
Supplementary Material

A Discussion

A.1 Threat Model Discussion

In this section, we further discuss the threat model chosen by LAMP and compare it to the related
work. To make our attack as generic as possible, we relax common assumptions that have been
exploited to reconstruct client’s data in the literature before. In particular, LAMP is applicable even
if:

• The model’s word embeddings are not fine-tuned. As the gradients of the word embedding
vectors are non-zero for words that are contained in the client’s training data and zero
otherwise, revealing the gradients to the server will allow it to easily obtain the client
sequence up to reorder. This constitutes a serious breach of clients’ privacy and, thus, we
assume the word embeddings are not trainable.

• The model’s positional embeddings are not fine-tuned. Similarly to the word-embedding
gradients, Lu et al. [22] have recently demonstrated that for batch size B = 1 positional-
embedding gradients can leak client’s full sequence. To this end, we assume models without
trainable positional embeddings.

• The model’s transformer blocks contain no bias terms. Lu et al. [22] have also shown that
the popular attack by Phong et al. [28] can be applied on the bias terms of transformer blocks
to leak the client’s data. To this end, we assume models without transformer block biases.

• The transformer model is fine-tuned on a classification task. As language modeling tasks
are usually self-supervised, they often feed the same data to the model both as inputs
and outputs. Based on this observation, Fowl et al. [6] have recently shown that label
reconstruction algorithms can be used to obtain the client’s word counts. We thus assume
the more challenging binary classification setting.

• The server is honest-but-curious, i.e., it aims to learn as much as possible about clients’ data
from gradients but does not tamper with the learning protocol. While prior work has shown
that a malicious server can force a client to leak much more data [6], this is orthogonal to our
work. We focus on the honest-server setting instead, which is the harder setting to attack.

Note that the assumptions we make for our transformer networks can result in a small amount of
accuracy loss on the final fine-tuned model, but preserve the client’s data privacy much better. We
emphasize that while LAMP focuses on attacks in the harder setting, it is also applicable to the
simpler settings without modification.

A.2 Improvements over Prior Work

In this section, we outline the differences between LAMP and TAG, and we discuss how these
differences help LAMP to significantly improve its text data reconstruction from gradients compared
to TAG.

A major difference between the two methods is the introduction of our discrete optimization that
takes advantage of a GPT-2 language model to help reconstruct the token order better than TAG. Our
discrete optimization step is novel in several ways:

• It is based on a set of discrete transformations that fix common token reordering problems
arising from the continuous reconstruction.

• We take advantage of the perplexity computed by the existing language models such as
GPT-2 to evaluate the quality of different discrete transformations.

15



Table 6: Visualization of intermediate steps of text reconstruction from gradients, on a sequence from
the CoLA dataset. Note that TAG performs 2500 steps, as opposed to LAMPCos which terminates at
2000, as this is usually sufficient for convergence.
Iteration TAG LAMPCos

0 billie icaohwatch press former spirit technical trinity jessie maps extended evidence private peerage whatever

500 enough stadium six too 20 le was, many marbles have six. too.

1000 have stadium seven too three le. marble ; have six too many marbles.

1500 have respect six too manys, marble have six. too many marbles.

2000 have... six too many i, marble have six. too many marbles.

2500 have... six too manys, marble

Reference i have six too many marbles. i have six too many marbles.

Table 7: In this experiment we reconstruct 100 random selected sentences with our methods and the
baselines on the CoLA dataset and the BERTBASE (B=1) model 10 times with 10 different randomly
selected set of sentences. We report the mean and standard deviation of all ROUGE measures.

R-1 R-2 R-L

DLG 56.2 ± 5.0 6.5 ± 1.6 45.0 ± 2.6

TAG 74.4 ± 3.1 10.7 ± 1.8 53.0 ± 2.1

LAMPCos 87.8 ± 2.6 48.4 ± 5.5 74.6 ± 2.9

LAMPL2+L1
83.1 ± 3.7 40.7 ± 5.7 69.3 ± 3.6

• Finally, our discrete optimization is alternated with the continuous, allowing for both
take advantage of the result of the other which ultimately results in better token order
reconstruction (See our ablation in Sec. 5).

The other major difference between our method and existing work is the choice of the error function
Lrec used in the continuous part of the optimization. Our choice of reconstruction loss results in better
reconstruction of individual tokens and thus increases R-1. In particular, we show that the cosine error
function, previously applied in the image domain, can often outperform the error function suggested
by TAG for text reconstruction and introduce a regularization term Lreg that helps the continuous
optimization to converge faster to more accurate embeddings using prior knowledge about the vector
sizes of embeddings.

B Detailed Text Reconstruction Example

In Table 6, we show the intermediate steps of text reconstruction for a real example taken from our
experiments presented in Table 3. We can observe that LAMPCos reaches convergence significantly
faster than the TAG baseline, and that after only 500 iterations most words are already reconstructed
by our method.

C Additional Experiments

C.1 Dependency of Experimental Results to the Chosen Sentences

Throughout this paper, we conducted our experiments on the same 100 sequences randomly chosen
from the test portion of the datasets we attack. In this experiment, we show that our results are
consistent when different sets of 100 sequences are used. To achieve this, we ran the BERTBASE
CoLA experiment with B=1 on additional 10 different sets of 100 randomly chosen sentences from
the COLA test set. We report the mean ± one standard deviation of the resulting R-1, R-2 and R-L
metrics averaged across the 10 sets in Table 7. We see that the results are consistent with our original
findings.

16



Table 8: This experiment shows the trade-off between the final network accuracy (measured by MCC)
and the reconstruction quality from gradients with different percentages of zeroed-out gradient entries
on the CoLA dataset on BERTBASE (B=1).

