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A NOTIONS OF RANK

Claim 1. From properties (2),(4) follows:

1. For any function f , one has Rankf ≤ min{din, dout}.

2. For any bijection ϕ on Rd, Rankϕ = Rankϕ−1 = d.

3. For any two bijections ϕ, ψ on Rdin and Rdout resp. one has Rank (ψ ◦ f ◦ ϕ) = Rankf .

Proof. 1. By property 4, one has that Rankid = d for the identity id : Rd → Rd. By property (4),
one has Rankf = Rank(id ◦ f ◦ id) ≤ min {din,Rankf, dout} ≤ min {din, dout}.

2. We have d = Rank
(
ϕ ◦ ϕ−1

)
≤ min

{
Rankϕ,Rankϕ−1

}
and Rankϕ ≤ d as well as

Rankϕ−1 ≤ d. Therefore Rankϕ = Rankϕ−1 = d.

3. Let us only show Rank (f ◦ ϕ) = Rankf , the other side follows from the same argument.
We have Rank (f ◦ ϕ) ≤ min {Rankf, din} = Rankf and Rankf = Rank

(
f ◦ ϕ ◦ ϕ−1

)
≤

min {Rank (f ◦ ϕ) , din} = Rank (f ◦ ϕ), thus proving Rank (f ◦ ϕ) = Rankf .

Proposition 1 (Proposition 1 in the main). We have

RankJ(f ; Ω) ≤ RankBN (f ; Ω).

Proof. Since f = g ◦ h with an inner dimension of RankBN (f ; Ω) then at any point x where f is
differentiable, we have by the chain rule

Jf(x) = Jg(h(x))Jh(x).

Clearly the rank of Jf(x) is bounded by the inner dimension RankBN (f ; Ω).

Let us now give an example of a function f where the above inequality is strict:

Example 1. Consider the piecewise linear function f : R2 → R2 which maps x = (x0, x1) to
(x0, sign(x1) |x0|) if |x0| ≥ |x1| and to (sign(x0) |x1| , x1) if |x0| < |x1|.

Proof. One can easily check that this function is continuous and equals the identity on the x-
cross X = {(x0, x1) : |x0| = |x1|}. Inside the linear regions (i.e. outside of the x-cross and
the +-cross made up of the union of both axis) the Jacobian is rank 1, as a result the function f
satisfies RankJ(f ;R2) = 1, on the other hand RankBN (f ;R2) > 1 since RankBN (f ;R2) ≥
RankBN (f ;X) and since there are no continuous functions g : X → R and h : R → X such that
h ◦ g = idX we know that RankBN (f ;X) > 1. We therefore know that RankBN (f ;R2) = 2
(since 1 < RankBN (f ;R2) ≤ 2).

Finally, one can easily check that both RankJ and RankBN satisfy properties 1-4.
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B REPRESENTATION COST

Proposition 2 (Proposition 3 in the main). Let f be a piecewise linear function, then at any differ-
entiable point x, we have

∥Jf(x)∥2/L
2/L :=

RankJfW(x)∑
k=1

sk (Jf(x))
2
L ≤ 1

L
R(f ; Ω, σa, L),

where sk (JfW(x)) is the k-th singular value of the Jacobian JfW(x).

Proof. For any weights W of a depth L network such that fW = f we have

Jf(x) =WLDL−1(x)WL−1 · · ·W2D1(x)W1

where Dℓ(x) is a nℓ × nℓ diagonal matrix with diagonal vector equal to σ̇a (α̃ℓ(x)).

We know from (Soudry et al., 2018) that the representation cost of linear fully connected networks
equals L ∥A∥pp for ∥A∥pp = λp1 + · · ·+ λpk is the Lp-Schatten norm with p = 2

L . In other terms, we
have for any matrices W̃1, . . . , W̃L

L
∥∥∥W̃L · · · W̃1

∥∥∥p
p
≤
∥∥∥W̃L

∥∥∥2
F
+ · · ·+

∥∥∥W̃1

∥∥∥2
F
.

