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Supplementary Material

A. Regular representation and group convolu-

tion

A.1. Discrete group representation

Regular group representation. The regular representa-
tion of a finite group G = {g1, . . . , gN} acts on a vector
space R|G|. For any element g → G, the regular representa-
tion ω

G

reg(g) is defined as:

ω
G

reg(g) = [eg·g1 , . . . , eg·gN ], (1)

where each group element gi → G is associated with a ba-
sis vector egi → R|G|. In regular representation, ω

G

reg(g) →
R|G|→|G| is a permutation matrix that maps each basis vec-
tor egi to eg·gi for all gi → G.

Cyclic group representation. The cyclic group CN ,
consisting of N discrete planar rotations, is defined as
{r

0
, r

1
, . . . , r

(N↑1)} with rotation generator r. With the
group law r

a · r
b = r

(a+b) mod N , the regular representa-
tion of r

n is given by:

ω
CN
reg (rn) = [ern , er(n+1) mod N , . . . , er(n+N→1) mod N ], (2)

where the basis vectors are defined from:

ω
CN
reg (r0) = IN , (3)

where IN being the N↑N identity matrix. Here, the regular
representation of the cyclic group corresponds to a cyclic
permutation matrix.

Dihedral group representation. The dihedral group
DN = {r

0
, . . . , r

N↑1
, b, rb, . . . , r

N↑1
b}, consisting of 2N

elements, is an extension of the cyclic group that includes
an additional reflection generator b. The regular representa-
tion of the element r

n
b is given by:

ω
DN
reg (rn

b) = [ernb, ernb·r, . . . , ernb·rN→1 ,

ernb·b, ernb·rb, . . . , ernb·rN→1b] (4)

using the group laws b
2 = e and r

n
b = br

↑n. By changing
the order of cyclic rotation and reflection, the equation can
be transformed as:

ω
DN
reg (brn) = [ebrn , ebrn·r, . . . , ebrn·rN→1 ,

ebrn·b, ebrn·rb, . . . , ebrn·rN→1b] (5)

The basis vectors for the dihedral group are defined from:

ω
DN
reg (r0

b
0) = I2N . (6)

A.2. Discrete group convolution

Conventional convolutional neural networks (CNNs) are in-
herently equivariant to translations, meaning that a transla-
tion of the input results in a corresponding translation of
the output. The standard 2D convolution operation can be
expressed as:

(f ↓ ε) (x) =
∑

y↓Z2

f (y) ε (x ↔ y) , (7)

where f : Z2 ↗ RCin is the input function with Cin chan-
nels, ε : Z2 ↗ RCin→Cout is the filter, and x,y → Z2

are spatial coordinates. Here, plane feature map is defined
only along the spatial dimension Z2. To associate discrete
group within the feature map, an additional dimension cor-
responding to the group G should be constructed, result-
ing in the mapping fG : G ↑ Z2 ↗ RC . In the discrete
group convolution, this additional dimension is constructed
through the lifting operation:

fG =
⊕

g↓G

(f ↓ gε) . (8)

The order of the stack corresponds to the order of group el-
ements in the initial state. Since the lifted feature map con-
tains features corresponding to each group element, trans-
formations must account for both spatial changes and the
group structure. Applying a specific group element g

↔ → G

to the lifted feature map thus requires both spatial transfor-
mation and permutation of the group dimension:

(g↔ · fG)(x) = ω
G

reg(g
↔) · fG(g↔↑1x), (9)

where ω
G

reg(g
↔) is the block diagonal form of the regular

representation of g
↔ repeated C times, permuting along the

group dimension, while g
↔↑1 ·x applies the spatial transfor-

mation. Following the lifting operation, group convolution
for the lifted feature map is defined as:

[fG ↓G ε] (g,x)

=
∑

g↑↓G

∑

y↓Z2

fG (g↔
,y)

[
ω

G

reg(g)ε(g↑1(x ↔ y))
]
(g↔).

