
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOF OF THE INSTANTANEOUS CHANGE OF LOG-LIKELIHOOD ESTIMATE

Proposition (Instantaneous Change of Log-likelihood Estimate). Let z(t) be a finite continuous

random variable at time t as the solution of a differential equation
dz(t)
dt = f(z(t), t) with initial

value z(0) = x. Assuming that p̃0 = µ at t = 0 and f is uniformly Lipschitz continuous in z and t,
then the change in estimated log-likelihood log p̃t(x) at t follows a differential equation:

d log p̃t(x)

dt
= r · f(z(t), t) +r logµ(z(t)) · f(z(t), t).

Proof. To prove this theorem, we take the infinitesimal limit of finite changes of log p̃t(x) through
time. As f is assumed to be Lipschitz continuous in z(t) and t, �t(x) represents the unique solution
of the ODE (eq.(2)) at time t on the initial value x:

�t(x) = x+

Z t

0
f(�⌧ (x), ⌧)d⌧,

We also denote the transformation on z(t) over an ✏ change in time as:
z(t+ ✏) = �✏(z(t)) = �t+✏(x).

Using the definition of estimated log density p̃t(x) in eq.(4), the infinitesimal limit is:
d log p̃t(x)

dt
:= lim

✏!0+

1

✏

�
log
��det

�
J�t+✏(x)

�
|� log

��det (J�t(x)) |+ log µ(�t+✏(x))� logµ(�t(x))
�

= lim
✏!0+

1

✏

�
log
��det

�
J�t+✏(x)

�
|� log

��det (J�t(x)) |
�
+ lim

✏!0+

1

✏
(logµ(�t+✏(x))� logµ(�t(x))) .

The derivation of first term is very similar to (Chen et al., 2018, theorem 1) except the sign of the
function:

lim
✏!0+

1

✏

�
log
��det

�
J�t+✏(x)

�
|� log

��det (J�t(x)) |
�

= lim
✏!0+

1

✏

�
log
��det (J�✏(z(t))) |+ log

��det (J�t(x)) |� log
��det (J�t(x)) |

�

= lim
✏!0+

1

✏
log
��det (J�✏(z(t))) |,

where we summarize the main steps:

lim
✏!0+

log | detJ�✏(z(t))|
✏

= lim
✏!0+

@
@✏ log | detJ�✏(z(t))|

@✏
@✏ ! 1

(L’Hopital’s rule)

= lim
✏!0+

@
@✏ | detJ�✏(z(t))|

| detJ�✏(z(t))| ! 1

= lim
✏!0+

@

@✏
| detJ�✏(z(t))|

= lim
✏!0+

Tr

✓
adj
✓

@

@z(t)
�✏(z(t))

◆
@

@✏

@

@z(t)
�✏(z(t))

◆
(Jacobi’s formula)

= Tr

✓
lim

✏!0+

@

@✏

@

@z(t)
�✏(z(t))

◆
(adjacent matrix ! I as ✏ ! 0+)

= Tr

✓
lim

✏!0+

@

@✏

@

@z(t)

�
z(t) + ✏f(z(t), t) + o(✏2) + . . .

�◆

= Tr

✓
lim

✏!0+

@

@✏

✓
I+ ✏

@f(z(t), t)

@z(t)
+ o(✏2) + . . .

◆◆

= Tr

✓
lim

✏!0+

✓
@f(z(t), t)

@z(t)
+ o(✏) + . . .

◆◆

= r · f(z(t), t).

13

Under review as a conference paper at ICLR 2023

Before deriving the second term, we take the first-order Taylor expansion of logµ(�✏(z(t))) at
z(t) = �t(x):

logµ(�t+✏(x)) = log µ(�✏(z(t))) = log µ(z(t))+r logµ(z(t))·(�✏(z(t))� z(t))+o(✏2)+. . . ,

hence,

lim
✏!0+

logµ(�t+✏(x))� logµ(�t(x))

✏

= lim
✏!0+

logµ(z(t)) +r logµ(z(t)) · (�✏(z(t))� z(t)) + o(✏2) + . . .� logµ(z(t))

✏

= lim
✏!0+

r logµ(z(t)) · �✏(z(t))� z(t)

✏
+ o(✏) + . . .

=r logµ(z(t)) · f(z(t), t).

Therefore, the differential of log p̃t(x) is:

d log p̃t(x)

dt
= r · f(z(t), t) +r logµ(z(t)) · f(z(t), t).

To show the relation between two differentials d log p̃t(x)
dt and d log pt(z(t))

dt , we first need the relation
between log p̃t(x) and log pt(z(t)):

log p̃t(x) = log p(x) + log µ(z(t))� log pt(z(t)).

