Axis-level Symmetry Detection with Group-Equivariant Representation

Supplementary Material

A. Regular representation and group convolu-
tion

A.l. Discrete group representation

Regular group representation. The regular representa-
tion of a finite group G = {g¢1,...,gn} acts on a vector
space R!C|. For any element g € G, the regular representa-

tion 0, (g) is defined as:

G

Ureg(g) = [eg'gu et 7eg'gN]7 (1)

where each group element g; € G is associated with a ba-
sis vector e, € RIl. In regular representation, 0%, (g) €
RIGIXIG] is a permutation matrix that maps each basis vec-
tor ey, to egy.4, forall g; € G.

Cyclic group representation. The cyclic group Cy,
consisting of N discrete planar rotations, is defined as
{r0 ¢t ... r(N=1} with rotation generator r. With the
group law 7¢ - 0 = p(atb) mod N “the reoylar representa-
tion of r" is given by:

Cn

Oren (Tn) = [ern ,€p(nt1) mod Ny .« .y €.(n+N—1) mod N], 2)

where the basis vectors are defined from:

oSN (19) = 1y, (3)
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where Iy being the N x N identity matrix. Here, the regular
representation of the cyclic group corresponds to a cyclic
permutation matrix.

Dihedral group representation. The dihedral group
Dy ={r% ...,7N=1 b,rb, ..., rN~1b}, consisting of 2N
elements, is an extension of the cyclic group that includes
an additional reflection generator b. The regular representa-
tion of the element 7™b is given by:
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using the group laws b? = e and b = br~". By changing
the order of cyclic rotation and reflection, the equation can
be transformed as:

oDx (br™) = [eprn, €prngey - -
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by €rnrhy - - -y €N 1] (5)
The basis vectors for the dihedral group are defined from:

oy (r°0°) = Ion. (6)

A.2. Discrete group convolution

Conventional convolutional neural networks (CNNs) are in-
herently equivariant to translations, meaning that a transla-
tion of the input results in a corresponding translation of
the output. The standard 2D convolution operation can be
expressed as:

(fx)(x)=> f@Mvx-y), (7)
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where [ : 7> — RCn is the input function with Cj, chan-
nels, ¢ : Z? — RCn*Cout is the filter, and x,y € Z>
are spatial coordinates. Here, plane feature map is defined
only along the spatial dimension Z2. To associate discrete
group within the feature map, an additional dimension cor-
responding to the group G should be constructed, result-
ing in the mapping f¢ : G x Z?> — RC. In the discrete
group convolution, this additional dimension is constructed
through the lifting operation:

fa=EP (f+gv). ®)
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The order of the stack corresponds to the order of group el-
ements in the initial state. Since the lifted feature map con-
tains features corresponding to each group element, trans-
formations must account for both spatial changes and the
group structure. Applying a specific group element ¢’ € G
to the lifted feature map thus requires both spatial transfor-
mation and permutation of the group dimension:

(9" fo) (%) = 01ig(9) - falg'™'x), ©)
where agg (¢') is the block diagonal form of the regular
representation of ¢’ repeated C times, permuting along the
group dimension, while ¢'~! - x applies the spatial transfor-
mation. Following the lifting operation, group convolution
for the lifted feature map is defined as:

[fa *c V] (9,%)
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Here, ¢ : G x Z? — RCn*Cout represents the group con-
volution filter, where fg : G x Z? — RS is the lifted fea-
ture map, and g, g’ € G are group elements of G. The key
property of group convolution is its equivariance to group



elements, expressed as:

(9" - fa) *a ¥I(x) = [9" - (fo *a ¥))(x)
ol (9) - (fa*xa ) (g™ %),

(1)

for any ¢ € G. Here, (¢ - fo) *¢ ¢ represents the
group convolution applied to the transformed input, while
g - (fc *c 1) is the action of ¢’ on the result of the group
convolution. This equality demonstrates that the order of
applying group transformations and group convolutions is
interchangeable, preserving the group structure throughout
the network layers.

B. Cyclic group-equivariance of the reflec-
tional matching

B.1. Cyclic group-equivariance of the single fiber
reflectional matching

Given a D y-equivariant feature map F € RCIPNIxHxW
under the regular representation oz, we need to prove that
H from Reflectional Matching without spatial expansion is
equivariant to the cyclic group Cy with its element 7*:
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where F(l ") is the fiber at position x, with the regular rep-
resentation corresponding to [ reflections and n rotations
added. Using the property o(g)o(h) = o(gh), the equation
can be rewritten as:
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Here, h is the similarity function defined as:

h(f, £%) = € RC, 14
@ ||f1||||sz (1

Since permutation matrices preserve the norm of a vector,
and using the rule 740 = p(e+b) mod N “the equation can

be reformulated as:
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where F. x denotes the feature at position x in channel c.

B.2. Cyclic group equivariance of spatially ex-
panded reflectional matching

We now have to to prove the spatial expansion of single
fiber Reflectional Matching is also equivariant to the cyclic
group Cy:
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where g € Q is the offset, r(q) represents the spatially rotated
offset, and br™(q) denotes the offset that is first rotated and then



reflected. Same as single fiber, the equation can be written as:
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