
A Proof in Section 4

Theorem 1. Let f be any classifier and let f0 be the classifier trained on data from Q0. Suppose
that f0 predicts f0(xt) = i on input xt ∼ Qt and let ei denote the one-hot vector whose non-zero

entry is i. If the confusion matrix Cf0,Q0
is invertible then q̂t =

(
C>f0,Q0

)−1

ei is an unbiased
estimator of the label marginal probability vector qt. Further, we obtain unbiased estimators of the
loss and gradient of f for Qt with Assumption 1:

`(f ;Qt) = EQt [〈1− diag (Cf,Q0) , q̂t〉] ,
∇f `(f ;Qt) = EQt

[
J>f q̂t

]
,

where Jf = ∂
∂f [1− diag (Cf,Q0)] denotes the Jacobian of 1− diag (Cf,Q0) with respect to f .

Proof of Theorem 1. Let α[i] = P(xt,yt)∼Qt
(f0(xt) = i) for i = 1, . . . ,M be the proportion of

samples drawn from Qt that the model f0 predicts as class i. Then:

α[i] =

M∑
j=1

Pxt∼Qt(·|yt=j)(f0(xt) = i) · qt[j] = Cf0,Qt
[:, i]>qt, (10)

hence α = C>f0,Qt
qt. Then if the confusion matrix Cf0,Qt = Cf0,Q0 is invertible, we can estimate

qt using q̂t =
(
C>f0,Q0

)−1

ei, with q̂t satisfying:

E[q̂t] = E
[(
C>f0,Q0

)−1
ei

]
=
(
C>f0,Q0

)−1 E[ei] =
(
C>f0,Q0

)−1
α = qt, (11)

so q̂t is an unbiased estimator for qt. From Equation 3 and the fact that Q0 is independent of qt, we
have that 〈1− diag (Cf,Q0

) , q̂t〉 and J>f q̂t are unbiased estimators for `(f ;Qt) and ∇f `(f ;Qt),
respectively.

Theorem 2 (Regret bound for OGD). Under Assumption 1, 2 and 3, let L =

supp∈∆M−1,i=1,··· ,M

∥∥∥∥∇p`

(
p;
(
C>f0,Q0

)−1

ei

)∥∥∥∥
2

. If η =
√

2
T

1
L then Aogd satisfies:

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`(pt;qt)

]
− inf

p∈∆M−1

1

T

T∑
t=1

`(p;qt) ≤
√

2

T
L.

Proof of Theorem 2. Following the similar argument as Theorem 4.1 in [32], for any fixed p,

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`(pt,qt)

]
− 1

T

T∑
t=1

`(p,qt) = E

[
1

T

T∑
t=1

`(pt,qt)− `(p,qt)

]

≤ 1

T
E

[
T∑
t=1

(pt − p) · ∇p`(pt,qt)

]

=
1

T
E

[
T∑
t=1

(pt − p) · E [∇p`(pt, q̂t)|pt]

]

=
1

T
E

[
T∑
t=1

(pt − p) · ∇p`(pt, q̂t)

]
,

where the second inequality holds by the law of total probability. To bound (pt − p) · ∇p`(pt, q̂t),

||pt+1 − p||22 = ||Proj∆M−1 (pt − η · ∇p`(pt, q̂t))− p||22
≤ ||pt − η · ∇p`(pt, Q̂t)− p||22
= ||pt − p||22 + η2||∇p`(pt, q̂t)||22 − 2η(pt − p) · ∇p`(pt, q̂t),
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which implies

(pt − p) · ∇p`(pt, q̂t) ≤
1

2η

(
||pt − p||22 − ||pt+1 − p||22

)
+
η

2
||∇p`(pt, q̂t)||22.