(10)

Here, ε : G↑Z2 ↗ RCin→Cout represents the group con-
volution filter, where fG : G ↑ Z2 ↗ RCin is the lifted fea-
ture map, and g, g

↔ → G are group elements of G. The key
property of group convolution is its equivariance to group
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elements, expressed as:

[(g↔ · fG) ↓G ε](x) = [g↔ · (fG ↓G ε)](x)

= ω
G

reg(g
↔) · (fG ↓G ε)(g↔↑1 · x),

(11)

for any g
↔ → G. Here, (g↔ · fG) ↓G ε represents the

group convolution applied to the transformed input, while
g

↔ · (fG ↓G ε) is the action of g
↔ on the result of the group

convolution. This equality demonstrates that the order of
applying group transformations and group convolutions is
interchangeable, preserving the group structure throughout
the network layers.

B. Cyclic group-equivariance of the reflec-

tional matching

B.1. Cyclic group-equivariance of the single fiber

reflectional matching

Given a DN -equivariant feature map F → RC|DN |→H→W

under the regular representation ωreg, we need to prove that
H from Reflectional Matching without spatial expansion is
equivariant to the cyclic group CN with its element r

k:

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,k)

x , ω
DN
reg (brn)F(0,k)

x

)

= ω
DN
reg (rk)

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,0)

x , ω
DN
reg (brn)F(0,0)

x

)
,

(12)

where F(l,n)
x is the fiber at position x, with the regular rep-

resentation corresponding to l reflections and n rotations
added. Using the property ω(g)ω(h) = ω(gh), the equation
can be rewritten as:

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,k)

x , ω
DN
reg (brn)F(0,k)

x

)

=
N↑1⊕

n=0

h

(
ω

DN
reg (rk+n)F(0,0)

x , ω
DN
reg (brk+n)F(0,0)

x

)
. (13)

Here, h is the similarity function defined as:

h(f1
, f2) =

C⊕

c=1

f1
c

· f2
c

↘f1
c
↘↘f2

c
↘ → RC

, (14)

Since permutation matrices preserve the norm of a vector,
and using the rule r

a+b = r
(a+b) mod N , the equation can

be reformulated as:

N→1⊕

n=0

C⊕

c=1

1

→F(0,0)
c,x →2

(
ωDN
reg (rk+n)F(0,0)

c,x · ωDN
reg (brk+n)F(0,0)

c,x

)

=
C⊕

c=1

1

→F(0,0)
c,x →2

N→1⊕

n=0

(
ωDN
reg (rk+n)F(0,0)

c,x · ωDN
reg (brk+n)F(0,0)

c,x

)

(15)

=
C⊕

c=1

1

→F(0,0)
c,x →2

k+N→1⊕

n=k

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)

(16)

=
C⊕

c=1

1

→F(0,0)
c,x →2

ωDN
reg (rk)

N→1⊕

n=0

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)
(17)

= ωDN
reg (rk)

C⊕

c=1

1

→F(0,0)
c,x →2

N→1⊕

n=0

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)
(18)

= ωDN
reg (rk)

N→1⊕

n=0

h
(
ωDN
reg (rn)F(0,0)

x ,ωDN
reg (brn)F(0,0)

x

)
, (19)

where Fc,x denotes the feature at position x in channel c.

B.2. Cyclic group equivariance of spatially ex-

panded reflectional matching

We now have to to prove the spatial expansion of single
fiber Reflectional Matching is also equivariant to the cyclic
group CN :

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,k)

x+rk+n(q)
,ωDN

reg (brn)F(0,k)

x+brk+n(q)

)

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,0)

x+rn(q),ω
DN
reg (brn)F(0,0)

x+brn(q)

)
,

(20)

where q ↑ Q is the offset, rn(q) represents the spatially rotated
offset, and brn(q) denotes the offset that is first rotated and then
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reflected. Same as single fiber, the equation can be written as:

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rk+n)F(0,0)

x+rk+n(q)
,

ωDN
reg (brk+n)F(0,0)

x+brk+n(q)

)

=
N→1⊕

n=0

∑

q↑Q

C⊕

c=1

ωDN
reg (rk+n)F(0,0)

c,x+rk+n(q)
·

→F(0,0)

c,x+rk+n(q)
→→F(0,0)

c,x+brk+n(q)
→

· ωDN
reg (brk+n)F(0,0)

c,x+brk+n(q)
(21)

=
C⊕

c=1

k+N→1⊕

n=k

∑

q↑Q

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (22)

=
C⊕

c=1

ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (23)

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

C⊕

c=1

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (24)

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,0)

x+rn(q),

ωDN
reg (brn)F(0,0)

x+brn(q)

)
. (25)
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