Applying it to W̃L =WL and W̃ℓ = Dℓ(x)Wℓ for ℓ = 1, . . . , L− 1, we obtain

∥Jf(x)∥pp ≤
∥WL∥2F + ∥DL−1(x)WL−1∥2F + · · ·+ ∥D1(x)W1∥2F

L

≤
∥WL∥2F + ∥WL−1∥2F + · · ·+ ∥W1∥2F

L

since ∥Dℓ(x)∥op ≤ 1.

Note that this result applies for any widths n1, . . . , nL−1.

Theorem 1 (first part of Theorem 1 in the main). We have

RankJ(f ; Ω) ≤ lim
L→∞

R(f ; Ω, σa, L)

L
≤ RankBN (f ; Ω).

Proof. First inequality: Take a point x such that Rank(Jf(x)) = RankJ(f ; Ω), then Proposi-
tion 2 implies that R(f ;Ω,σa,L)

L ≥ ∥Jf(x)∥pp. Letting L → ∞ on both sides leads to the bound

limL→∞
R(f ;Ω,σa,L)

L ≥ Rank(Jf(x)) = RankJ(f ; Ω) as needed.

This lower bound applies to any widths n1(L), . . . , nL−1(L), of course if the widths are too small,
it might be impossible to represent f , in which case R(f ; Ω, σa, L) = ∞.

Second Inequality: Fix a decomposition f = g ◦ h with minimal inner dimension and such that
h(Ω) ⊂ RRank(f ;Ω)

+ (we need to be in the upper quadrant to represent the identity on h(Ω) efficiently,
and since Ω is bounded, one can always translate the output of h to be in the upper quadrant).

Corollary 1 tells us that there are two networks of finite depths Lh and Lg (with parameters Wh

and Wg) which represent h and g, for any depth L larger than Lh + Lg we can construct a network
of depth L which represents f by concatenating the network that the represents h, followed by
L − Lh − Lg identity weight matrices of dimension Rank(f ; Ω) × Rank(f ; Ω) and finally the
network representing g. The norm of the parameters of this network is ∥Wh∥2 + (L − Lh −
Lg)Rank(f ; Ω) + ∥Wg∥2. We therefore have the bound

R(f ; Ω, σa, L) ≤ ∥Wh∥2 + (L− Lh − Lg)RankBN (f ; Ω) + ∥Wg∥2

divinding both sides by L and letting L grow to infinity, we obtain the inequality
limL→∞

R(f ;Ω,σa,L)
L ≤ RankBN (f ; Ω).
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For the upper bound to apply, the widths nℓ of the network in the first part must be larger than some
threshold that depends on the number of linear regions in h, in the middle part the widths must be
larger than k and in the last part they must be above a threshold that depends on the number of linear
regions in g (He et al., 2018). Note that in each of these regions the minimal with required does not
depend on the depth.

Let us now show that the limiting rescaled representation cost R∞(f ; Ω, σa) :=

limL→∞
R(f ;Ω,σa,L)

L satisfies all properties of rank except the first one (though it might actu-
ally satisfy it):

Theorem 2 (second part of Theorem 1 in the main). We have for any piecewise linear functions
f, g:

1. R∞(f ◦ g; Ω, σa) ≤ min{R∞(f ; g(Ω), σa), R∞(g; Ω, σa)}.

2. R∞(f + g; Ω, σa) ≤ R∞(f ; Ω, σa) +R∞(g; Ω, σa).

3. If f is affine (f(x) = Ax+ b) then R∞ (f ; Ω, σa) = RankA.

Proof. 1. Without loss of generality, we can translate the output of g and the input of f (keeping the
same composition f ◦g) so that g(Ω) lies in the upper quadrant Rm

+ wherem is the inner dimension.
This translation changes the parameter norm by a value which is constant in L, it therefore does not
matter in the L→ ∞ limit of ∥W∥2

/L.

