A PRELIMINARY

Latent Diffusion Model (LDM): LDM is an efficient variant of diffusion models that operates in
latent space rather than directly in image space. It consists of two primary components: an encoder
€, which compresses an image « into latent code z = ¢(x), and a decoder that reconstructs the
image as = D(z).

The model learns the distribution of image latent codes zg ~ Pgatq(20) through a Denoising Diffu-
sion Probabilistic Model (DDPM) framework, involving both forward and backward processes. The
forward diffusion process adds Gaussian noise at each timestep ¢, resulting in z;:

q(zt|ze1) = N(ze; /1 = Bezia, Bil), (1)

where {3;}X_; are noise scales, and T is the total number of timesteps. The backward process
predicts the less noisy latent code z;_1:

Po(Zt—1|zt) = N (24—1; po(2e, 1), Xo(2ze, t)). 2

Here, 119 and X are derived from a denoising model €y with learnable parameters, optimized via:

£simple =]E(z),sz(O,l),t [”6 - 69(zt7 t)”g} . (3)

To generate new samples, we initialize with zr ~ A(0, 1) and utilize DDIM sampling to estimate
Zi—1-

zZt — \/1 — OétEQ(Zt,t)
Avaer
where a; = H§:1 (1 — B;). For simplicity, we denote z;_,¢ as the predicted zg at timestep ¢. The

base model employed is Stable Diffusion (SD) €y(z¢, ¢, 7), which is a text-guided LDM trained on
extensive image-text pairs, where 7 represents the text prompt.

Zi—1 = /o1 <) + 1 —ou_1-€a(2,t), 4

Continuous-Time Diffusion Model Framework: This section provides a summary of diffusion
models (DMs) using a continuous-time framework. Let pgata(Xo) represent the data distribution,
and p(x; o) denote the distribution derived from adding i.i.d. Gaussian noise with variance 2. For
sufficiently large omax, we have p(x; 02,,) & N (0,02,).

max) max

DMs utilize this property, starting from high variance Gaussian noise xp; ~ N (0, o?nax) and iter-

atively denoising towards oy = 0. This process can be described by the Probability Flow ordinary
differential equation (ODE):

dx = —6(t)o(t)Vx logp(x; o(t)) dt, %)

where Vy log p(x; o) is the score function. The training of the DM focuses on learning a model
sg¢(x; o) that approximates this score function. It can be parameterized as:

Dg(x;0) —x

Vi logp(x;0) = se(x;0) = 5 : (6)

g

where Dy is a learnable denoiser aimed at predicting the clean data x.

The denoiser is trained using denoising score matching (DSM):

E (x0,0)~paasa (xo.c), [Ao [[Do (X0 + 150, ¢) —xoll3] , (7)

(o,n)~p(o,n)

where p(o,n) = p(c) N (n;0,0?). The function p(c) can be a discrete set or a continuous range
of noise levels.

The weighting function A\, : R, — R, adjusts the importance of the noise level, and c represents an
arbitrary conditioning signal. In this work, we adopt the EDM preconditioning framework, defining
the denoiser as follows:

DG (X; U) = Cﬁkip(o—)x + Cout(U)FB (Cjn(U)X; Cnoise(g))v (8)

where Fjy is the network to be trained.

Base Model Architecture: This study utilizes the publicly available Stable Diffusion 2.1 (SD 2.1)
model as the foundational architecture. In the context of the EDM (Enhanced Denoising Model)
framework, SD 2.1 employs several preconditioning functions, which play a critical role in the
model’s ability to manage noise levels during the diffusion process. The specific preconditioning
functions for SD 2.1 are defined as follows:

C8F (o) =1, 9)

CoiM (o) = =0, (10)

Cia>* (o) = —0_21+ - (11)

Cfoii-l(a) = argmin(c —), (12)
j€[1000]

(13)

where 0,1 > o; denotes an ordered sequence of noise levels.

