
A Appendix798

A.1 Other Datasets799

Below we describe a few other prevalent multi-label datasets and explain how the ML48S differs800

from them, hence they were excluded from comparison in this paper.801

PASCAL VOC [11] was created for object detection and classification, covering 20 basic-level802

classes across 4,574 images, with most images containing a single prominent object. This dataset is803

much smaller than ML48S and also contains much fewer classes which are all coarse-grained.804

VG500 is a modification of the Visual Genome dataset [19], a dataset focused on dense annotations805

linking images to respective captions. This dataset is not intended to be bounded by categories806

but has open-vocabulary annotations. To turn this into a multi-label task, only the top 500 most807

frequent categories are kept to make VG500, following the work in [21]. We choose not to compare808

to this dataset because the open-vocabulary nature of the task leaves ambiguity in annotations but no809

clarification is given between explicit negatives and unknowns.810

OpenImages [20] is a large-scale dataset with 14.6M boxes across 1.7M images spanning over 600811

categories. Similar to Visual Genome, a semantic hierarchy is given and both positives and negatives812

are given explicitly. This dataset is similar to ML48S in nature, but differs entirely in scale, containing813

about 10 times in the number of images in the training set. Since this dataset is used in a completely814

different context to ML48S due to the size, we chose not to compare to this dataset.815

NUS-WIDE [5] is another multi-label dataset based on publicly-available internet images. This816

dataset contains images from Flickr which are labeled with corresponding tags for 81 concepts. This817

dataset is no longer available in its entirety due to many of the associated images being no longer818

accessible on Flickr. In addition, not all of the concepts are object-centric and can be associated with819

a bounding box, including abstract concepts such as "protest" and less clearly explicit events such as820

"earthquake." Based on these issues and differences from ML48S, we excluded NUS-WIDE in our821

comparison.822

WIDER-Attributes [22] is a dataset focused on classifying human attributes, but only focuses on 14823

attributes per person in an image. This task is much less fine-grained than the ML48S and contains824

far fewer classes than ML48S, which led to its exclusion in our analysis.825

Caltech-UCSD-Birds (CUB200) [41] is conventionally used as a classification dataset, but can also826

be treated as an attribute prediction task for each bird. However, these attributes are non-binary (such827

as the shape of the bill being curved, hooked, cone, etc.), so to transform this into a multi-label828

problem, each of these attributes must be turned into a set of binary attributes equal to the number of829

choices where they are mutually exclusive. This is not an object-centric task like the ML48S, and we830

believe turning multiple classification problems into a single multi-label problem is contrived so we831

exclude it from our comparisons.832

Visual Privacy (VISPR) [30] is a dataset which identifies personally revealing information within833

images, where each category signifies whether a given personal characteristic can be found within an834

image. While some of these attributes are explicit to identify such as phone number and eye color,835

others are abstract, such as religion, personal relationships, and hobbies. We primarily exclude this836

from our analysis because the labels are not object-centric like in ML48S and are more difficult to837

interpret.838

A.2 ML48S Additional Information839

We organize the ML48S by images in sets which come from recordings, which we also call clips and840

assets, respectively. We outline the metadata associated with each image and recording as well as our841

spectrogram generation process below.842

A.2.1 Spectrogram Generation843

To generate spectrograms from 1D waveforms, we use the Short-Time Fourier Transform with a844

window size of 512 and stride length of 128. This spectrogram is then converted to individual images845

which span 3 seconds and are disjoint. To input the spectrogram into our network, we copy the846

spectrogram into three channels and resize it to shape 448× 448× 3.847
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Field Possible Values Description

id [0, 9999] The unique ID associated with the asset
split [train, test] Denotes training split or test split for an asset
target_species_code 6-letter-code The target species for this asset
possible_species_codes [6-letter-codes] A list of possible species based on ranges
observed_species_codes [6-letter-codes] A list of species in the affiliated checklist
present_species_codes [6-letter-codes] A list of positively labeled species
unknown_species_codes [6-letter-codes] All species not in present or absent lists
absent_species_codes [6-letter-codes] A list of negatively labeled species

Table A1: A summary of asset metadata and their possible values.