Then

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`(pt,qt)

]
− 1

T

T∑
t=1

`(p,qt)

= E

[
1

T

T∑
t=1

1

2η

(
||pt − p||22 − ||pt+1 − p||22

)
+
η

2
||∇p`(pt, q̂t)||22

]

=
1

2ηT

(
||p1 − p||22 − ||pT+1 − p||22

)
+

η

2T

T∑
t=1

E
[
||∇p`(pt, q̂t)||22

]
≤ 1

2ηT
||p1 − p||22 +

η

2T

T∑
t=1

E
[
||∇p`(pt, q̂t)||22

]
≤ 1

ηT
+
η

2
L2,

where the last inequality take the fact that supp1,p2∈∆M−1 ||p1−p2||22 ≤ 2 supp1∈∆M−1 ||p1||22 = 2.

η =
√

2
T

1
L derives the bound

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`(pt,qt)

]
− 1

T

T∑
t=1

`(p,qt) ≤
√

2

T
L.

As the above bound holds for any p,

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`(pt,qt)

]
− min

p∈∆M−1

1

T

T∑
t=1

`(p,qt) ≤
√

2

T
L.

Theorem 3 (Regret bound for FTH, generalized version with δ ≥ 0). For any q ∈ ∆M−1,
let δ(q) = ‖p∗(q) − q‖2 where p∗(q) = arg minp∈∆M−1 `(p,q). With Assumption 5, let
L = supp,q∈∆M−1 ‖∇p`(p;q)‖2 < ∞. Then with probability at least 1 − 2MT−7 over sam-
ples (xt, yt) ∼ Qt for t = 1, . . . , T , we have that Afth satisfies:

1

T

T∑
t=1

`(pt;qt)− inf
p∈∆M−1

T∑
t=1

`(p;qt) ≤ 2L
lnT

T
+ 4Lc

√
M lnT

T
+

3L

T

T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
,

where c = 2 maxi=1,...,M

∥∥∥∥(C>f0,Q0

)−1

ei

∥∥∥∥
∞

.

Proof of theorem 3. By Theorem 1 we have that E[q̂t] = qt and q̂t (t = 1, · · · , T ) are independent.
By Hoeffding:

P

(∣∣∣∣∣
∣∣∣∣∣1t

t∑
τ=1

q̂τ −
1

t

t∑
τ=1

qτ

∣∣∣∣∣
∣∣∣∣∣
2

≥
√
Mεt

)
≤ 2M exp

(
−2ε2

t t

c2

)
.

With union bound:

P

(
∀t ≤ T,

∣∣∣∣∣
∣∣∣∣∣1t

t∑
τ=1

q̂τ −
1

t

t∑
τ=1

qτ

∣∣∣∣∣
∣∣∣∣∣
2

<
√
Mεt

)
≥ 1−

T∑
t=1

2M exp

(
−2ε2

t t

c2

)
.
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Since pt = 1
t−1

∑t−1
τ=1 q̂τ we have that ‖pt− 1

t−1

∑t−1
τ=1 qτ‖2 <

√
Mεt ∀t with probability at least

1−
∑T
t=1 2M exp

(
− 2ε2t t

c2

)
, hence by the Lipschitz-ness of `:

T∑
t=1

`(pt,qt)−
T∑
t=1

`(p,qt) ≤
T∑
t=1

`

(
1

t− 1

t−1∑
τ=1

qτ ,qt

)
−

T∑
t=1

`(p,qt) + L
√
M ·

T∑
t=1

εt. (12)

We will first derive an upper bound for
∑T
t=1 `

(
1
t−1

∑t−1
τ=1 qτ ,qt

)
−
∑T
t=1 `(p,qt). Recall that

p∗(q) = arg minp `(p,q) and δ(q) = ||p∗(q)− q||2. Then

T∑
t=1

`

(
1

t− 1

t−1∑
τ=1

qτ ,qt

)
−

T∑
t=1

`(p,qt)

≤
T∑
t=1

`

(
p∗

(
1

t− 1

t−1∑
τ=1

qτ

)
,qt

)
−

T∑
t=1

`(p,qt) + L ·
T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
(13)

≤
T∑
t=1

`

(
p∗

(
1

t− 1

t−1∑
τ=1

qτ

)
,qt

)
−

T∑
t=1

`

(
p∗

(
1

t

t∑
τ=1

qτ

)
,qt

)
+ L ·

T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
(14)