Assume R∞(f ; Ω, σa) ≤ R∞(g; Ω, σa) (the other case can be proved with the same argument)
and fix a network of depth L0 and parameters W0 that represents the function g. For any L
sufficiently large we consider the network made up of the composition of the fixed network fol-
lowed by a network of depth L − L0 with weigths W′ which represents f with minimal pa-
rameter norm, i.e. ∥W′∥2 = R(f ; g(Ω), σa, L − L0). The norm of this composed network
is ∥W0∥2 + R(f ; g(Ω), σa, L − L0), in the L → ∞ limit, this implies R∞(f ◦ g; Ω, σa) ≤
R∞(f ; g(Ω), σa) as needed.

2. For any sufficiently large depth L consider two networks of depth Lwith parameters Wf and Wg

which represent the functions f and g with minimal parameter norms, i.e. ∥Wf∥2 = R(f ; Ω, σa, L)

and ∥Wg∥2 = R(g; Ω, σ, L). We then consider the network obtained by putting the two network in

’parallel’, i.e. the first weight matrix is given by the concatenation
(
Wf,1

Wg,1

)
, the weight matrices

of the middle layers are of the form
(
Wf,ℓ 0
0 Wg,ℓ

)
for all ℓ = 2, . . . , L− 1 and the last weight

matrix is given by ( Wf,L Wg,L ). This new network represents the function f + g and has
parameter norm ∥Wf∥2 + ∥Wg∥2, which implies the bound R(f + g; Ω, σa, L) ≤ ∥Wf∥2 +

∥Wg∥2 = R(f ; Ω, σa, L) + R(g; Ω, σa, L) and in the limit R∞(f + g; Ω, σa) ≤ R∞(f ; Ω, σa) +
R∞(g; Ω, σa).

3. This point follows from Theorem 1, since for affine functions both notions of rank agree
RankJ(f ; Ω) = RankBN (f ; Ω) = RankA, the same must be true for the limiting rescaled rep-
resentation cost R∞(f ; Ω, σa).

Regarding the widths required for these results to apply, the minimal widths are the one described
by the construction in the proofs. Since these constructions can be included into any wider network
by adding zero neurons (neurons with zero incoming weights and zero outcoming weights), these
results also apply to any larger widths.

C GLOBAL MINIMA ARE ALMOST RANK 1

Consider a global minimizer Ŵ of the regression problem L(W) = 1
N

∑
(fW(xi)− yi)

2
+

λ
L ∥W∥2 we will now show that if the depth L is large enough, then the function fŴ is in a sense
almost rank 1 w.r.t. both notions of rank (RankJ and RankBN ).
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Proposition 3 (Proposition 2 in the main). For the regression problem Lλ(W) =
1
N

∑
(fW(xi)− yi)

2
+ λ

L ∥W∥2 there is a constant CN (which depends only on the inputs xi
and outputs yi) such that for L ≥ ⌈log2(n0 + 1)⌉+ 2, we have

inf
W

Lλ(W) ≤ λ

(
1 +

CN

L

)
.

Proof. There is a BN-rank 1 function f = h ◦ g (with g : Rn0 → R and h : R → RnL ) which
fits the data perfectly f(xi) = yi for all i. Much like in the second inequality of Theorem 1, by
Corollary 1, there is a depth ⌈log2(n0 + 1)⌉ networks which represents g and a depth 2 network
which represents the function f . For any depth L > ⌈log2(n0 + 1)⌉ + 2, we compose the network
representing g, followed by a number of identity layers, followed by the network representing h.
The function represented by this network has zero loss and the regularization term is of the form
λ
(
1 + CN

L

)
, since

1

L
∥W∥2 =

∥Wg∥2

L
+

(
1− ⌈log2(n0 + 1)⌉+ 2

L

)
+

∥Wh∥2

L
.

Note that the minimal width required for this result to apply might depend on the number of data-
points N , but not the depth.

Let us now show that the function fŴ is close to a BN-rank 1 function:

Proposition 4 (Proposition 4 in the main). For any global minimum Ŵ of the L2-regularized loss
Lλ with λ > 0 and any set of Ñ datapoints X̃ ∈ Rdin×Ñ (which do not have to be the training set
X) with non-constant outputs, there is a layer ℓ0 such that the first two singular values s1, s2 of the
hidden representation Zℓ0 ∈ Rnℓ×N (whose columns are the activations αℓ0(xi) for all the inputs
xi in X̃) satisfies s2

s1
= O(L− 1

4 ).