Field Possible Values Description

id [0, 416534] The unique ID associated with the clip
asset_id [0, 9999] The asset ID from which this clip came
clip_order [0, 1449] The position of the clip within the asset
file_path Relative filepath The path to the image for the given clip
width 750 The image width
height 236 The image height
present_species_codes [6-letter-codes] A list species with positive labels
unknown_species_codes [6-letter-codes] All species not in present or absent lists
absent_species_codes [6-letter-codes] A list species with negative labels
boxes [dictionaries] Bounding box annotations for the clip, see Table A3

Table A2: A summary of clip metadata and their possible values.

A.2.2 Asset Metadata848

Assets have associated metadata which we summarize in Table A1 and also explain in detail below.849

Each asset is associated with a unique asset ID from 0 to 9999. Assets with an ID greater than or850

equal to 8000 are test assets, and each species has 80 training assets and 20 test assets. For our851

experiments, we randomly selected 10 training assets per species to serve as validation assets for852

hyperparameter tuning (given in the repository). Each asset contains a variable number of clips, with853

a minimum of 11 and a maximum of 1450. As discussed in the paper, every asset has a target species854

which is provided in the form of a 6-character target species code. The corresponding taxonomic855

information such as phylogeny, common name, and scientific name are given in taxa.csv.856

Assets also contain compiled lists of positives, negatives, and unknowns, where positives are also857

known as present species and negatives are also known as absent species. The list of positives is the858

union of positives given across each clip in the asset, while the list of negatives is the intersection859

of clip negatives. The list of unknown species contains the species which are not in either of the860

previous two lists.861

Assets also contain two additional fields, possible species given by geographic priors and observed862

species within the associated checklist. Using the location and time of year each recording was taken,863

we are able to generate a list of possible species based on species ranges. Though this list does not864

provide positive labels, absence of a species on this list implies a negative label for that species across865

the entire recording. This logic also applies for observed species within the associated checklist.866

Any species present in the recording should also be reported in the associated checklist, so species867

not on the checklist should have negative labels for the recording. The negative labels generated868

through checklist data is a superset of the negative labels generated from geographical priors. Hence,869

geographical priors and checklist data provide two additional levels of weak supervision which falls870

between SPML and full-labels. We apply negative labels from geographical and range priors to the871

clip level, even for unlabeled data.872
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Field Possible Values Description

id int Box ID unique to each clip
species_code 6-letter-code The species which this vocalization belongs to
status [“passive”, “active”, “ignore”] Species prevalence in the clip
bbox [0, 1]4 Box coordinates [xmin, ymin, xmax, ymax]

Table A3: A summary of box data and their possible values.

Dataset Boxes/image Small Medium Large

VOC 3.28 2.96% 19.79% 77.24%
COCO 9.17 19.95% 34.36% 45.69%
ML48S + 2.38 0.97% 7.85% 91.18%

Table A4: An overview of each datasets’ box statistics in terms of sizes and quantities for the training
set. To standardize which boxes are small, medium, and large, we resize each image and its bounding
boxes such that the minimum dimension of the image is 640, then we threshold by bounding box
area. Small boxes have area less than 322, large boxes have area greater than 962, and all other boxes
are medium boxes. ML48S + signals images with no boxes are not considered.

A.2.3 Clip Metadata873

Clips also have corresponding metadata which is summarized in Table A2. The bounding box874

annotations for each clip are provided, where each box is specified with an ID, species code, status,875

and coordinates. The box ID is unique to a clip, so no two boxes within the same clip share the876

same ID. The bounding box coordinates are given in relative coordinates falling within [0, 1] and are877

provided as [xmin, ymin, xmax, ymax]. For box status, sounds which are longer than 80 ms which878

are only present in the first or last 200 ms of a window are labeled “ignore” while others are “active.”879

Boxes which do not have status “ignore” are treated as positive labels for the multi-label task and880

are given in the list of positives. Any clip with positive labels is treated as fully-labeled, meaning all881

other species are negative, unless there are “Unknown bird” boxes, in which case we put treat other882

possible species as unknown (but retain negatives from geographical priors).883

A.3 Additional Dataset Statistics884

In this section, we compare additional statistics of the ML48S to VOC and COCO not covered in the885

main paper.886

A.3.1 Bounding Box Statistics887

We give basic statistics of bounding boxes quantity and sizes in Table A4. ML48S is most similar888

to VOC among the datasets which we compare to. On average, an image contains 2.25 boxes, and889

the vast majority of these boxes are usually large. This likely occurs because most vocalizations890

in a spectrogram span a wide range of frequencies due to overtones, so most boxes have a height891

comparable to the image height. The duration of these vocalizations can vary, depending on whether892

they encompass a single call or a longer bird song. These distributions are also visualized in893