≤
T∑
t=1

`

(
1

t− 1

t−1∑
τ=1

qτ ,qt

)
−

T∑
t=1

`

(
1

t

t∑
τ=1

qτ ,qt

)
+ 3L ·

T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
(15)

≤
T∑
t=1

2L

t
+ 3L ·

T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
(16)

≤ 2L lnT + 3L ·
T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
, (17)

where (13) and (15) are implied by Lipschitz-ness of `, (14) holds by Lemma 2.1 in [32] and (16)
holds by Lipschitz-ness of ` and the fact that∥∥∥∥∥ 1

t− 1

t−1∑
τ=1

qτ −
1

t

t∑
τ=1

qτ

∥∥∥∥∥
2

=

∥∥∥∥∥
∑t−1
τ=1 qτ

(t− 1)t
− qt

t

∥∥∥∥∥
2

≤ 1

t
·

∥∥∥∥∥
∑t−1
τ=1 qτ
t− 1

− qt

∥∥∥∥∥
2

≤ 2

t
.

Combining with (12), with probability at least 1−
∑T
t=1 2M exp

(
− 2ε2t t

c2

)
, we have

T∑
t=1

`(pt,qt)−min
p

T∑
t=1

`(p,qt) ≤ 2L lnT +

T∑
t=1

3δ

(
1

t− 1

t−1∑
τ=1

qτ

)
L+ L

√
M ·

T∑
t=1

εt.

Take εt = 2c
√

lnT
t so that

∑T
t=1 2M exp

(
− 2ε2t t

c2

)
= 2MT−7 and

∑T
t=1 εt ≤ 4c

√
T lnT . The

above bound then becomes: with probability at least 1− 2MT−7,

1

T

T∑
t=1

`(pt,qt)−min
p

T∑
t=1

`(p,qt) ≤ 2L
lnT

T
+ 4Lc

√
M lnT

T
+

3L

T

T∑
t=1

δ

(
1

t− 1

t−1∑
τ=1

qτ

)
.

B Approximation of the gradient

In section 4.1 we defined a smooth surrogate `prob(f ;Q) := E(x,y)∼Q[1−Pf (x)[y]] for the expected
0-1 loss to enable direct gradient estimation. Here, we formalize the desirable properties of this
surrogate loss and prove the regret bound analogue of Theorem 1 for the surrogate loss `prob.
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Theorem 4. Let f be any classifier and let Q be a distribution over X × Y . Let `prob(f ;Q) :=

E(x,y)∼Q[1− Pf (x)[y]] be the surrogate loss and let Cprob
f,Q0

be its corresponding confusion matrix,

with entries: Cprob
f,Q0

[i, j] := Ex∼Q0(·|y=i)[Pf (x)[j]]. Then `prob is classification-calibrated, and is
smooth in f if Pf is smooth in f . Furthermore, if q̂t is an unbiased estimator of qt then:

`prob(f ;Qt) = EQt

[〈
1− diag

(
Cprob
f,Q0

)
, q̂t

〉]
,

∇f `prob(f ;Qt) = EQt

[
J>f q̂t

]
,

where Jf = ∂
∂f

[
1− diag

(
Cprob
f,Q0

)]
.

Proof. To show classification-calibratedness, we specialize the definition of [38] to our setting. That
is, we need to show that for all p ∈ ∆M−1:

inf
z∈∆M−1:p[arg maxy z[y]]<maxy p[y]

1− 〈p, z〉 > inf
z∈∆M−1

1− 〈p, z〉. (18)

Let p = maxy p[y]. Since z ≥ 0, we have that 1− 〈p, z〉 ≥ 1− 〈p1, z〉 = 1− p, which holds with
equality for z = earg maxy p[y]. Hence the RHS of Equation 18 is equal to 1 − p. The LHS is an
infimum over z with p[y′] < p where y′ = arg maxy z[y]. In particular, z[y′] ≥ 1/M , hence

1− 〈p, z〉 = 1− p[y′]z[y′]−
∑
y 6=y′

p[y]z[y]

≥ 1 + (p− p[y′])z[y′]− pz[y′]−
∑
y 6=y′

pz[y]

≥ 1− p+ (p− p[y′])/M.