Proof. We need to prove a lower bound on the first eigenvalue of 1
Ñ
ZT
ℓ Zℓ and an upper bound on

the second one. For both parts, we will rely on the balanced property described in Proposition 7: at
any local minimum of the loss the weights satisfy ∥Wℓ+1∥2F = ∥Wℓ∥2F + ∥bℓ∥2. This implies that
∥Wℓ′∥2F ≥ ∥Wℓ∥2F for all ℓ′ ≥ ℓ. Since the overall norm of the parameters is bounded by L + CN

this implies a bound

∥Wℓ+1∥2F ≤ L+ CN

L− ℓ
= 1 +

CN + ℓ

L− ℓ
for all ℓ .

Assuming by contradiction that for all layers
λ2( 1

Ñ
ZT

ℓ Zℓ)
λ1( 1

Ñ
ZT

ℓ Zℓ)
> δ, one should intuitively think of 1 +

CN+ℓ
L−ℓ as a ‘ressource’ with which the ℓ-th layer has to do two tasks: (1) keep the top eigenvalue

of 1
Ñ
ZT
ℓ Zℓ close to 1 to keep enough information to represent the outputs; and (2) keep the second

eigenvalue above δ to keep the contradiction. However the ressource cost of (1) is roughly 1 and the
cost of (2) is roughly δ which is above the ressource allowance 1 + CN+ℓ

L−ℓ for large L and constant
ℓ. This leads to a contradiction.

Upper bound on λ2: Let ℓ0 be the first time where λ2 < δ, we will show that ℓ0 exists and is upper

bounded by
2∥ 1

Ñ
X̃T X̃∥

op

δ .

For all ℓ < ℓ0 we have the following for bound the operator norm
∥∥∥ 1
Ñ
ZT
ℓ Zℓ

∥∥∥
op

:∥∥∥∥ 1

Ñ
ZT
ℓ Zℓ

∥∥∥∥
op

≤ Tr

[
1

Ñ
ZT
ℓ Zℓ

]
− λ2

(
1

Ñ
ZT
ℓ Zℓ

)
≤ Tr

[
1

Ñ
σa (WℓZℓ−1 + bℓ)

T
σa (WℓZℓ−1 + bℓ)

]
− δ

≤
∥∥∥∥ 1

Ñ
ZT
ℓ−1Zℓ−1

∥∥∥∥
op

∥Wℓ∥2F + ∥bℓ∥2F − δ.
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Assuming
∥∥∥ 1
Ñ
ZT
ℓ Zℓ

∥∥∥
op

≤ max

{∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op
, 1

}
(we will later show that this is true for all

ℓ ≤ ℓ0 as long as L is sufficiently large) we obtain:

∥∥∥∥ 1

Ñ
ZT
ℓ Zℓ

∥∥∥∥
op

≤
∥∥∥∥ 1

Ñ
ZT
ℓ−1Zℓ−1

∥∥∥∥
op

+max

{∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥
op

, 1

}(
∥Wℓ∥2F + ∥bℓ∥2F − 1

)
− δ. (1)

Since ∥Wℓ∥2F + ∥bℓ∥2F = ∥Wℓ+1∥2F ≤ 1 + ℓ+CN

L−ℓ , if L >

2max
{
∥ 1

Ñ
X̃T X̃∥

op
,1
}CN+


2∥ 1

Ñ
X̃T X̃∥

op
δ




δ +

⌈
2∥ 1

Ñ
X̃T X̃∥

op

δ

⌉
≥ κ

δ2 for some κ (which depends

on
∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op

and CN only) and L large enough, then for all ℓ ≤ min

{⌈
2∥ 1

Ñ
X̃T X̃∥

op

δ

⌉
, ℓ0

}
,

we obtain that ∥∥∥∥ 1

Ñ
ZT
ℓ Zℓ

∥∥∥∥
op

≤
∥∥∥∥ 1

Ñ
ZT
ℓ−1Zℓ−1

∥∥∥∥
op

− δ

2

≤
∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥
op

− ℓ
δ

2
.