Figure A1.894

A.3.2 Known and Unknown Label Statistics895

We give statistics for the breakdown of images which are fully-labeled, images which contain at least896

one positive label, and images with any labels in Table A5. Though negative labels are generated897

for all images using the metadata outlined in Section A.2.2, bounding boxes are all hand-drawn by898

expert annotators, who focus on annotating various segments of a recording instead of the entire thing.899

Hence, only 45% of the training set is fully-annotated for all species. Our original data contained900

"Unknown Bird" boxes for vocalizations which were unable to be identified to species level. As a901

result, we cannot generate negative labels reliably for these images, and they remain partially-labeled902

despite containing positive labels. We train our model with all images with at least one positive903
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Figure A1: Visualization of bounding box distributions for each dataset. The left plot shows the
bounding box size distribution, where the relative size gives the area of the box divided by the total
image area. The right box shows the number of boxes per image. ML48S mirrors the distribution of
VOC closely in terms of boxes per image, but has a unique bounding box size distribution.

UnlabeledFully-labeled

Figure A2: An excerpt from a partially-labeled asset in ML48S. The first half of this snippet is
fully-labeled while the last half is unlabeled. For our experiments we train only on the first half,
but we release the full asset for future work on semi-supervised and unsupervised learning. The
vocalizing birds are Mourning Dove, Canyon Wren, and House Finch in order of first appearance
from left to right.

label, which is 53% of the dataset. We do not use the remaining data for training in this paper,904

but we include it in the dataset release for future work. One such example is shown in Figure A2.905

Furthermore, the distributions of unknown labels are visualized in Figure A3.906

A.3.3 Positive and Negative Label Statistics907

In Table A6 we give positive and negative label statistics across all splits of each datasets. All images908

in ML48S contain at least 24 negative labels derived from metadata discussed in Section A.2.2. We909

also plot the distributions of positives, negatives, and unknowns individually for each dataset in910

Figure A3. ML48S shows a bimodal distribution for negatives and unknowns, because each image911

is either fully-labeled or labels are generated through metadata. The negative labels generated by912

checklist and location data vary, but on average around 45 negative labels can be generated through913

this method.914

Known Labels # Images % Images

Fully-labeled 38,975 45.75%
At least one box 45,178 53.03%
Any labels 85,193 100%

Table A5: ML48S degree of annotation for the training set. All images contain negative labels
generated from checklist and geographic information, but positives labels must be manually labeled.
Images with "Unknown Bird" labels are not considered fully-labeled.
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Dataset Split # Images + (min) + (max) + (avg) + (med) - (min) - (max) - (avg) - (med)

VOC Train 4574 1 5 1.46 1 15 19 18.54 19
VOC Val 1143 1 5 1.46 1 15 19 18.54 19
VOC Test 5823 1 5 1.43 1 15 19 18.57 19
VOC All 11540 1 5 1.45 1 15 19 18.55 19

COCO Train 65665 1 18 2.94 2 62 79 77.06 78
COCO Val 16416 1 16 2.92 2 64 79 77.08 78
COCO Test 16416 1 16 2.92 2 64 79 77.08 78
COCO All 98497 1 18 2.93 2 62 79 77.07 78

ML48S Train 85193 0 8 0.84 1 24 100 69.59 59
ML48S Train+ 45178 1 8 1.58 1 24 99 85.33 98
ML48S Val 12448 0 7 0.81 1 25 100 67.72 53
ML48S Test 31365 0 8 0.78 0 24 100 68.73 53
ML48S All 129006 0 8 0.82 1 24 100 68.47 56