Taking the total derivative on both l.h.s. and r.h.s. of last equation:

d log p̃t(x)

dt
=
d logµ(z(t))

dt
� d log pt(z(t))

dt

=r logµ(z(t)) · f(z(t), t)� d log pt(z(t))

dt
=r logµ(z(t)) · f(z(t), t) +r · f(z(t), t).

The total derivative d log p̃t(x)
dt is defined on the fixed variable x, while the infinitesimal change on

r.h.s. is evaluated on the variable z(t). So solving log p̃t(x) requires to simulate z(t) simultaneously.
Different to solving log pt(z(t)) on the reversed direction of solving z(t), log p̃t(x) only needs the
trajectory of z(⌧), ⌧ 2 [0, t], while log pt(z(t)) requires to know the whole trajectory of z(⌧), ⌧ 2
[0, T]. Therefore, using log p̃t(x) is more advantageous when evaluating models at any t other than
T or at multiple t.

As for training, since pT is specified as µ at T , maximizing log p(x) in vanilla CNF is essentially
equivalent to maximizing log p̃t(x) in ACNF.

If we take the time partial derivative on the log-likelihood equation, then

@ log p̃t(x)

@t
=

@ logµ(z(t))

@t
� @ log pt(z(t))

@t
= �@ log pt(z(t))

@t
,

so that the convergence rate of distribution estimate p̃t(x) towards p(x) is equivalent to the normalized
distribution pt(z) towards µ(z).

A.2 PROOF OF THE DYNAMICS FOR THE STEEPEST ASCENT CONTINUOUS NORMALIZING
FLOWS

Theorem (Dynamics for Steepest Ascent Continuous Normalizing Flows). Let z(t) be a finite

continuous random variable and the solution of a differential equation
dz(t)
dt = f(z(t), t) with initial

14

Under review as a conference paper at ICLR 2023

value z(0) = x. Its probability pt(z(t)) subjects to the continuity equation @tpt +r · (ptf) = 0.

The dynamics of the steepest flow for decreasing KL(pt(z(t))||µ(z(t))) is

f⇤(z(t), t) = r logµ(z(t))� rpt(z(t))

pt(z(t))
= r logµ(z(t))�r log pt(z(t)).

To keep this proof simple, we derive this theorem in Euclidean space. If readers are familiar with
non-Euclidean metric spaces, we refer more rigid of Wasserstein gradient flow proof in (Ambrosio
et al., 2005).

Proof. Assuming that N samples X = {xi}i=1:N 2 RNd are drawn from p(x), the averaged
negative estimated log-likelihood at time t is:

J(�t) = � 1

N

NX

i=1

log p̃t(xi) =
1

N

NX

i=1

(log pt(�t(xi))� logµ(�t(xi))� log p(xi)) .

Using the chain rule, the derivative of J(�t) w.r.t. �t(xi) is:

[rJ(�t)]i = r log pt(�t(xi))�r logµ(�t(xi)),

where rJ(�t) is a matrix that each row is for each sample i = 1, 2, . . . , N and each column is for
each dimension j = 1, 2, . . . , d.

To numerically compute the solutions of Euler-Lagrange equation, i.e. rJ(�t) = 0, we use gradient

descent to define the evolution of transformation �t for each xi:

d�t(xi)

dt
= �[rJ(�t)]i = r logµ(�t(xi))�r log pt(�t(xi)),

which evolves � in the direction that decreases J(�) most rapidly, starting at initial �0(xi) = xi.

The next step is to extend the assumption of the finite number of data samples N to infinity, i.e.
N ! 1, therefore, the objective J(�t) at time t is updated as:

J(�t) = �
Z

U
log p̃t(x)dx

=

Z

U
(log pt(�t(x))� logµ(�t(x))� log p(x)) dx

=

Z

U
L(x,�t(x),r�t(x))dx,

where x 2 U ✓ Rd and L(x,�t(x),r�t(x)) = log pt(�t(x)) � logµ(�t(x)) � log p(x). For
each j dimension of �t, the functional derivative of J(�t) w.r.t. [�t]j is:

�J(�t)

�[�t]j
=

@L

@[�t]j
(x,�t(x),r�t(x))�r ·

✓
@L

@r[�t]j
(x,�t(x),r�t(x))

◆

= [r log pt(�t(x))]j � [r logµ(�t(x))]j ,

as @L
@r[�t]j

= 0. Therefore, the gradient descent that defines the evolution of transformation �t is:

d�t(x)

dt
= ��J(�t)

��t
= r logµ(�t(x))�r log pt(�t(x)), (11)

therefore, the dynamics for the steepest ascent continuous normalizing flow is:

f⇤(z(t), t) =
d�t(x)

dt
= r logµ(z(t))�r log pt(z(t)).