Taking minimum over y′ with p[y′] < p shows that Equation 18 holds and therefore `prob is
classification-calibrated.

To see smoothness, observe that ∇f `prob(f ;Qt) = E(x,y)∼Qt
[1−∇f (Pf (x)[y])]. Hence smooth-

ness of Pf in f implies the smoothness of `prob(f ;Qt).

Lastly, `prob(f ;Qt) can be rewritten as

`prob(f ;Qt) = E(x,y)∼Qt
[1− Pf (x)[y]]

=

M∑
i=1

Ext∼Qt(·|yt=i)[1− Pf (x)[y]] · PQt
(yt = i)

=
〈
1− diag

(
Cprob
f,Q0

)
,qt

〉
.

Notice that diag
(
Cprob
f,Q0

)
is independent of qt. Thus `prob(f ;Qt) is a linear function of qt, and

substituting in the unbiased estimator q̂t for qt gives unbiased estimators for `prob(f ;Qt) and
∇f `prob(f ;Qt), as desired.

Similar to Assumption 2, we assume that `prob is convex in its first parameter to derive a convergence
guarantee for OGD. Under this assumption, the proof of convergence is identical to that of Theorem
2. We state the assumption below and empirically verify it in the next section. Similar to Assumption
3, we also assume the Lipschitz condition for `prob.
Assumption 6 (Convexity of `prob). ∀q ∈ ∆M−1, `prob(p;q) is convex in p.

Assumption 7 (Lipschitz of `prob). supp∈∆M−1,i=1,··· ,M

∥∥∥∥∇p`
prob

(
p;
(
C>f0,Q0

)−1

ei

)∥∥∥∥
2

is finite.

Theorem 5 (Regret bound for OGD w.r.t. `prob). Under Assumption 6 and 7, let L =

supp∈∆M−1,i=1,··· ,M

∥∥∥∥∇p`
prob

(
p;
(
C>f0,Q0

)−1

ei

)∥∥∥∥
2

. If η =
√

2
T

1
L then Aogd w.r.t. `prob sat-

isfies:

E(xt,yt)∼Qt

[
1

T

T∑
t=1

`prob(pt;qt)

]
− inf

p∈∆M−1

1

T

T∑
t=1

`prob(p;qt) ≤
√

2

T
L,
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with L = supp′∈∆M−1 maxi=1,...,M

∥∥∥∥∥∇p`
prob

(
p;
(
C>f0,Q0

)−1

ei

) ∣∣∣∣
p=p′

∥∥∥∥∥
2

.

C Empirical Justification of Assumptions

In this section we provide empirical evidence for Assumptions 2-6.

C.1 Convexity

Assumptions 2 and 6 state that `(p;q) and `prob(p;q) are convex in p. We first verify the convexity
of `(p;q) by uniformly sampling q,p1,p2 from DeltaM and plotting the function value of `(p;q)
for p ∈ [p1,p2].

The left plot of Figure 1(a) shows the function value of h(t) = ` ((1− t) · p1 + t · p2;q) for t ∈
[0, 1]. It can be seen that all 5 curves are approximately convex in t. In the right histogram plot, we
evaluate h(0.5)− 1

2 (h(0)+h(1)) for randomly chosen tuples q,p1,p2, which should be non-positive
if Assumption 2 holds. Indeed, among 10,000 random samples, h(0.5)− 1

2 (h(0) +h(1)) ≤ 0 holds
true 99.5% of the time. For the remaining 0.5% with positive difference, the deviation from 0 is
quite small, which is likely due to the estimation error for `. These empirical observations validate
the assumption that the loss function `(p;q) is convex in q.