Table A6: An overview of each datasets’ positive and negative labels in terms of minimum per image,
maximum per image, average, and median for training, validation, and testing splits as well as all
three splits combined. "+" signifies the number of positive labels and "-" signifies the number of
negative labels. The number of unknown labels can implicitly be calculated using these two values by
subtracting by the total number of classes for the dataset. For ML48S, “Train+” signifies the training
set with images with at least one positive. On VOC and COCO, the validation sets used are the ones
used in our experiments, which are a randomly selected subset of the original training set.
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Figure A3: Visualization of dataset positives, negatives, and unknown labels per image for each
split and the combined splits. For COCO and VOC, unknown label graphs are left blank because all
images in these datasets are fully-labeled.
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Method Dataset Learning Rate Method Hyperparameter

BCE COCO 1e− 5 N/A
BCE-AN COCO 1e− 5 N/A
WAN COCO 1e− 5 γ = 1/79
LS COCO 1e− 5 ϵ = 0.1
ROLE COCO 1e− 5 λ = 1
EM COCO 1e− 5 α = 0.1
LL-R COCO 1e− 5 ∆rel = 0.4
LL-Ct COCO 1e− 5 ∆rel = 0.2
LL-Cp COCO 1e− 5 ∆rel = 0.2

BCE ML48S 1e− 4 N/A
BCE-AN ML48S 1e− 4 N/A
WAN ML48S 1e− 4 γ = 1/99
LS ML48S 1e− 4 ϵ = 0.1
ROLE ML48S 1e− 4 λ = 1
EM ML48S 1e− 4 α = 0.2
LL-R ML48S 1e− 4 ∆rel = 0.1
LL-Ct ML48S 1e− 4 ∆rel = 0.1
LL-Cp ML48S 1e− 4 ∆rel = 0.1

Table A7: Testing hyperparameters used for the target-only regime.

A.4 Hyperparameters915

We use mean average precision (mAP, i.e. the mean of per-class average precision), as our evaluation916

metric. For COCO, we use 20% of the training set as a validation set for hyperparameter tuning. For917

the ML48S, we select 10 training assets per species to make up the validation set which are specified918

in the repository. Since ML48S has incomplete labels, we calculate mAP only using images which919

have labels for all species.920

Following the training procedure of prior work [7, 18, 47], each of our experiments was trained using921

an ImageNet [10] pretrained ResNet50 [12] architecture using the Adam optimizer on Pytorch. Prior922

works [4, 37] have shown substantial improvements from ImageNet pretraining for spectrogram923

classification despite the domain shift. We preprocess each image by resizing the image to shape924

(448, 448) and normalizing the image to ImageNet statistics. For COCO only, at training time, we925

flip the image horizontally at random. We train for 10 epochs using a fixed batch size of 16 and a926

constant learning rate, which we sweep using values in {1e− 2, 1e− 3, 1e− 4, 1e− 5}. For WAN927

on ML48S we found convergence was slower so we trained these experiments for 20 epochs instead928

of 10. We monitor performance on the validation set, and the best performing configuration is used929

for evaluation on the test set. For other SPML methods, to reduce the amount of trials required for930

hyperparameter tuning, we first tune the learning rate of each loss function with the hyperparameters931

reported for each method on COCO before sweeping the suggested range of hyperparameters given in932

each respective work. Once these settings are chosen, each experiment is repeated 5 times to calculate933

mean and standard deviation performance. The settings used in each of our experiments can be found934

in Tables A7, A8, and A9. For COCO experiments, we use a different randomly-generated SPML935

dataset each time, though these are the same across methods. For ML48S experiments, we only936

train with images containing at least one positive, meaning we remove images with only confirmed937

negatives. Following [18], we increase the learning rate of the last layer by 10x for training the938

LL-variants.939

For RP hyperparameters, we run a grid search with α ∈ {1e− 1, 1e− 2, 1e− 3}, ϵ ∈ {1e− 2, 1e−940

3, 1e− 4}. We initialize yi0 following ROLE initialization [7], yi0 ∼ U(0.4, 0.6).941
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Method Dataset Learning Rate Method Hyperparameter α ϵ

BCE ML48S 1e− 4 N/A 1e− 1 1e− 2
BCE-AN ML48S 1e− 4 N/A 1e− 1 1e− 3
WAN ML48S 1e− 4 γ = 1/99 1e− 2 1e− 3
LS ML48S 1e− 4 ϵ = 0.1 1e− 2 1e− 3
ROLE ML48S 1e− 4 λ = 1 1e− 1 1e− 4
EM ML48S 1e− 4 α = 0.2 1e− 1 1e− 4
LL-R ML48S 1e− 4 ∆rel = 0.1 1e− 1 1e− 2
LL-Ct ML48S 1e− 4 ∆rel = 0.1 1e− 2 1e− 2
LL-Cp ML48S 1e− 4 ∆rel = 0.1 1e− 2 1e− 4

Table A8: Testing hyperparameters used for asset regularization.