15

Under review as a conference paper at ICLR 2023

A.3 CONVERGENCE RATE OF OPTIMAL ASCENT CONTINUOUS NORMALIZING FLOWS AND ITS
RELATION TO LANGEVIN DYNAMICS

The convergence rate of KL divergence w.r.t. t can be derived as (we start from a general flow
dynamics f):

@

@t
KL(pt(z)kµ(z)) =

@

@t
KL(p(x)kp̃t(x))

= �
Z

p(x)
@

@t
p̃t(x)dx

= �
Z

p(x) (r · f(z(t), t) +r logµ(z(t)) · f(z(t), t)) dx

= �
Z

pt(z(t)) (r · f(z(t), t) +r logµ(z(t)) · f(z(t), t)) dz(t)

= �
Z

pt(z)

X

i

@fi(z, t)

@zi
+
X

i

@ logµ(z)

@zi
fi(z)

!
dz

= �
X

i


�fi(z, t)

@pt(z)

@zi
+

@ logµ(z)

@zi
fi(z)

�

= �
X

i

Z
pt(z)(�

@ log pt(z)

@zi
+

@ logµ(z)

@zi
)fi(z, t)dz

= �Ept [(r logµ(z)�r log pt(z)) · f(z, t)] .

(12)

(Liu, 2017)[theorem 3.1] shows similar derivation from discrete transformation perspective and links
to Stein variational gradient flows.

When dynamics f is equal to the fastest flow dynamics f⇤ as eq.(6), then the convergence rate becomes
negative Fisher divergence (estimated w.r.t. pt):

@

@t
KL(pt(z)kµ(z)) = �Eptkr log pt(z)�r logµ(z)k22.

This convergence rate can be easily proved the same to overdamped Langevin diffusion dynamics
which is defined via a stochastic differential equation at case of � = 1:

dz(t) = r logµ(z(t))dt+
p

2��1dWt, (13)

where Wt is a Brownian motion. Under the Langevin dynamics, the transformed distribution has a
PDE:

@pt(z)

@t
= �r · (pt(z)r logµ(z)) + ��1�pt(z)

= �r · (pt(z)r logµ(z)) + ��1r · (rpt(z))

= �r · (pt(z)(r logµ(z)� ��1r log pt(z))).

The last line reveals the steepest gradient flow dynamics as eq.(6) when � = 1.

Therefore, the optimal ascent continuous normalizing flows and overdamped Langevin dynamics
transform a distribution equivalently when � = 1. And this Fokker Plank equation is a linear (w.r.t.
pt(z)) and deterministic although Langevin dynamics is stochastic. The main difference between
these two flows is that the dynamics of (optimal) ascent continuous normalizing flow is deterministic,
so as any particular sample trajectory; while Langevin dynamics defines a stochastic process and
sample trajectories are stochastic.

A.4 DERIVATION OF POTENTIAL FIELD PDE

The optimal dynamics defined in eq.(6) can be rewritten in terms of the potential function V (z(t), t),
as V (z, t) := pt(z)

µ(z) :

f⇤ = r logµ(z(t))�r log p(z(t), t) = �r log V (z(t), t). (14)

16

Under review as a conference paper at ICLR 2023

The continuity equation reveals the time derivative of the transformed density p(z(t), t) at t:

@pt(z(t))

@t
= �r · (pt(z(t))f(z(t), t))

= �pt(z(t))r · f(z(t), t)�rpt(z(t)) · f(z(t), t).

Therefore, the time derivative of log pt(z) with dynamics defined in eq.(14) is:

@ log pt(z(t))

@t
=

1

pt(z(t))

@pt(z(t))

@t
= �r · f(z(t), t)�r log pt(z(t)) · f(z(t), t)

= � log V (z(t), t) +r log pt(z(t)) ·r log V (z(t), t).

Using the last equation, the time derivative of log V (z, t) is derived as:

@ log V (z, t)

@t
:=

@ log pt(z(t))

@t
� @ logµ(z(t))

@t
=�r · f(z(t), t)�r log pt(z(t)) · f(z(t), t)�r logµ(z(t)) · f(z(t), t)
=� log V (z(t), t) + (r log pt(z(t)) +r logµ(z(t))) ·r log V (z(t), t)

=� log V (z(t), t) + (2r logµ(z(t)) +r log V (z(t), t)) ·r log V (z(t), t),

therefore, the time derivative of potential field is:

@V (z, t)

@t
=�V (z, t) + 2r logµ(z) ·rV (z, t) +r log V (z, t) ·rV (z, t). (15)

When t = 0, V (x, 0) = p(x)
µ(x) ; when t ! 1, V (z, t) ⌘ 1, 8z.

A.5 INSTANTANEOUS CHANGE OF SCORE FUNCTION

Theorem (Instantaneous Change of Score Function). Let z(t) be a finite continuous random variable

with probability density pt(z(t)) at time t. Let
dz(t)
dt = f(z(t), t) be a differential equation describing

a continuous-in-time transformation of z(t). Assuming that f is uniformly Lipschitz continuous in z
and t, the infinitesimal change in the gradient of log-density at t is

dr log pt(z(t))

dt
= �r log pt(z(t))

@f(z(t), t)

@z(t)
�r (r · f(z(t), t)) .