Therefore for all ℓ ≤ min

{⌈
2∥ 1

Ñ
X̃T X̃∥

op

δ

⌉
, ℓ0

}
we have

∥∥∥ 1
Ñ
ZT
ℓ Zℓ

∥∥∥
op

≤

max

{∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op
, 1

}
, as needed. Furthermore this implies that ℓ0 ≤

⌈
2∥ 1

Ñ
X̃T X̃∥

op

δ

⌉
,

otherwise, we would get a contradiction when taking ℓ =
⌈

2∥ 1
Ñ

X̃T X̃∥
op

δ

⌉
:

∥∥∥∥ 1

Ñ
ZT
ℓ Zℓ

∥∥∥∥
op

≤
∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥
op

−


2
∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op

δ


δ

2
< 0.

We have now proven that for large enough L, there is a κ (which depends on
∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op

and CN

only) such there is a ℓ0 ≤
⌈

2
√
L∥ 1

Ñ
X̃T X̃∥

op

δ
√
κ

⌉
where λ2

(
1
Ñ
ZT
ℓ0
Zℓ0

)
<
√

κ
L .

Lower bound on λ1: We now need to lower bound the first eigenvalue λ1

(
1
Ñ
ZT
ℓ0
Zℓ0

)
=∥∥∥ 1

Ñ
ZT
ℓ0
Zℓ0

∥∥∥
op

at this same layer ℓ0 . We denote the means mℓ = 1
Ñ

∑Ñ
i=1 αℓ(xi) and have the

bounds∥∥∥∥ 1

Ñ
(Zℓ −mℓ)

T
(Zℓ −mℓ)

∥∥∥∥
op

≤
∥∥∥∥ 1

Ñ
(Zℓ−1 −mℓ−1)

T
(Zℓ−1 −mℓ−1)

∥∥∥∥
op

∥Wℓ∥2op .

This implies that∥∥∥∥ 1

Ñ
ZT
ℓ0Zℓ0

∥∥∥∥
op

≥
∥∥∥∥ 1

Ñ
(Zℓ −mℓ0)

T
(Zℓ −mℓ0)

∥∥∥∥
op

≥

∥∥∥ 1
Ñ
(Zℓ −mℓ0)

T
(Zℓ −mℓ0)

∥∥∥
op

∥Wℓ0+1∥2op · · · ∥WL∥2op
. (2)

We now need to lower bound the norm of the parameters in the layers up to ℓ0, to upper bound the
norm of the parameters of the layers ℓ0 + 1 to L. Iterating Equation (1) leads to the equation∥∥∥∥ 1

Ñ
ZT
ℓ0Zℓ0

∥∥∥∥
op

≤
∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥
op

+max

{∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥
op

, 1

}(
ℓ0∑
ℓ=1

∥Wℓ∥2F + ∥bℓ∥2F − 1

)
− ℓ0δ.
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which implies that

ℓ0∑
ℓ=1

∥Wℓ∥2F + ∥bℓ∥2F ≥ ℓ0 +
ℓ0δ −

∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op

max

{∥∥∥ 1
Ñ
X̃T X̃

∥∥∥
op
, 1

} ≥ ℓ0 −min

{
1,

∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥−1

op

}

and therefore

L∑
ℓ=ℓ0+1

∥Wℓ∥2F + ∥bℓ∥2F ≤ L− ℓ0 + CN +min

{
1,

∥∥∥∥ 1

Ñ
X̃T X̃

∥∥∥∥−1

op

}
.

Applying the arithmetic/geometric mean inequality to Equation (2), we obtain a lower bound

∥∥∥∥ 1

Ñ
ZT
ℓ0Zℓ0

∥∥∥∥
op

≥

∥∥∥ 1
Ñ
(Zℓ −mℓ0)

T
(Zℓ −mℓ0)

∥∥∥
op(

1
L−ℓ0

∑L
ℓ=ℓ0+1 ∥Wℓ∥2op

)L−ℓ0

≥

∥∥∥ 1
Ñ
(Zℓ −mℓ0)

T
(Zℓ −mℓ0)

∥∥∥
op(

1 +
CN+min

{
1,∥ 1

Ñ
X̃T X̃∥−1

op

}
L−ℓ0

)L−ℓ0

≥ e
−CN−min

{
1,∥ 1

Ñ
X̃T X̃∥−1

op

} ∥∥∥∥ 1

Ñ
(Zℓ −mℓ0)

T
(Zℓ −mℓ0)

∥∥∥∥
op

.

