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Axis-level Symmetry Detection with Group-Equivariant Representation

Supplementary Material

A. Regular representation and group convolu-751

tion752

A.1. Discrete group representation753

Regular group representation. The regular representa-754

tion of a finite group G = {g1, . . . , gN} acts on a vector755

space R|G|. For any element g → G, the regular representa-756

tion ω
G

reg(g) is defined as:757

ω
G

reg(g) = [eg·g1 , . . . , eg·gN ], (1)758

where each group element gi → G is associated with a ba-759

sis vector egi → R|G|. In regular representation, ω
G

reg(g) →760

R|G|→|G| is a permutation matrix that maps each basis vec-761

tor egi to eg·gi for all gi → G.762

Cyclic group representation. The cyclic group CN ,763

consisting of N discrete planar rotations, is defined as764

{r
0
, r

1
, . . . , r

(N↑1)} with rotation generator r. With the765

group law r
a · r

b = r
(a+b) mod N , the regular representa-766

tion of r
n is given by:767

ω
CN
reg (rn) = [ern , er(n+1) mod N , . . . , er(n+N→1) mod N ], (2)768

where the basis vectors are defined from:769

ω
CN
reg (r0) = IN , (3)770

where IN being the N↑N identity matrix. Here, the regular771

representation of the cyclic group corresponds to a cyclic772

permutation matrix.773

Dihedral group representation. The dihedral group774

DN = {r
0
, . . . , r

N↑1
, b, rb, . . . , r

N↑1
b}, consisting of 2N775

elements, is an extension of the cyclic group that includes776

an additional reflection generator b. The regular representa-777

tion of the element r
n
b is given by:778

ω
DN
reg (rn

b) = [ernb, ernb·r, . . . , ernb·rN→1 ,779

ernb·b, ernb·rb, . . . , ernb·rN→1b] (4)780

using the group laws b
2 = e and r

n
b = br

↑n. By changing781

the order of cyclic rotation and reflection, the equation can782

be transformed as:783

ω
DN
reg (brn) = [ebrn , ebrn·r, . . . , ebrn·rN→1 ,784

ebrn·b, ebrn·rb, . . . , ebrn·rN→1b] (5)785

The basis vectors for the dihedral group are defined from:786

ω
DN
reg (r0

b
0) = I2N . (6)787

A.2. Discrete group convolution 788

Conventional convolutional neural networks (CNNs) are in- 789

herently equivariant to translations, meaning that a transla- 790

tion of the input results in a corresponding translation of 791

the output. The standard 2D convolution operation can be 792

expressed as: 793

(f ↓ ε) (x) =
∑

y↓Z2

f (y) ε (x ↔ y) , (7) 794

where f : Z2 ↗ RCin is the input function with Cin chan- 795

nels, ε : Z2 ↗ RCin→Cout is the filter, and x,y → Z2
796

are spatial coordinates. Here, plane feature map is defined 797

only along the spatial dimension Z2. To associate discrete 798

group within the feature map, an additional dimension cor- 799

responding to the group G should be constructed, result- 800

ing in the mapping fG : G ↑ Z2 ↗ RC . In the discrete 801

group convolution, this additional dimension is constructed 802

through the lifting operation: 803

fG =
⊕

g↓G

(f ↓ gε) . (8) 804

The order of the stack corresponds to the order of group el- 805

ements in the initial state. Since the lifted feature map con- 806

tains features corresponding to each group element, trans- 807

formations must account for both spatial changes and the 808

group structure. Applying a specific group element g
↔ → G 809

to the lifted feature map thus requires both spatial transfor- 810

mation and permutation of the group dimension: 811

(g↔ · fG)(x) = ω
G

reg(g
↔) · fG(g↔↑1x), (9) 812

where ω
G

reg(g
↔) is the block diagonal form of the regular 813

representation of g
↔ repeated C times, permuting along the 814

group dimension, while g
↔↑1 ·x applies the spatial transfor- 815

mation. Following the lifting operation, group convolution 816

for the lifted feature map is defined as: 817

[fG ↓G ε (g,x) 818

=
∑

g↑↓G

∑

y↓Z2

fG (g↔
,y)

[
ω

G

reg(g)ε(g↑1(x ↔ y))
]
(g↔).