Proof. As f is assumed to be Lipschitz continuous in z(t) and t, �t(x) represents the unique solution
map. We denote the transformation on z(t+ ✏) reversed over an ✏ change in time as:

z(t+ ✏) = �✏(z(t)), z(t) = ��✏ (z(t+ ✏)) ,

and applying the change of variable theorem on log pt+✏(z(t+ ✏)), defined on the variable z(t+ ✏):

log pt+✏(z(t+ ✏)) = log pt(z(t))� log | detJ�✏(z(t))|
= log pt(��✏(z(t+ ✏)))� log | detJ�✏(��✏(z(t+ ✏)))|.

Taking the derivative of log pt+✏(z(t+ ✏)) w.r.t. z(t+ ✏) on both l.h.s. and r.h.s. of the last equation:

r log pt+✏(z(t+ ✏)) = (r log pt(z(t))�r log | detJ�✏(z(t))|)
@��✏(z(t+ ✏))

@z(t+ ✏)
,

and the infinitesimal limit of finite changes of gradient of log density can be defined:

17

Under review as a conference paper at ICLR 2023

dr log pt(z(t))

dt
:= lim

✏!0+

1

✏
(r log pt+✏(z(t+ ✏))�r log pt(z(t)))

= lim
✏!0+

1

✏

✓
(r log pt(z(t))�r log | detJ�✏(z(t))|)

@��✏(z(t+ ✏))

@z(t+ ✏)
�r log pt(z(t))

◆

=r log pt(z(t)) lim
✏!0+

1

✏

 ✓
@�✏(z(t))

@z(t)

◆�1

� I

!
� lim

✏!0+

1

✏

r log | detJ�✏(z(t))|

✓
@�✏(z(t))

@z(t)

◆�1
!

=�r log pt(z(t))
@f(z(t), t)

@z(t)
�r (r · f(z(t), t)) ,

(16)

where the two limits are derived in detail:

lim
✏!0+

1

✏

 ✓
@�✏(z(t))

@z(t)

◆�1

� I

!

= lim
✏!0+

1

✏

 ✓
@

@z(t)
(z(t) + ✏f(z(t), t) + o(✏2) + . . .)

◆�1

� I

!

= lim
✏!0+

1

✏

 ✓
I+ ✏

@f(z(t), t)

@z(t)
+ o(✏2) + . . .)

◆�1

� I

!

= lim
✏!0+

1

✏

✓✓
I� ✏

@f(z(t), t)

@z(t)
+ o(✏2) + . . .

◆
� I

◆
(inverse by geometric power series expansion)

= lim
✏!0+

�@f(z(t), t)

@z(t)
+ o(✏) + . . .

=� @f(z(t), t)

@z(t)
,

and

lim
✏!0+

1

✏

r log | detJ�✏(z(t))|

✓
@�✏(z(t))

@z(t)

◆�1
!

= lim
✏!0+

1

✏

✓
r log | detJ�✏(z(t))|

✓
I� ✏

@f(z(t), t)

@z(t)
+ o(✏2) + . . .

◆◆

= lim
✏!0+

r log | detJ�✏(z(t))|
✏

� lim
✏!0+

r log | detJ�✏(z(t))|
| {z }

r1!0

@f(z(t), t)

@z(t)

=r lim
✏!0+

log | detJ�✏(z(t))|
✏

=r (r · f(z(t), t)) .

(17)

Therefore, r log p(x, t) follows a linear matrix differential equation, where the linear matrix is
defined by the Jacobian @f(z(t),t)

@z(t) and the bias term is the gradient of divergence of the differential
function r (r · f(z(t), t)).

A.6 INTERPRETING ASCENT REGULARIZATION AS SCORE MATCHING OBJECTIVE

To show the ascent regularization in eq.(9) and eq.(10) relates to the score matching objective, we
first assume a diffusion process defined via a stochastic differential equation (SDE):

dz(t) = h(z(t), t) + g(t)dW(t), z(0) = x;x ⇠ p(x), (18)

18

Under review as a conference paper at ICLR 2023

where Wt is Brownian motion and we denote pt(z(t)) as the marginal distribution at time t and PT

as the path measure of the SDE up to time T .

(Anderson, 1982) shows the reverse time process is also a diffusion process which shares the same
marginals as the forward process:

dz(t) =
�
h(z(t), t)� g2(t)r log pt(z(t))

�
dt+ g(t)dW̃(t), z(T) ⇠ pT , (19)

where W̃(t) is a reverse-time Brownian motion. The reverse-time diffusion introduces the conditional
path measure P(·|z(T)). As the score function, r log pt(z(t)), is generally unknown for an arbitrary
diffusion process, we approximate the reverse-time diffusion by a secondary reverse-time diffusion
process by a parametric score function:

dz(t) =
�
h(z(t), t)� g2(t)s✓(z(t), t)

�
dt+ g(t)dW̃(t), z(T) ⇠ pT , (20)

which induces the conditional path measure P̃✓
T (·|z(T)) to approximate PT (·|z(T)).