Method Dataset Learning Rate Method Hyperparameter a b

WAN COCO Geo 1e− 5 γ = 0.1 0 0.01
LS COCO Geo 1e− 5 ϵ = 0.2 0 0.05
ROLE COCO Geo 1e− 5 λ = 0.1 0 0.01
EM COCO Geo 1e− 5 α = 0.1 1 0.01
LL-R COCO Geo 1e− 5 ∆rel = 0.4 N/A N/A
LL-Ct COCO Geo 1e− 5 ∆rel = 0.2 N/A N/A
LL-Cp COCO Geo 1e− 5 ∆rel = 0.2 N/A N/A

WAN COCO Checklist 1e− 5 γ = 0.1 1 0.01
LS COCO Checklist 1e− 5 ϵ = 0.1 1 0.5
ROLE COCO Checklist 1e− 5 λ = 1 1 1
EM COCO Checklist 1e− 5 α = 0.1 1 0.02
LL-R COCO Checklist 1e− 5 ∆rel = 0.4 N/A N/A
LL-Ct COCO Checklist 1e− 5 ∆rel = 0.2 N/A N/A
LL-Cp COCO Checklist 1e− 5 ∆rel = 0.2 N/A N/A

WAN ML48S Geo 1e− 4 γ = 0.05 1 0.5
LS ML48S Geo 1e− 4 ϵ = 0.1 1 0.2
ROLE ML48S Geo 1e− 4 λ = 0.5 0 0.05
EM ML48S Geo 1e− 4 α = 0.1 0 0.01
LL-R ML48S Geo 1e− 4 ∆rel = 0.1 N/A N/A
LL-Ct ML48S Geo 1e− 4 ∆rel = 0.1 N/A N/A
LL-Cp ML48S Geo 1e− 4 ∆rel = 0.1 N/A N/A

WAN ML48S Checklist 1e− 4 γ = 1/99 0 0.5
LS ML48S Checklist 1e− 4 ϵ = 0.1 1 1
ROLE ML48S Checklist 1e− 4 λ = 2 0 0.05
EM ML48S Checklist 1e− 4 α = 0.02 1 0.01
LL-R ML48S Checklist 1e− 4 ∆rel = 0.1 N/A N/A
LL-Ct ML48S Checklist 1e− 4 ∆rel = 0.1 N/A N/A
LL-Cp ML48S Checklist 1e− 4 ∆rel = 0.1 N/A N/A

Table A9: Testing hyperparameters used for the geo/checklist regime.
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Method L+ L?

BCE − log(f i
θ) − log(1− f i

θ)

BCE-AN L+
BCE L−

BCE
WAN L+

BCE γL−
BCE

LS 1−ϵ
2 L+

BCE + ϵ
2L

−
BCE

1−ϵ
2 L−

BCE + ϵ
2L

+
BCE

ROLE See [7] See [7]
EM L+

BCE −α(f i
θL

+
BCE + (1− f i

θ)L
−
BCE)

LL-R L+
BCE 1[¬LL]L−

BCE
LL-Ct L+

BCE 1[¬LL]L−
BCE + 1[LL]L+

BCE
LL-Cp L+

BCE 1[¬LL]L−
BCE + 1[LL]L+

BCE

Table A10: Positive and unknown losses for the SPML methods. For BCE row, L? signifies L−

since BCE is trained on full labels. The variables γ, ϵ, α are all hyperparameters for each respective
method. For the LL-variants, LL signifies whether the loss term falls in the top ((t − 1) ·∆)% of
losses in the batch.