(10)

819

Here, ε : G↑Z2 ↗ RCin→Cout represents the group con- 820

volution filter, where fG : G ↑ Z2 ↗ RCin is the lifted fea- 821

ture map, and g, g
↔ → G are group elements of G. The key 822

property of group convolution is its equivariance to group 823
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elements, expressed as:824

[(g↔ · fG) ↓G ε](x) = [g↔ · (fG ↓G ε)](x)825

= ω
G

reg(g
↔) · (fG ↓G ε)(g↔↑1 · x),

(11)
826

for any g
↔ → G. Here, (g↔ · fG) ↓G ε represents the827

group convolution applied to the transformed input, while828

g
↔ · (fG ↓G ε) is the action of g

↔ on the result of the group829

convolution. This equality demonstrates that the order of830

applying group transformations and group convolutions is831

interchangeable, preserving the group structure throughout832

the network layers.833

B. Cyclic group-equivariance of the reflec-834

tional matching835

B.1. Cyclic group-equivariance of the single fiber836

reflectional matching837

Given a DN -equivariant feature map F → RC|DN |→H→W
838

under the regular representation ωreg, we need to prove that839

H from Reflectional Matching without spatial expansion is840

equivariant to the cyclic group CN with its element r
k:841

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,k)

x , ω
DN
reg (brn)F(0,k)

x

)
842

= ω
DN
reg (rk)

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,0)

x , ω
DN
reg (brn)F(0,0)

x

)
,

(12)

843

where F(l,n)
x is the fiber at position x, with the regular rep-844

resentation corresponding to l reflections and n rotations845

added. Using the property ω(g)ω(h) = ω(gh), the equation846

can be rewritten as:847

N↑1⊕

n=0

h

(
ω

DN
reg (rn)F(0,k)

x , ω
DN
reg (brn)F(0,k)

x

)
848

=
N↑1⊕

n=0

h

(
ω

DN
reg (rk+n)F(0,0)

x , ω
DN
reg (brk+n)F(0,0)

x

)
. (13)849

Here, h is the similarity function defined as:850

h(f1
, f2) =

C⊕

c=1

f1
c

· f2
c

↘f1
c
↘↘f2

c
↘ → RC

, (14)851

Since permutation matrices preserve the norm of a vector,852

and using the rule r
a+b = r

(a+b) mod N , the equation can853

be reformulated as: 854

N→1⊕

n=0

C⊕

c=1

1

→F(0,0)
c,x →2

(
ωDN
reg (rk+n)F(0,0)

c,x · ωDN
reg (brk+n)F(0,0)

c,x

)
855

=
C⊕

c=1

1

→F(0,0)
c,x →2

N→1⊕

n=0

(
ωDN
reg (rk+n)F(0,0)

c,x · ωDN
reg (brk+n)F(0,0)

c,x

)

(15)

856

=
C⊕

c=1

1

→F(0,0)
c,x →2

k+N→1⊕

n=k

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)

(16)

857

=
C⊕

c=1

1

→F(0,0)
c,x →2

ωDN
reg (rk) 858

N→1⊕

n=0

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)
(17) 859

= ωDN
reg (rk)

C⊕

c=1

1

→F(0,0)
c,x →2

860

N→1⊕

n=0

(
ωDN
reg (rn)F(0,0)

c,x · ωDN
reg (brn)F(0,0)

c,x

)
(18) 861

= ωDN
reg (rk)

N→1⊕

n=0

h
(
ωDN
reg (rn)F(0,0)

x ,ωDN
reg (brn)F(0,0)

x

)
, (19) 862

where Fc,x denotes the feature at position x in channel c. 863

B.2. Cyclic group equivariance of spatially ex- 864

panded reflectional matching 865

We now have to to prove the spatial expansion of single 866

fiber Reflectional Matching is also equivariant to the cyclic 867

group CN : 868

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,k)

x+rk+n(q)
,ωDN

reg (brn)F(0,k)

x+brk+n(q)

)
869

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,0)

x+rn(q),ω
DN
reg (brn)F(0,0)

x+brn(q)

)
,

(20)

870

where q ↑ Q is the offset, rn(q) represents the spatially rotated 871

offset, and brn(q) denotes the offset that is first rotated and then 872

reflected. Same as single fiber, the equation can be written as: 873
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N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rk+n)F(0,0)

x+rk+n(q)
,874

ωDN
reg (brk+n)F(0,0)

x+brk+n(q)

)
875

=
N→1⊕

n=0

∑

q↑Q

C⊕

c=1

ωDN
reg (rk+n)F(0,0)

c,x+rk+n(q)
·

→F(0,0)

c,x+rk+n(q)
→→F(0,0)

c,x+brk+n(q)
→

876

· ωDN
reg (brk+n)F(0,0)

c,x+brk+n(q)
(21)877

=
C⊕

c=1

k+N→1⊕

n=k

∑

q↑Q

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

878

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (22)879

=
C⊕

c=1

ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

880

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (23)881

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

C⊕

c=1

ωDN
reg (rn)F(0,0)

c,x+rn(q)·

→F(0,0)
c,x+rn(q)→→F

(0,0)
c,x+brn(q)→

882

· ωDN
reg (brn)F(0,0)

c,x+brn(q) (24)883

= ωDN
reg (rk)

N→1⊕

n=0

∑

q↑Q

h
(
ωDN
reg (rn)F(0,0)

x+rn(q),884

ωDN
reg (brn)F(0,0)

x+brn(q)

)
. (25)885

886
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