We can observe similar trends for different (dataset, model) pairs in (CIFAR10, ResNet50), (SVHN,
ResNet18) and (SVHN, ResNet50), as shown in Figure 1(b-d). Figure 2 shows the same trend for
the various datasets and models for the surrogate loss `prob(p;q).

C.2 Symmetric optimality

To empirically validate the symmetric optimality assumption (Assumption 4), we measure the L2

distance ||q − arg maxp∈∆M
`(p;q)||2 for 1000 randomly sampled q. We evaluate both un-

calibrated and calibrated base classifiers f0, where calibration is done using temperature scaling [12].
Same as above, we evaluate on both CIFAR10 and SVHN using ResNet18 and ResNet50 base clas-
sifiers. The optimal re-weight factor p := arg maxp∈∆M−1 `(p;q) is computed by optimizing
`(p;q) with gradient ascent using gradient estimates obtained from Algorithm 3.

Figure 3 shows the histogram of theL2 distances ||q−arg maxp∈∆M
`(p;q)||2 for different samples

of q. The left plot in each subfigure shows the result for a well-calibrated f0, where the distance
is skewed towards 0 with more than half of the samples having distance smaller than 0.005. In
comparison, the right plot for un-calibrated f0 has a much higher density for larger values, which
shows that a well-calibrated classifier better satisfies Assumption 4.

D Dataset Processing and Training Set-up

ArXiv dataset processing. We select papers from the Computer Science domain and use the first
category as the true label y. We specifically consider the 23 most populated categories, which are
cs.NE, cs.SE, cs.LO, cs.CY, cs.CV, cs.SI, cs.AI, cs.CR, cs.SY, cs.PL, cs.CL, cs.IR, cs.RO, cs.DS,
cs.NI, cs.CC, cs.GT, cs.LG, cs.IT, cs.DM, cs.HC, cs.DB, cs.DC.

For the feature vector x, we compute the tf-idf vector of each paper’s abstract after removing words
that appear in less than 30 papers among all papers in the dataset. We further remove papers whose
numbers of words after the previous filtering step is smaller than 20.

Training set-up for the base model f0. For the experiments on CIFAR10 under simulated shift,
we train the base ResNet18 classifier f0 for 150 epochs using Adam with batch size as 128, and drop
learning rate twice at 1/2 and 3/4 of total training epochs. For the experiments on ArXiv, we train
a multinomial regression model f0 with L2 regularization. The L2 regularization coefficient in the
loss function is selected as 10−6, which achieves the best validation accuracy among the choices in
{10−5, 10−6, 10−7, 10−8}.
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(a)

(a) Convexity justification results when the dataset is CIFAR10 and the model is ResNet18.

(b) Convexity justification results when the dataset is CIFAR10 and the model is ResNet50.

(c) Convexity justification results when the dataset is SVHN and the model is ResNet18.

(d) Convexity justification results when the dataset is SVHN and the model is ResNet50.

Figure 1: Empirical justification for the convexity assumption for `(p;q). See text for details.
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(a) Convexity justification results when the dataset is CIFAR10 and the model is ResNet18.

(b) Convexity justification results when the dataset is CIFAR10 and the model is ResNet50.

(c) Convexity justification results when the dataset is SVHN and the model is ResNet18.

(d) Convexity justification results when the dataset is SVHN and the model is ResNet50.

Figure 2: Empirical justification for the convexity assumption for `prob(p;q). See text for details.

19



(a) Convexity justification results when the dataset is CIFAR10 and the model is ResNet18.
(a1) f0 is calibrated. (a2) f0 is not calibrated.

(b) Convexity justification results when the dataset is CIFAR10 and the model is ResNet50.

(b1) f0 is calibrated. (b2) f0 is not calibrated.

(c) Convexity justification results when the dataset is SVHN and the model is ResNet18.
(c1) f0 is calibrated. (c2) f0 is not calibrated.

(d) Convexity justification results when the dataset is SVHN and the model is ResNet50.
(d1) f0 is calibrated. (d2) f0 is not calibrated.
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Figure 3: Empirical justification for the symmetric optimality assumption. See text for details.
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