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Abstract

How is information stored and aggregated within a language model performing
inference? Preliminary evidence suggests that representations of punctuation tokens
might serve as “summary points” for information about preceding text. We add
to this body of evidence by demonstrating that GPT-2 small fine-tuned on the
RuleTaker logical inference dataset aggregates crucial information about rules and
sentences above period tokens.

1 Introduction

Reasoning is one of the cognitive abilities that distinguishes humans, enabling us to infer, explain,
and draw conclusions. There have been numerous efforts to unveil and comprehend the internal
mechanisms of Large Language Models (LLMs), and a key question that arises is: How LLMs do
logical reasoning? (Among the various types of reasoning,) We aim to investigate how LLMs can
engage in logical reasoning, which involves deriving conclusions based on formal principles and
rules. Our goal is to contribute our findings to the ongoing discussion.

[1] and [2] first introduced the notion of "summarization motif" in language models. It can be thought
as knowledge block where information is summarized. These so-called blocks can be punctuation
marks, newlines, etc., and primarily the aggregation does not happen at the sentiment information
tokens but the punctuations. Here we fine-tune a pre-trained GPT-2 Small and check the accumulation
of information on punctuations present in a sentence with the help of the RuleTaker dataset. We do
so by performing Interchange Interventions (IntInv) [3] on each token and each layer and based on
the response of model to the interventions using IIA as a metric[4] for understanding whether the
information is aggregated and how does the model reason.

Our main contribution lies in understanding if information is aggregated on punctuations and using
the reasoning dataset we try to figure out how does a model perform reasoning.

2 Related Work

Reasoning Much previous work has focused on enhancing the reasoning capabilities of LLMs,
including Chain-of-Thought (COT) [5], Tree-of-Thought (TOT) [6], and Cumulative Reasoning (CR)
[7]. Other studies have attempted to understand how LLMs reason. For instance, [8] suggests that
LLMs have limited generalization capabilities and that their reasoning stems from the overfiting of
patterns enforced during training. While these studies provide insights into how LLMs perform rea-
soning [9, 10, 11, 12], they primarily focus on evaluating model outputs by manipulating datasets—a
transient approach. Our study, inspired by mechanistic interpretability, intervenes not on the data but
on the neurons and layers that store information and facilitate reasoning.

Interpretability Interpretability includes circuit based analysis methods[13, 14, 15, 16] , iterated
null space projection ([17, 18] and Causal Effect Analysis [19, 20]. Causal abstraction [21, 22, 23, 24]
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is a framework for interpretability in which a high-level system implements a low-level system by
preserving key cause-and-effect relationships and ensuring these relationships accurately reflect
the underlying causal mechanisms. This is achieved through Interchange Intervention [25, 26, 27],
where source inputs are applied to base inputs of specific neuron groups in a neural network. The
resulting outputs are used to make causal inferences about the model’s behavior, helping to estimate
the model’s reasoning capabilities. We further evaluate performance using Interchange Intervention
Accuracy [4]. This approach is employed in our study to assess how reasoning is done in LLMs.

3 Methods

RuleTaker dataset This rule-based reasoning dataset, tests the reasoning and implication abilities
of LLMs. It includes facts and rules, followed by questions that assess whether the rules are correctly
applied. Answers to these questions are labeled as True, False, or Unknown, allowing us to evaluate
model predictions. The dataset is organized by depth, indicating how many rule iterations are required
for correct application. An example prompt from the dataset is:

Harry is tall. Tall people are round. Is Harry round?

In the above example, the first sentence is a fact, the second sentence is a rule, and the third
sentence is a question that the model answers. The dataset contains examples with several facts
and rules. The rules (If..then.., All... etc) are applied to the Facts which are statements before the
rules and then the final questions are answered which check the rule applications on statements
are being done correctly. When we do our interpretability experiments, we will try to target
a fact or an inference generated from a fact and a rule to change how the model reasons about the input.