Under some regularity conditions that permit the definition of Radon-Nikodym derivative,
dPT (·|z(T))/dP̃✓

T (·|z(T)), Girsanov theorem gives the expectation of KL divergence between
two path measures:

EpT

h
KL(PT (·|z(T))kP̃✓

T (·|z(T)))
i
= �EP

"
log

dP̃✓
T (·|z(T))

dPT (·|z(T))

#

=EP

"Z T

0
g(t) (s✓(z(t), t)�r log pt(z(t))) dW̄t +

1

2

Z T

0
g2(t)ks✓(z(t), t)�r log pt(z(t))k2dt

#

=
1

2
EP

"
g2(t)

Z T

0
ks✓(z(t), t)�r log pt(z(t))k2dt

#
.

Using the chain rule of KL divergence, we can show the KL divergence between two path measures:

KL(PT kP̃✓
T)

=KL(pT (z(T))kµ(z(T))) + EpT

h
KL(PT (·|z(T))kP̃✓

T (·|z(T)))
i

=KL(pT (z(T))kµ(z(T))) +
1

2
EP

"
g2(t)

Z T

0
ks✓(z(t), t)�r log pt(z(t))k2dt

#

=KL(p(x)kp̃(x)) + 1

2
EP

"Z T

0
g2(t)ks✓(z(t), t)�r log pt(z(t))k2dt

#
.

(21)

Assume that the parametric dynamics f(z(t), t;✓) = r logµ(z(t)) � s✓(z(t), t) has the similar
structure as the optimal dynamics in eq.(6) as s✓(z(t), t) to approximate r log pt(z(t)) and g(t) ⌘p
2�, then we recover the total learning objective with ascent regularization coefficient � in eq.(9).

Therefore, the total objective is equivalent to minimize the KL divergence of two path measures on
the joint (infinite) variable space. Similar analysis can also be applied to the objective in eq.(10).

When � = ��1 = g2(t)
2 and learned score s✓(z(t), t) matches to r log pt(z(t)) so that h(z(t), t) =

r logµ(z(t)), then SDE in eq.(18) becomes the overdamped Langevin dynamics in eq.(13) as well
as optimal ACNF (eq.(6)) with critical damping dynamics, i.e. � = ��1 = 1.

As the ascent regularization can be interpreted as a score matching objective, it is possible to
implement Algorithm 1 and Algorithm 2 in a more time efficient way for training like (Lu et al.,
2022; Song et al., 2021). However, note that the explicit score matching objective can hardly be
used directly in the implementation as r log pt(z(t)) is intractable in general and requires to be
evaluated e.g. via score function integral in ascent regularization. (Lu et al., 2022; Song et al., 2021;
2020; Ho et al., 2020) use its surrogates, e.g. denoising score matching. To enable practical training,
denoising score matching objective relies on the explicit form of conditional (noised) distributions
r log pt|0(z(t)|z(0)), e.g. Gaussian. For image or data generation tasks, Gaussian assumption may

19

Under review as a conference paper at ICLR 2023

Figure 10: Comparison of log potential field, log V (z(t), t), evaluated on trained vanilla CNF,
RNODE with regularization coefficient as 0.1 and ACNF models with regularization coefficient � as
0.1 and 1 for 2-modal Gaussian mixture along flow at t 2 [0, 2T] and the numerical PDE solutions
of eq.(7). Color indicates the value of field: turquoise is 0, and the lighter the color is the larger the
value is, and vice versa.

Figure 11: Comparison of log potential field, log V (z(t), t), evaluated on trained vanilla CNF and
RNODE (Finlay et al., 2020) models with T = 1 for 2-modal Gaussian mixture along the flows at
t 2 [0, 2T] as Figure 4. The kinetic energy regularization coefficients are 0, 0.01, 0.1, 1 respectively.
Color indicates the value of field: turquoise is 0, and the lighter the color is the larger the value is,
and vice versa.

not seem so limited as long as the chain of discrete transformation is adequately long for adequate
expressivity of the marginal distribution at T . However, for inference tasks e.g. using flows as
variational approximation or annealed sampler, constraining the distribution induced by flows with
Gaussian assumption can hinder their approximate potential for true posterior.

A.7 ANALYSIS ON A TOY EXAMPLE: FROM A GAUSSIAN TO A MIXTURE OF GAUSSIAN

Before we deploy ACNF for complex distributions, we first demonstrate its validity on a simpler
problem: to learn a 2-modal Gaussian mixture with a standard Gaussian as the base distribution. Since
the density of the target distribution is known in this case, we can numerically solve the potential field
V (z, t) for t 2 [0, T] in eq.(7) even though the exact solution is still hard to obtain for this simple
case.