Putting it all together, we have shown that for large enough L, there is a ℓ0 = O(
√
L) such that

λ1

(
1
Ñ
ZT
ℓ0
Zℓ0

)
= Ω(1) and λ2

(
1
Ñ
ZT
ℓ0
Zℓ0

)
= O

(
1√
L

)
, which together imply that

λ1

(
1
Ñ
ZT
ℓ0
Zℓ0

)
λ2

(
1
Ñ
ZT
ℓ0
Zℓ0

) = O

(
1√
L

)

and therefore
s1(Zℓ0)

s2(Zℓ0)
= O(L− 1

4 ).

Finally note that this result does not require anything more than the widths be nonzero. Of course ,
if one of the widths is 1, the result is trivial.

D RANK RECOVERY

Consider a finite dataset X,Y of size N , with xi sampled i.i.d. for a distribution p with support
equal to Ω and with yi = f∗(xi) for a true function f∗ : Ω → Rdout with RankJ(f

∗; Ω) = k > 1.
For any function g which fits the data g(xi) = yi with a BN-Rank of 1 (there always exists at least
one such function), then if the depth L is large enough we have R(g; Ω, σa, L) < R(f∗; Ω, σa, L).

This is problematic as it suggests that for large depths, minimizing the representation cost will
always lead to fitting the data with a function with a BN rank of 1 instead of the rank of the true
function k. However, if we instead fix a depth L and let the number of datapoints N grow, the
representation cost required to fit the data with a rank 1 function (or any rank lower than k) increases
to infinity, whereas the representation cost of the true function remains constant. This suggest that
if one increases the depth L and the number of datapoints N simultaneously with the right scaling,
minimizing the representation cost over fitting functions should recover a function h with the right
rank k.
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Proposition 5 (Theorem 2 in the main). Let f satisfy f(xi) = yi and RankBN (f ; Ω) = 1 for some
Ω which contains the convex hull of x1, . . . , xN . There is a point x ∈ Ω, such that

∥Jf(x)∥op ≥ TSP(y1, . . . , yN )

diam(x1, . . . , xN )
,

for the Traveling Salesman Problem TSP(y1, . . . , yN ), i.e. the length of the shortest path passing
through every points y1, . . . , ym, and for the diameter diam(x1, . . . , xN ) of the points x1, . . . , xN .

As a result any rank 1 interpolator with parameters W satisfies ∥W∥2 ≥ L
(

TSP(y1,...,yN )
diam(x1,...,xN )

) 2
L

.

Proof. The lower bound on the nom of the paramaters ∥W∥2 follows directly from the first bound
and Proposition 2.

Let us now prove the first bound. Since RankBN (f ; Ω) = 1, there are piecewise linear functions
g : Rdin → R and h : R → Rdout such that f = h◦g. We define zi = g(xi) and w.l.o.g. we assume
that z1 ≤ · · · ≤ zN .

The image of the segment [x1, xN ] under f is a path that connects y1 to yN , passing through the
points y2, . . . , yN−1 (since the segment [x1, xN ] is mapped by g to a path from z1 to zN on the
line, which must pass through z2, . . . , zN−1). This implies that the function f maps a path of length
∥x1 − xN∥ ≤ diam(x1, . . . , xN ) to a path of length at least TSP(y1, . . . , yN ), as a result there must
be a point x on the segment [x1, xN ] whose Jacobian has operator norm at least TSM(y1,...,yN )

diam(x1,...,xN ) .

