0, and satisfy f∗(y) < ∞ for all y ∈ R. If there exists c0 ∈ Γ ∩ R and
DΓ
f (Q‖P ) <∞ then limλ→∞DΓ,λ

f (Q‖P ) = 0.

Remark 10. Note that if DKL(Q‖P ) < ∞ then DΓ
KL(Q‖P ) < ∞ and similarly for the other

divergences.

Proof.

1. Let D = DΓ
KL(Q‖P ) and Dλ = DΓ,λ

KL (Q‖P ). The assumption 0 ∈ Γ allows us to bound
equation (14) below by the value at g = 0, resulting in the bound Dλ ≥ 0. This, together
with equation (14) and the assumption that D <∞, implies that D and Dλ are of the form
required by Lemma 7, hence we conclude that there exists gn ∈ Γ with

0 ≤ Dn ≤ EQ[gn]− logEP [egn ] + 1/n (19)
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and

lim
n→∞

(
VarQ[gn] + VarP [egn ]/(EP [egn ])2

)
= 0 . (20)

Note that both terms in (20) are non-negative, hence they each converge to zero individually.
Combining parts 1 and 2 of Lemma 8 we therefore obtain a subsequence gnj

with

gnj − EQ[gnj ]→ 0 Q-a.s. (21)

and

gnj
− logEP [egnj ]→ 0 P -a.s. (22)

The assumption Q � P implies that gnj
− logEP [egnj ] → 0 Q-a.s. as well. There-

fore there exists ω ∈ Ω with gnj
(ω) − EQ[gnj

] → 0 and gnj
(ω) − logEP [egnj ] → 0.

Combining these facts with equation (19) we therefore obtain

0 ≤ Dnj ≤ EQ[gnj ]− gnj (ω) + gnj (ω)− logEP [egnj ] + 1/nj → 0 (23)

as j →∞. Therefore limj→∞Dnj = 0. Dλ is non-increasing in λ, hence we can conclude
that limλ→∞Dλ = 0 as claimed.

2. The proof in this case is very similar to the proof of claim 1; we omit the details.

3. If we let ν0 = f ′+(1) (right derivative) then f∗(ν0) = ν0 (see Lemma A.9 in Birrell et al.
(2020)). Bounding equation (12) below by the value at g = c0, ν = c0 − ν0 we see that
DΓ,λ
f (Q‖P ) ≥ 0. Similarly to the proof of part 1, using Lemmas 7 and 8 one can show

that there exists ω ∈ Ω and subsequences gnj
∈ Γ, νnj

∈ R such that

gnj
(ω)− EQ[gnj

]→ 0 , (24)

f∗(gnj (ω)− νnj )− EP [f∗(gnj − νnj )]→ 0 ,

0 ≤ DΓ,nj

f (Q‖P ) ≤ 1

nj
+ EQ[gnj

− νnj
]− EP [f∗(gnj

− νnj
)] .

Combining these with the inequality

f∗(y) = sup
x∈R
{yx− f(x)} ≥ y − f(1) = y (25)

we can conclude that limj→∞D
Γ,nj

f (Q‖P ) = 0. DΓ,λ
f (Q‖P ) is non-increasing in λ,

hence this implies limλ→∞DΓ,λ
f (Q‖P ) = 0 as claimed.

D BIAS BOUNDS

In this appendix we derive bounds on the bias of Rényi and f -divergence variational formula esti-
mators. The key lemma is the following simple results regarding the expectation of a supremum or
infimum.
Lemma 11. Given an objective functional, H :Mb(Ω)× P(Ω)× P(Ω)→ R, and a test function
space Γ ⊂Mb(Ω) we have

E[sup
g∈Γ

H[g;Qn, Pn] ≥ sup
g∈Γ

E[H[g;Qn, Pn]] , (26)

E[ inf
g∈Γ

H[g;Qn, Pn] ≤ inf
g∈Γ

E[H[g;Qn, Pn]] .

The next lemma provides a bound on the bias of statistical estimators of ΛPf from equation (4).

Lemma 12. Let f be convex with f(1) = 0, P ∈ P(Ω), and Pn be n-sample empirical measures
from Q and P respectively. Then for all g ∈ Mb(Ω) the generalized cumulant generating function
satisfies

E[ΛPn

f [g]] ≤ ΛPf [g] . (27)
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Proof. Using equation (4) we can compute

E
[
ΛPn

f [g]
]

=E
[

inf
ν∈R
{ν + EPn [f∗(g − ν)]}

]
(28)

≤ inf
ν∈R

E [ν + EPn [f∗(g − ν)]]

= inf
ν∈R
{ν + EP [f∗(g − ν)]} = ΛPf [g] .