The PDE solution presented in Figure 4 and Figure 10 is implemented using py-pde package. A
fixed Cartesian grid is used which has the same center locations as the other potential fields evaluated
by density estimations. The PDE solver in py-pde uses the finite difference method, and we choose
explicit solver to keep simulation simple.

To define the parametric dynamics function for training, we use hypernetworks (Ha et al., 2016)
that a smaller network generates the weights of layers. This architecture is suitable to demonstrate
ACNFs as the function of dynamics is supposed to evolve with time via changing the weights by
the hypernetworks. We follow the same implementation of hypernetworks as Neural ODE and use
torchdiff for ODE solution and adjoint method. 1

The last row of Figure 10 as Figure 4 shows the logarithm of the potential solutions, while the rest
show the log potential field of learned flows evaluated by the ratio p(x)/p̃t(x) when training T is set
as 10.

1https://github.com/rtqichen/torchdiffeq

20

https://github.com/rtqichen/torchdiffeq

Under review as a conference paper at ICLR 2023

Figure 12: Comparison on log potential field, log V (z(t), t) of trained vanilla CNF and ACNF models
with T = 5 for 2-modal Gaussian mixture, evaluated along the flows at t 2 [0, 2] as Figure 4. The
ascent regularization coefficients � are 0, 0.01, 0.1, 1 respectively.

Without ascent regularization, the potential field converges slower and only reaches close to a
uniform field at T . After T , some areas start to be under/over-represented when the learned flow
continues to move samples towards the center of the field. Nevertheless, the flows learned with ascent
regularization transform densities faster to the target distribution. When the ascent regularization
coefficient � is 1, the evolution of the potential fields is very similar to that of PDE solutions which
indicates the learned flow is close to the optimal ascent continuous normalizing flow.

Apart from vanilla CNF, we train RNODE models to demonstrate the effect of kinetic energy
regularization on the transformation of distributions. As known from (Finlay et al., 2020), the optimal
flow that minimizes L2 transport cost induces straight sample trajectories and samples travel with
constant speeds. Figure 11 shows the flows of RNODE models trained under the same configurations
as Figure 4, and the kinetic energy regularization coefficients are 0, 0.01, 0.1, 1 respectively.

Although RNODEs learn simpler ODE functions with lower NFEs compared to the flow without
regularization, these flows do not induce the transformed distributions to converge faster. They are
even slower at larger regularization coefficients. Like vanilla CNF, RNODE does not prevent the
distribution to deteriorate after T . NFEs for each flow in Figure 11, at the time that the transformed
distribution gives the maximum estimated log-likelihood, are 38, 38, 36, 32, while the flows by ACNF
are 26, 32, 36 under � = 0.01, 0.1, 1, nevertheless ascent regularization does not explicitly regularize
for simpler ODE functions. We also tried Frobenius norm regularization on the Jacobian as suggested
by (Finlay et al., 2020), HJB regularization (Onken et al., 2021; Yang and Karniadakis, 2020),
second-order regularization (Kelly et al., 2020), however, the evolution of potential fields under these
regularizations does not differ much to that of vanilla CNF and RNODEs as shown.

To demonstrate the effect of the length of flow T in training configuration, we train vanilla CNF and
ACNFs with other flow length, e.g. T = 5 and ascent regularization factors as 0, 0.01, 0.1, 1, and
evaluate the learned flows at t 2 [0, 2] as Figure 4. Under some suitable condition that there exists
an optimal ACNF between the base and the target distributions, the flow is almost independent to
the choice of flow length T . Comparing Figure 12 with T = 5 to Figure 4 with T = 1 but testing
both on t 2 [0, 2], the flow by vanilla CNF is idle at early stage for T = 5 and is very sensitive to the
choice of T , while the flows with ascent regularization are almost independent to the choice of T ,
which possibly makes tedious model selection on different T or optimizing T (Ghosh et al., 2020;
Du et al., 2022) no longer necessary.

A.8 DENSITY ESTIMATION ON 2D TOY DISTRIBUTIONS

Like Section A.7, we specify dynamics model by hypernetworks and all hypernetworks are defined
by one hidden layer with 32 units and 64 for the width of hypernetworks to learn all 2-dimensional
distributions.