Interchange Intervention Datasets : We curate subsets of the original RuleTaker dataset to
assess model predictions and intervention effectiveness. These datasets follow the format: base,
source, base_answer, expected_answer, question. The model is prompted with ‘<base> Question:
<question>’. The base_answer is the model’s original response, while the expected_answer is
what it should output after a successful intervention. Questions are designed based on the type of
intervention performed, where we have questions that check the base information is removed and
questions that check whether the information from the source has been introduced.

GPT2 We use the gpt2 small, which has 85M parameters. We use this for classification and is
trained on the RuleTaker dataset.

Causal Intervention We perform Interchange Intervention (also referred to as activation patching)
by taking two prompts which are consistent in length but the source prompt has different inputs
than the base prompt in order to target the reasoning aspect. We first capture the activations on base
prompt and then do positional intervention using the activations of source prompt. We use IIA as a
metric to help us identify the cases where the reasoning capability of the model was affected.

4 Experiments

4.1 How are adjective and subject tokens processed?

Experimental Information We intervene above the subject and adjective tokens to determine how
information is stored in the residual stream of the transformer. The interventions should modify
the adjective or the subject in the first sentence, changing it to be the adjective or subject from the
input we are patching from. If the token is indeed stored in the residual stream at the intervention
location, then the models output should match the expected label when asked a question about the
subject/adjective. This signifies that the reasoning capability of the model leverages information
present at that location.

Results and discussion Figure 1 gives a visual representation. We perform experiments doing the
subject and adjective interchange intervention target very specific tokens. Subject swap targeting the
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(a) Adjective Swap (b) Subject Swap

(c) Single Sentence (d) Double Sentence

Figure 1: The X-axis depicts the layers in the GPT2 model and the Y-axis depicts the Interchange
Intervention Accuracy achieved. The higher IIA scores show that the model’s output at those points
was affected the most, indicating that on intervention, the model processed and gave different outputs,
highlighting that reasoning was being performed and our intervention was successful. 1a and 1b
are the intervention results on adjective and subject tokens. Higher initial layer accuracy shows the
presence of discreet tokens in the initial layers leading to successful interventions.1c and 1d are ’.’
intervention results on single and double sentences. We see a high accuracy for ’.’ highest being
at layer 4 signifying a successful interventions. The high IIA here signifies the entire information
being retrieved at that position in that layer signifying information being aggregated at the dot and
reasoning being performed.

first token or token which is the main entity and Adjective swap is the last token telling about the
attribute that entity has. The highest IIA for these swaps are observed for the initial layers, which
is expected as the individual token representations contain the information which is passed on to
the next layer by default. Information about the adjective has been moved via attention by layer 3
and information about the subject is immediately moved. The initial high accuracy being close to
80% shows that there is an impact on the model reasoning capabilities which signifies that the model
considers the information giving us an idea about reasoning being performed.

4.2 The Summarization Motif

Concurrently, [1] and [2] discovered a "summarization motif" in language models where information
is aggregated at tokens without semantic content, like punctuation marks or newlines. We add to the
record another case of this motif.

Experimental Information We hypothesize that information about sentences is stored at the
punctuation that ends the sentence. To test this hypothesis, we do three experiments: 1) Single
Sentence 2) Double Sentence 3) Rule Inference

In single sentence inference, the question the model is asked checks if the entire sentence is swapped
when an intervention on the ‘.’ is performed. For double sentence, we do the same except we
intervene on two ‘.’ tokens at the end of two sentences. We use four questions to check if both
sentences have been removed and replaced. In rule inference, we aim to target the inference being
generated by a rule and a fact via an intervention on the ‘.’ at the end of the fact.
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(a) Base inference removal check (b) Source inference inserted check

Figure 2: Here we intervene on the inference being generated by the rule. In figure 2a we check if the
base inference is being removed and a high accuracy in layer 4 implies the discovery of information
and removal of information was successful implying our intervention was successful. In figure 2b we
check if the source information is being inserted and we see a accuracy of 25% in layer 4 displaying
the successful insertion and aggregation of source information.

Single Sentence Intervention We first intervene on the ‘.’ present at the end of first sentence
Figure 7a shows the accuracy is high in layer 4 getting close to 80%, depicts that the information is
aggregated before the dot and can be fully found in that position.