Let us now prove that the global minima are approximately rank k in deep networks:

Proposition 6 (Proposition 5 in the main). Let the ‘true function’ f∗ : Ω → Rdout be piecewise
linear with RankBN (f∗) = k, then there is a constant C which depends on f∗ only such that
any global minimum Ŵ of the loss Lλ(W) = 1

N

∑N
i=1 ∥fW(xi)− f∗(xi)∥2 + λ

L ∥W∥2 for a
sufficiently wide network satisfies

R(fŴ; Ω, σa, L)

L
≤ k +

C

L
.

Proof. The true function f∗ equals the composition of two piecewise linear functions h ◦ g with
g : Ω → Rk and h : Rk → Rdout which can be represented by networks of depth ⌈log2 din + 1⌉+
1 (resp. ⌈log2 k + 1⌉ + 1) and with parameters Wg (resp. Wh) using Corollary 1. For L >
⌈log2 din + 1⌉+⌈log2 k + 1⌉+2, consider the network made up of the concatenation of the network
representing g, and the network h at the end, with identity layers in the middle. This concatenated
network has parameters norm

∥Wg∥2 + k(L− ⌈log2 din + 1⌉ − ⌈log2 k + 1⌉ − 2) + ∥Wh∥2 .

Since this network recovers the true function, we have that for any global minimum Ŵ:

R(fŴ; Ω, σa, L)

L
≤ 1

L

∥∥∥Ŵ∥∥∥2
≤ 1

λ
min
W

L(W)

≤ 1

L

(
∥Wg∥2 + k(L− ⌈log2 din + 1⌉ − ⌈log2 k + 1⌉ − 2) + ∥Wh∥2

)
= k +

C

L
.

The minimal widths required for this result only depends on the decomposition f = h ◦ g chosen, it
does not depend on the depth.
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D.1 RANK OF KERNEL RIDGE REGRESSION

Consider a translation- and rotation-invariant kernel K(x, y) = k(∥x− y∥) then the Kernel Ridge
Regression (KRR) predictor with ridge parameter λ and on inputs X and outputs Y is of the form

f̂K(x) = K(x,X) (K(X,X) + λIN )
−1
Y.

The Jacobian of f̂K(x) equals Jf̂K(x) = JK(x,X) (K(X,X) + λIN )
−1
Y, where

JK(x,X) = (X − x)diag

(
k′(∥x−X∥)
∥x−X∥

)
,

where X − x is the n0 × N dimension matrix with entries (X − x)ki = Xki − xk and
diag

(
k′(∥x−X∥)
∥x−X∥

)
is the N × N diagonal matrix with diagonal entries k′(∥x−xi∥)

∥x−xi∥ . Since

diag
(

k′(∥x−X∥)
∥x−X∥

)
is invertible, we have Rank (JK(x,X)) = Rank(X−x). For almost all choices

of x (i.e. as long as x does not belong to a zero Lebesgue measure set) one has Rank (JK(x,X)) =
Rank(X − x) = min{din, N,RankX + 1}.

Assuming that Y conditioned on X is sampled from a distribution with full support (as is the
case when there is i.i.d. noise on the entries of Y for example), then RankY = min {dout, N}
with prob. 1. As a result, the rank of Jf̂K(x) will be min {Rank(X − x),RankY } =
min {RankX + 1, N, dout} with prob. 1.

Assuming N to be larger than the input and output dimensions and X to be full rank, we obtain that
the Jacobian Jf̂K(x) is almost surely full rank

Rank
(
Jf̂K(x)

)
= min{din, dout}.

E TECHNICAL RESULTS

E.1 REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS

Let us prove a generalization of the Theorem 2.1 from (Arora et al., 2018):

Corollary 1. For any L ≥ ⌈log2(n0 + 1)⌉+1, and any piecewise linear function f : Rdin → Rdout

there are widths n and parameters W such that fW = f .

Proof. This result was proven in (Arora et al., 2018) for ReLU networks, we therefore simply need
to show that given a ReLU network with widths n and parameters W such fW = f , there are widths
n′ and parameters W′ such that fW′ = f for a network with a nonlinearity σa.