As shown in the last section, the flows learned with ascent regularization are almost insensitive to T
for Gaussian mixture. To examine whether this conclusion still applies to more complex distributions,
we retrain ACNF models with ascent regularization coefficients � = 0.0001, 0.0005, 0.001, 0.005
under different flow lengths T = 10, 5, 1, 0.5. Figure 13 (T = 5) and Figure 14 (T = 1) shows the
evolution of the density estimations for each model at t 2 [0, 2T] like Figure 5 (T = 10). When
decreasing T from 10 to 5, the density estimations are almost identical under the same regularization
coefficients. When T decreases from 5 to 1, the highlighted area shrinks slightly at low regularization
coefficients, e.g. 0.0001, 0.0005. Model trained with a smaller T may require a larger � to have

21

Under review as a conference paper at ICLR 2023

Figure 13: Comparison on density estimations of trained vanilla CNF and ACNFs with regularization
coefficients � = 0.0001, 0.0005, 0.001, 0.005 and T = 5 on 2-moon distribution at t 2 [0, 2T].

Figure 14: Comparison on density estimations of trained vanilla CNF and ACNFs with regularization
coefficients � = 0.0001, 0.0005, 0.001, 0.005 and T = 1, on 2-moon distribution at t 2 [0, 2T].

Figure 15: Comparison on density estimations of trained vanilla CNF and ACNFs with regularization
coefficients � = 0.0001, 0.0005, 0.001, 0.005 and T = 10 on 2-circle distribution at t 2 [0, 2T].

Figure 16: Comparison on density estimations of trained vanilla CNF and ACNFs with regularization
coefficients � = 0.0001, 0.0005, 0.001, 0.005 and T = 10 on Olympics distribution at t 2 [0, 2T].

similar regularization that with a larger T as the flow length serves as an implicit regularization
factor. Although the effect of regularization depends slightly more on the choice of T for complicated
distributions, the flows by ACNF are still much less sensitive to T , compared to that by CNF.

Apart from the 2-moon distribution, we show the density estimations of learned vanilla CNF and
ACNF with different regularization coefficients for modeling 2-circle, Olympics and checkerboard
distributions in Figure 15, Figure 16 and Figure 17. They show that ascent regularization is effective
in learning different distributions that a larger coefficient induces densities to converge faster to the
target distributions and prevents them from deterioration. Comparing across different distributions,

22

Under review as a conference paper at ICLR 2023

Figure 17: Comparison on density estimations of trained vanilla CNF and ACNFs with regularization
coefficients � = 0.0001, 0.0005, 0.001 and T = 10 on checkerboard distribution at t 2 [0, 2T].

Dataset # hypernetworks layers encoding dim T # flow steps batch size
POWER 2 6 1 5 10000

GAS 3 4 5 5 1000
HEPMASS 3 10 1 10 10000

MINIBOONE 4 10 1 1 1000
BSDS300 4 10 5 2 10000

Table 3: Model architectures of ACNFs for density estimations on tabular data reported in Table 1.

the highlighted areas are larger for 2-moon, 2-circle and checkerboard distribution than Olympics
distributions, since the Olympics distribution is more challenging and requires a relatively large
regularization coefficient.

A.9 DENSITY ESTIMATION ON TABULAR DATASETS

For tabular datasets, we follow the experiment setup and model configurations as recommended
by FFJORD (Grathwohl et al., 2018) and all data are pre-processed according to (Papamakarios
et al., 2017). We found that the concatenate layer used in FFJORD, that concatenates time t and
states z(t) as a flat input vector for differential function, dilutes the ascent regularization on the
parameters, especially when data dimensions are high, e.g. for MINOBOONE and BSDS300 datasets.
Nevertheless, the hypernetwork architecture used in previous sections, even a deeper one, turns out to
be inadequate to reach a similar log-likelihood evaluation as FFJORD and slow to train. To tackle
this issue, we use an encoder to encode states z(t) to a lower dimension and apply the weights by the
hypernetworks on the encodings and later a decoder maps the transformed encodings back to the data
dimension. We summary model architectures and training configurations for each dataset in Table 3.

A.10 ACNFS AS ANNEALED SAMPLER FOR UNBIASED SAMPLING AND ESTIMATE OF
NORMALIZATION CONSTANT

To extend ACNF annealed sampler with stochasticity, we replace the discrete NF blocks in SNF by
the discrete realization of each adaptive step of ACNF and each is followed with a stochastic block
by e.g. discrete Langevin flow or MCMC flow as in SNF. The original importance weight update
for discrete flows also needs to be replaced by the integral of negative divergence of dynamics and
resampling steps are added as AFT (Arbel et al., 2021). The complete algorithm is summarized in
Algorithm 3.

Figure 18 shows the generated samples of all different methods as reported in Figure 8 plus adding
MC steps on top of trained ACNF to form SNF models by Algorithm 3. Like quantitative evaluation
shown in Figure 8, learned ACNFs with regularization coefficient � = 0.01 has distinctly faster
convergence than CNF, best tuned linear annealed target and less regularized ACNFs, but uses less
computation. The add-on MC steps on trained ACNF boasts the convergence slightly as shown by
the last two rows. Although diffeomorphism constraint does not show much effect on limiting the
expressiveness of CNF/ACNF in this experiment, adding stochastic blocks is still very beneficial
especially at the beginning stage of the flows.