Double Sentence Intervention In first set of experiments, we intervene on dot for both sentences
7b shows the results of the intervention. The accuracy is approximately 80% for layer 4 implying
that the sentences were seen in layer 4 and the intervention was successful implying information
summarization on ’.’.

Rule Inference Intervention Here we target the inference generated by the rule. Initially we
target the punctuation which is the end of rule checking if the end is where the entire information
is summarized and the inference can be targeted there. 2a shows that the inference is targeted and
removed. We see the IIA rising and getting close to 80 % which is a clear indication of the inference
being removed and the information being discovered on the punctuation.

We also check if the intervention was successful, and 2b shows the results we can see an observed
pattern of the IIA rising till layer 4 being the highest in layer 4 close to 30% and then decreasing.
This makes clear that the interchange is successful and the models reasoning capability is affected
but there is a fair chance that the information being imposed on to the model and not being actually
inserted. This leads further going into the feature space and checking how the information is being
represented.

5 Conclusion

Two things which we focus on this paper is to understand the reasoning capabilities of LLMs and
their summarization capabilities on punctuation. Through a series of experiments with handcrafted
datasets we could see how the reasoning abilities of the model were affected and specifically when
the interventions were performed on ’.’. It would be interesting to further perform experiments on
other models to see the effects.

6 Limitations

This work only focuses on the reasoning abilities of GPT2 on a particular dataset. There is still alot
of scope left for this problem to be further explored to reach accurate conclusions.
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Appendix

Below are the IIA scores for positional intervention for the Toy and Messy Dataset for Full Sentence,
Adjective and Subject Interventions.

Layer Single Sentence Adjective Swap Subject Swap
Toy Dataset Messy Dataset Toy Dataset Messy Dataset Toy Dataset Messy Dataset

1 0.3323 0.2704 0.7893 0.8245 0.5093 0.7261
2 0.2835 0.2855 0.7862 0.8227 0.5180 0.6578
3 0.4260 0.3351 0.6909 0.7846 0.4407 0.5931
4 0.6127 0.5656 0.4787 0.3466 0.5160 0.5363
5 0.7955 0.7261 0.3517 0.3059 0.6393 0.5399
6 0.6259 0.5301 0.3447 0.2837 0.7440 0.5355
7 0.5314 0.3475 0.3424 0.2846 0.7273 0.5328
8 0.3462 0.2730 0.3416 0.2846 0.6687 0.5310
9 0.3416 0.2730 0.3416 0.2846 0.6787 0.5301
10 0.3416 0.2730 0.3416 0.2846 0.6913 0.5346
11 0.3416 0.2730 0.3416 0.2846 0.6853 0.5328
12 0.3416 0.2730 0.3416 0.2846 0.6827 0.5319

Table 1: Results of Experiments on Toy and Messy Datasets Across 12 Layers

Single Sentence Per Question analysis We also did analysis on each question to better understand
the behaviour on removal some information on base and insertion of some information on source
sentence. 3 shows the figures for each.

Double Sentence Per Question Analysis Here we did the interventions on positions for two sentences
and we have stored the results separately for 1) On dot 2) Before dot and 3) On and Before dot.
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Base Information Removal

Dot

Source Information Insertion

Before Dot Both

Figure 3: The IIA scores on removal and insertion of base and source information depicting how
model does reasoning and how is the information being aggregated.

• On dot
• Before dot
• On and before dot
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Base Information Removal

Source Information Insertion

Figure 4: Base and Source Information Removal and Insertion on dot for two sentences

Base Information Removal

Source Information Insertion

Figure 5: Base and Source Information Removal and Insertion before dot for two sentences
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Base Information Removal

Source Information Insertion

Figure 6: Base and Source Information Removal and Insertion on and before dot for two sentences

(a) Single Sentence (Dot) (b) Single Sentence (Before Dot) (c) Single Sentence (Both)

(d) Double Sentence (On Dot) (e) Single Sentence (Before Dot) (f) Double Sentence (On Dot

Figure 7: Summarization of information on and before punctuation marks
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