Lemmas 12 and 11 allow us to bound the bias of both f -divergences and Rényi divergences.
Corollary 13 (Rényi Divergence Bias Bound). For α ∈ (0, 1) and g ∈Mb(Ω) we have

E
[

1

α− 1
logEQn

[e(α−1)g]− 1

α
logEPn

[eαg]

]
(29)

≥ 1

α− 1
logEQ[e(α−1)g]− 1

α
logEP [eαg]

and

E[RΓ
α(Qn‖Pn)] ≥ RΓ

α(Q‖P ) . (30)

Proof. To prove equation (29) we compute

E
[

1

α− 1
logEQn [e(α−1)g]− 1

α
logEPn [eαg]

]
(31)

=− 1

1− α
E
[
ΛQn [(α− 1)g]

]
− 1

α
E
[
ΛPn [αg]

]
≥− 1

1− α
ΛQ[(α− 1)g]− 1

α
ΛP [αg]

=
1

α− 1
logEQ[e(α−1)g]− 1

α
logEP [eαg] .

Equation (30) then follows from Lemma 11.

Remark 14. When α > 1 the biases of the two terms in equation (31) compete and so we can not
obtain a bias bound via the above method.

Similarly, we have:
Corollary 15 (f -Divergence Bias Bound).

E[EQn [g]− ΛPn

f [g]] ≥ EQ[g]− ΛPf [g]

for all g ∈Mb(Ω) and

E[DΓ
f (Qn‖Pn)] ≥ DΓ

f (Q‖P ) . (32)

E EXPERIMENTAL DETAILS

Here, we describe the experimental setup and architectural details for the experiments presented in
the paper. All experiments were performed using a fully-connected, feed-forward neural network
of three hidden layers. We chose the number of units per layer to be 16, 16 and 8 for the one-
dimensional Gaussians synthetic example as well as for the biological data example and tanh(·) as
activation function for hidden and output layers. In addition, we use gradient penalty with λgp = 0.1
during training using the biological data sets, for improved stability. We apply Adam optimizer as
the training algorithm, with learning rate λlr = 0.0005 for the one-dimensional experiments, while
the number of iterations is Nit = 20000 and batch size is m = 124. Due to slower convergence, the
respective values for the biological data set are λlr = 0.005 and Nit = 200000. Moreover, we set a
large value to the batch size m = 1024, so that samples from the tails are included in the statistical
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average with high probability at each step. For 40-dimensional Gaussians, we used three hidden
layers with 32, 32 and 16 hidden units respectively for DNE methods. The learning rate is set to
0.0001. For other methods, we chose the parameters as provided in the repository 1. We follow
the same architectures for the application of speech synthesis as mentioned in (Paul et al., 2021).
Implementation is carried out using TensorFlow and code will be made available upon acceptance.

F FURTHER RESULTS ON SYNTHETIC DATA
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Figure 1: Relative standard deviation (left panels), relative bias (middle panels) and relative MSE
(right panels) for the same experiment as in Figure 1 from the main text.
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Figure 2: Same as Figure 1 from main text (middle columns) along with the 25% and 75% quartile
interval.
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Figure 4: Estimation quality comparison of MI estimators considering bias, variance and mean
square estimation error (MSE=bias2+variance) for DNE, InfoNCE and CLUB variants. The hori-
zontal axis shows the exact divergence values. The results are averaged over 20 i.i.d. runs. The
results show improvements in the variance reduction front when VP is employed leading to lower
MSE errors.
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Figure 5: Performance comparison of several MI estimation approaches on a 40-dimensional corre-
lated Gaussian random vector. Panels with Rα=0.5 in their titles present the Rényi-based MI with
α = 0.5 whereas the rest of the methods estimate the standard MI (i.e., the KL divergence). Batch
size is 64 and number of sample size set to 256K.
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Figure 6: Performance comparison of several MI estimation approaches on a 40-dimensional corre-
lated Gaussian random vector. Batch size is 16 and number of sample size set to 512K.
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Figure 7: Performance comparison of several MI estimation approaches on a 40-dimensional corre-
lated Gaussian random vector. Batch size is 512 and number of sample size set to 256K.
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Figure 8: Performance comparison of several MI estimation approaches on a 40-dimensional corre-
lated Gaussian random vector. Batch size is 512 and number of sample size set to 4M.
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Figure 9: Performance comparison of several MI estimation approaches on a 40-dimensional corre-
lated Gaussian random vector with different λ values. Batch size is 64 and number of sample size
set to 512K.
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Figure 10: Performance comparison of several MI estimation approaches on a 40-dimensional cor-
related Gaussian random vector. Batch size is 64 and number of sample size set to 512K.
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