23

Under review as a conference paper at ICLR 2023

Algorithm 3 Asymptotically unbiased sampler with learned ACNF f✓

Require: parameteric dynamics of ACNF generation flow f✓ , base distribution µ, target distribution
up to the normalization constant ⇡(·) = �(·)/Z, length of flow T , number of samples N , MC step
size ✏, number of MC steps J
sample N samples from base distribution {zi0}i=1:N ⇠ µ = q0
set logwi

0 = � logµ(zi0), t0 = 0
while tk < T do

ODE solver chooses step size �tk, if tk = tk�1 +�tk < T else tk = T
Integrate augmented states [zi(t), log qt(zi(t))] using generation dynamics f✓ until tk from the

initial [zik�1, log qt(z
i
k�1)] at tk�1

�Si
k,f = log qtk�1(z

i
k�1)� log qtk(z

i(tk))

zik = zi(tk)
MCMC update with ⇡ invariant kernel via Metropolis-Hastings:
for j = 1, . . . , J do

propose z0ik = zik + ✏⌘i, ⌘i ⇠ N (0, I), 8i
ai = �(z0ik)/�(z

i
k), 8i

if ⇠i < ai, ⇠i ⇠ U(0, 1) then
update zik = z0ik

end if
end for
�Si

k,s = log �(zi(tk))� log �(zik), 8i
Update weights logwi

k = logwi
k�1 +�Si

k,f +�Si
k,s

Resample zik according to normalized weights w̃i
k = wi

k/(
P

i w
i
k)

Update weights wi
k = 1/N

end while

Figure 18: Comparisons of generated samples from different methods on 2D Gaussian mixture
distribution with 8 components as Figure 8. From top to bottom, samples are from: (1-3) linear
annealing importance sampler with {170, 25, 10} MC steps between each annealing target; (4) CNF;
(5-7) ACNF with ascent regularization factor � = 0.0001, 0.001, 0.01, (8-9) SNF with trained ACNF
� = 0.01 (as 7th row) and {1, 5} MC step as the stochastic block as Algorithm 3.

A.11 VARIATIONAL INFERENCE WITH ACNFS

Our experiment setup mimics (Grathwohl et al., 2018), and the encoder and decoder are defined by
7-layer neural networks with specified latent dimension as 64. The first 6 layers of the encoder are
implemented as gated convolutional networks and the last one is a linear layer to output mean and
diagonal covariance. For the decoder, the first 6 layers are also gated convolutional networks while
the last layer is a vanilla convolutional network. We define the length of flow for both VAE-FFJORD
and VAE-ACNF as T = 1 and the number of steps as 2. The networks for modeling differential
function of flows are the modified hypernetworks as for the tabular datasets, with 4 layers, and the

24

Under review as a conference paper at ICLR 2023

Figure 19: More reconstructed samples from VAE-ACNF, vanilla VAE and original data. The first
row of three is the reconstruction from VAE-ACNF, the second one is the reconstruction from vanilla
VAE while the last one is the original data samples.

activation function is tanh. All models reported in Table 2 are trained under the same learning rate as
0.001 , Adam optimizer and batch size as 100.

Figure 19 shows more reconstructed samples from VAE-ACNF and vanilla VAE, with comparison
of original data. In general, the reconstructions from VAE-ACNF are smoother than the ones from
vanilla VAE and original data samples. Figure 9 shows some challenging examples for VAE to
reconstruct. VAE-ACNF tends to reconstruct images by adding more details, not only to make it
smoother, but also to possibly strengthen their identity of classes. Furthermore, due to the coarse
variational approximation, some reconstructions of VAE fail to retain their features in original data
and change the identity of classes.

25

	Introduction
	Continuous Normalizing Flows
	Ascent Continuous Normalizing Flows
	Maximum Likelihood Learning of ACNF for density estimation via Ascent Regularization
	Learning ACNF as annealed sampler for unbiased sampling
	Experiments
	Density Estimation on Toy 2D Distributions
	Density Estimation on Real Datasets
	ACNF as a faster annealing sampling proposal for unbiased sampling
	Variational Inference with ACNFs

	Scopes and Limitations
	Conclusion
	Appendix
	Proof of the instantaneous change of log-likelihood estimate
	Proof of the dynamics for the steepest ascent continuous normalizing flows
	Convergence rate of optimal ascent continuous normalizing flows and its relation to Langevin dynamics
	Derivation of potential field PDE
	Instantaneous change of score function
	Interpreting ascent regularization as score matching objective
	Analysis on a toy example: from a Gaussian to a mixture of Gaussian
	Density estimation on 2D toy distributions
	Density estimation on tabular datasets
	ACNFs as annealed sampler for unbiased sampling and estimate of normalization constant
	Variational Inference with ACNFs