Method ML48S ML48S +RP ML48S +RE

BCE 62.44 ± 0.51 (+3.93) 66.37 ± 0.48 (+0.59) 63.03 ± 0.42

BCE-AN 52.23 ± 0.48 (+3.83) 56.06 ± 1.11 (+0.12) 52.35 ± 0.54
WAN 51.96 ± 0.55 (+3.70) 55.66 ± 0.72 (-0.07) 51.89 ± 0.45
LS 56.42 ± 0.67 (+0.02) 56.44 ± 0.73 (-0.08) 56.34 ± 0.51
ROLE 54.00 ± 0.95 (+0.14) 54.14 ± 0.54 (-0.51) 53.49 ± 0.73
EM 55.27 ± 0.97 (-0.08) 55.19 ± 0.66 (+0.35) 55.62 ± 0.21
LL-R 50.06 ± 0.79 (+4.90) 54.96 ± 0.35 (+0.07) 50.13 ± 0.84
LL-Ct 47.98 ± 0.90 (+6.11) 54.09 ± 0.55 (+2.09) 50.07 ± 1.41
LL-Cp 43.80 ± 0.80 (+0.60) 44.40 ± 0.58 (+0.58) 44.38 ± 0.61

Table A11: Compiled mAP results (given in percentages) on the test set for each method, averaged
across five runs for unmodified, probability regularized, and embedding regularized SPML methods.

A.5 Additional Experiments and Analysis942

A.5.1 Embedding Asset Regularization943

We extend the idea of asset-level similarity to the embedding level, by enforcing embeddings of a944

clip to be similar to the average embeddings across the entire asset, with a regularization term LE :945

RE(x
i
j) = MSE(dij , dit) (1)

where MSE is mean-squared error and dij is the last layer embedding of the network for the j-th clip946

of recording i. We use a similar equation to calculate the running average of the embedding as for the947

probability asset regularization but use a different ϵ2.948

Probability regularization is generally more effective than embedding regularization. In Ta-949

ble A11, we see the average performance boost for embedding regularization is much less than the950

boost for probability regularization. We attribute this to the recurrence of background species at951

the asset-level giving an accurate and more direct training signal. The supervision provided at the952

prediction-level is a strong prior because species positives in one clip are very likely to reoccur. In953

contrast, embedding regularization is more indirect than probability regularization, as the model954

can learn spurious correlations at the embedding level like fixed background noise within an asset.955

Regardless, we do find that embedding regularization still has a minor positive effect on training,956

potentially working as a weaker form of ℓ2 weight decay to prevent overfitting on noisy target-only957

data.958
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Figure A4: Histogram of model outputs, log-scaled, shown separately for positive and negative labels
on the test set of ML48S. We see ROLE and EM have significantly different distributions from the
other methods and the LL-variants all have higher rates of high confidence false negatives compared
to the other methods.

A.5.2 Model Output Histograms959

In Figure A4, we show the model prediction distributions for positive and negative labels on the960

ML48S test set. We see a higher rate of high confidence false positives for the LL methods and a961

significantly shifted probability distribution for ROLE and EM.962

A.5.3 Analysis of Specific Species963

In Figure A5, we include PR curves for the LL-R method in the three data regimes and with964

regularization for five different species. Interestingly, we see different patterns for the two groups965

of species. In the three plots on the left, we compare the PR curves for Carolina Chickadee, Black-966

capped Chickadee, and Mountain Chickadee, which all are geographically separated but are vocally967

similar. We see that providing negative labels through geographical priors gives a large increase to the968

model’s precision, indicating the labels are helping with this fine-grained confusion. In contrast, in969

the two right plots we see the opposite effect. Yellow-bellied Sapsucker and Red-breasted Sapsucker970

are also geographically separated and nearly vocally identical, but we see providing the model with971

negative labels through geographical priors decreases performance. Our hypothesis for this distinction972

is the model is unable to learn the sapsucker task because it is more difficult than the chickadee task.973

In the chickadee task, the species are similar-sounding, but have known differences in vocal patterns.974

As a result, providing the model explicit negatives prevents LL-R from rejecting the losses for the975

similar chickadees and the model learns to distinguish the two. In contrast, the sapsucker task is976

more difficult than the chickadee task, as the two species do not have distinctive vocal differences.977

As a result, rejecting the loss in this case may prevent the model from being forced to learn an978

intractable task and instead allow it to accept ambiguity on these two species instead of having to979

predict confidently.980
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Figure A5: Precision-recall curves for the LL-R method in target-only, target-only with regularization,
geo, and checklist regimes for five different species, where the species name is given as the graph
title.
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