The training of the original SD 2.1 model employs a uniform distribution over 1000 discrete noise
levels, represented as {0 }jep000]- A significant challenge arises from the fact that even at the
maximum discrete noise level o1ggg, the signal-to-noise ratio remains relatively high. This high
ratio can lead to difficulties, particularly when generating images that require very low brightness or
exhibit dark tones.

To mitigate this issue, a previous approach introduced the concept of “offset noise,” which modifies
the training objective to create a non-isotropic Gaussian distribution for p(n | o). However, in this
work, we propose a different strategy: rather than just adjusting the noise distribution, we modify
the preconditioning functions and the distribution of training noise levels entirely.

Model Fine-tuning: In this section, we describe our approach to fine-tuning the image model by
replacing the original preconditioning functions with new formulations that better address the iden-
tified issues. The modified preconditioning functions are defined as follows:

Caip(0) = (2 +1) 7", (14)
—0
Cou = ———, 15
t(U) o211 (15)
1
Cin(0) = —— 16
©) = (16
Choise(0) = 0.25log o . 17

These adjustments aim to improve the model’s performance across various noise levels. Specifically,
the function Cyp (o) helps to normalize the contribution of noise, ensuring that the model effectively
learns to denoise images across a broader spectrum of input conditions. The function Coy (o) is
designed to scale the noise in a way that reflects the inherent characteristics of the data, while Ci, (o)
maintains the model’s responsiveness to varying noise levels.

Furthermore, the function Cyise () introduces a logarithmic adjustment, which aids in managing the
distribution of noise levels during training. This comprehensive modification of the precondition-
ing functions is expected to yield a more robust model capable of generating high-quality images,
particularly in scenarios where low signal-to-noise ratios are prevalent.

These new preconditioning functions can be seamlessly integrated into the EDM framework, par-
ticularly by setting o4ata = 1. This integration allows the modified functions to work effectively
within the existing architecture, enhancing the model’s overall performance.

ControlNet: ControlNet significantly enhances the capabilities of Stable Diffusion (SD) by allow-
ing for more controllable input conditions during the text-to-image synthesis process. This flexibility
enables the incorporation of various types of input data, such as depth maps, poses, edges, and other
auxiliary information.

The architecture of ControlNet is built upon the same U-Net framework utilized by the SD model.
However, it introduces a crucial modification: the weights of the U-Net are fine-tuned specifically
to accommodate these task-specific conditions. This is reflected in the transformation of the de-
noising function from ey(z¢, ¢, 7) in the original SD model to €y (2, t, ¢,) in ControlNet, where ¢
represents the additional conditions provided as input.

To clarify the distinction between the U-Net components within these two architectures, we refer
to the U-Net used in the SD model as the main U-Net, while the U-Net tailored for ControlNet
is labeled as the auxiliary U-Net. This nomenclature helps in understanding the specific roles and
functionalities of each U-Net within their respective frameworks, emphasizing the enhanced control
and specificity that ControlNet brings to the image generation process.

B MORE RESULTS

Additional results from our video generation experiments are presented below. These examples
further demonstrate the capabilities of our model in creating dynamic and consistent video sequences
across various settings and scenarios. Detailed analyses of these results help in understanding the
strengths and potential areas for improvement in our approach.

Figure 1: Examples of the generated videos.

Figure 2: Examples of the generated videos.

Figure 3: Examples of the generated videos.

Figure 4: Examples of the generated videos.

Figure 5: Examples of the generated videos.

Figure 6: Examples of the generated videos.

Figure 7: Examples of the generated videos.

Figure 8: Examples of the generated videos.

Figure 9: Examples of the generated videos.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 10: Examples of the generated videos.

Figure 11: Examples of the generated videos.

Examples of the generated videos.

Figure 12

Examples of the generated videos.

Figure 13

Figure 14: Examples of the generated videos.

Figure 15: Examples of the generated videos.

10

Figure 16: Examples of the generated videos.

11

	Preliminary
	More Results