Notice that for any a ∈ (−1, 1) σ(x)−aσ(−x)
1−a2 = max{0, x}. By doubling the number of neurons in

each hidden layer, i.e. n′ℓ = 2nℓ, we can represent the same output function f with the nonlinearity
σa.

E.2 WEAK BALANCEDNESS PROPERTY

In the analysis of linear networks a widely used tool is the notion of balancedness, which is an
invariant of linear networks during training. Furthermore any at any local minimum of the L2-
regularized loss the weights of the network must be balanced. While no direct equivalent of this
notion exists for nonlinear DNNs, for homogeneous nonlinearities a weaker notion exists, which we
describe now.

Proposition 7. Let W be a local minimum of the L2-regularized loss Lλ(W) = C(fW)+λ ∥W∥2
for some λ > 0. Then W satisfies

∥Wℓ∥2F + ∥bℓ∥2 = ∥Wℓ+1∥2F .
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Proof. Given a local minimum W of the L2-regularized loss, one can change the the weights of the
network to new weights W(α1, . . . , αL) with the same outputs for any set of scalars α1, . . . , αL

such that α1 · · ·αL = 1 :

Wℓ(α1, . . . , αL) 7→ αℓWℓ

bℓ(α1, . . . , αL) 7→ α1 · · ·αℓbℓ

Since W is a local minimum, the derivatives of the norm of the parameters ∥W(α1, . . . , αL)∥2 w.r.t.
to α1, . . . , αL at α1 = · · · = αL = 1 have to be orthogonal to the constraint space α1 · · ·αL = 1.
At α1 = · · · = αL = 1the normal space (orthogonal to the tangent space) is the space of constant
vectors, since it is spanned by the gradient of the product α1 · · ·αL. This implies that the values

∂αℓ

(
∥W(α1, . . . , αL)∥2

)
(1, . . . , 1) = ∂αℓ

(
L∑

ℓ=1

∥αℓWℓ∥2F + ∥α1 · · ·αℓbℓ∥2
)
(1, . . . , 1)

= 2 ∥Wℓ∥2F + 2 ∥bℓ∥2 + · · ·+ 2 ∥bL∥2

must all be equal. This equality for two consecutive layers implies that

∥Wℓ∥2F + ∥bℓ∥2 + · · ·+ ∥bL∥2 = ∥Wℓ+1∥2F + ∥bℓ+1∥2 + · · ·+ ∥bL∥2

and therefore that at any local minimum

∥Wℓ∥2 + ∥bℓ∥2 = ∥Wℓ+1∥2 .

Remark 1. A yet stronger notion of balancedness can be obtained by observing that this rescaling of
the weights can be done neuron by neuron instead of layer by layer, but we do not need this notion
for our proofs.

F EXPERIMENTAL SETUP

All our experiments were done on fully-connected ReLU networks with biases. We used diagonal
networks, i.e. n1 = n2 = · · · = nL−1 = w for some width w. We trained the network using
Adam with weight decay, in some cases we used traditional gradient descent at the end of training
to make sure to converge as close as possible to a local minimum. When the ridge λ is small, we
often observe two phases in learning: in the first phase, the cost C(fW) goes down very fast as
the network fits the data, in the second part the cost remains close to zero and the parameter of the
network slowly goes down. This second part is very slow and we did in most case stop before the
parameter norm had completely stabilized. Note that even with this ‘early stopping’ we observed
results consistent with our theory.

For Figure 1, the inputs x ∈ R50 and outputs y ∈ R50 were generated from a 15-dimensional latent
representation z ∈ R15 sampled with i.i.d. N (0, 1) entries. The inputs x then equal x = g(x) for
a function g : R15 → R50 and the outputs equal y = h(x1, . . . , x5) for a function h : R5 → R50

which depends only on the first 5 coordinates of the latent space. Both functions g, h are represented
by random shallow ReLU networks with inner width n1 = 100.

For Figure 2 the data points from the 4 classes were using the same inverted S-shape distribution
and translated on the x axis according to their class.

For Figure 3, we used the MNIST dataset on the left and on the right data of the form g(z) for z
random 1D Gaussian scalars and a function g : R1 → R2 represented y a random ReLU network.
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