Zeroed % MCC R-1 R-2 R-L

0 0.557 89.6 51.9 76.2
75 0.557 79.4 34.5 66.3
90 0.534 61.9 20.1 53.9
95 0.515 39.0 5.8 37.4
99 0.371 24.7 0.0 24.7

Table 9: This experiment shows the effect on reconstruction of the chosen number of initializations
ninit used in LAMPCos on all 3 datasets for BERTBASE (B=1).

CoLA SST-2 RottenTomatoes

ninit R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

1 87.3 48.1 73.2 87.4 60.8 78.8 63.7 16.6 43.8
500 89.6 51.9 76.2 88.8 56.9 77.7 64.7 16.3 43.1

C.2 Attacking Gradient Masking Defense

We experimented with a defense which zeroes out a percentage of elements in the gradient vector.
In Table 8 we vary the percentage and report MCC, R-1 and R-2. While zeroing out most gradients
weakens the attack, it also reduces utility (MCC) of the model.

C.3 Dependence on the Number of Initializations

In this section, we investigate the influence of our proposed initialization on the reconstructions of
LAMPCos by comparing a single random initialization (ninit = 1) with using our two-step initialization
procedure with ninit = 500 on the BERTBASE model and batch size of 1. The results are shown in
Table 9. We observe that the two-step initialization scheme consistently improves individual token
recovery (measured in terms of R-1) but may in some cases slightly degrade token ordering results
(measured in terms of R-2). Even though we used two-step initialization in the paper (it is strictly
better on one dataset and non-comparable to single random initialization on the remaining datasets),
it is indeed sometimes possible to get slightly better R-2 results with the latter.

D Additional Experimental Details

We run all of our experiments on a single NVIDIA RTX 2080 Ti GPU with 11 GB of RAM, except
for the experiments on BERTLARGE for which we used a single NVIDIA RTX 3090 Ti GPU with 24
GB of RAM instead.

As we explain in Sec. 5, we choose the hyperparameters of our methods using a grid search approach
on the CoLA and RottenTomatoes datasets. For CoLA, we first evaluated 50 hyperparameter
combinations on 10 randomly selected (in a stratified way with respect to length) sequences from
the training set (after removing the 100 test sequences). Then, we further evaluated the best 10
combinations on different 20 sequences from the training set. For RottenTomatoes, we picked
the hyperparameters from the same 10 best combinations and evaluated them on the same 20
additional sequences. For both LAMPCos and the baselines, we investigated the following ranges
for the hyperparameters: αlm ∈ [0.05, 0.2], αreg ∈ [0.01, 1], λ ∈ [0.001, 0.5], γ ∈ [0.8, 1], and
αtag ∈ [10−5, 102]. For LAMPL2+L1 , we consider αlm ∈ [30, 240] and αreg ∈ [10, 100], as the scale
of the loss values is orders of magnitude larger than in LAMPCos. We experimentally found that our
algorithm is robust with respect to the exact values of nc and nd, provided that they are sufficiently
large. To this end, we select nd = 200 because we found that the selected token order from the 200
random transformations is close to the optimal one according to Lrec(x)+αlmLlm(t) for the sentence
lengths present in our datasets. Similarly, we set nc = 75 (nc = 200 for BERTLARGE) which allows

17



our continuous optimization to significantly change the embeddings before applying the next discrete
optimization step in the process. Finally, we also observed the performance of our algorithm is robust
with respect to ninit, so we set it to 500 throughout the experiments. We note that compared to TAG
and DLG, the only additional hyperparameters we have to search over are αreg and αlm which makes
the grid search feasible for our methods.

The resulting hyperparameters for LAMPCos are αlm = 0.2, αreg = 1.0, λ = 0.01, γ = 0.89. In
contrast, the best hyperparameters for LAMPL2+L1 are αtag = 0.01, αlm = 60, αreg = 25, λ = 0.01,
γ = 0.89, as the loss Ltag is on a different order of magnitude compared to Lcos. In our experiments,
TAG’s best hyperparameters are αtag = 0.01, λ = 0.1, γ = 1.0 (no decay), which we also use for
DLG (with αtag = 0.0).

To account for the different optimizer used in BERTLARGE experiments, we tuned the learning rate
λ for all methods separately in this setting by evaluating each method on 5 different learning rates
in the range [0.01, 0.1] on 10 randomly selected sentences from the CoLA dataset. This resulted
in λ = 0.1 for DLG, and λ = 0.01 for TAG, LAMPCos, and LAMPL2+L1 . We applied the chosen
values of λ to all 3 datasets. Additionally, following Geiping et al. [8] we clip the gradient magnitudes
‖∇xLrec(x)‖2 for our BERTLARGE experiments to 1.0 for DLG and TAG and 0.5 for LAMPCos and
LAMPL2+L1

.

E Total Runtime of the Experiments

The BERTLARGE model experiments in Table 1 were the most computationally expensive to execute.
They took between 50 hours per experiment for the LAMPCos and LAMPL2+L1 methods and 70
hours for TAG, which executes two times more continuous optimization steps. Our experiments on
the rest of the networks for both the baselines and our methods on batch size 1 (B = 1) all took
between 8 and 16 hours to execute on a single GPU with our methods being up to 2x slower due
to the additional computational cost of our discrete optimization. Additionally, our experiments on
batch size 4 (B = 4) took between 8 and 36 hours to execute on a single GPU with our methods
being up to 4x slower due to the additional computational cost of our discrete optimization.

F Potential Negative Societal Impact of This Work

Our work is closely related to the existing works on gradients leakage attacks (See Sec. 2) which
are capable of breaking the privacy promise of FL e.g., Zhao et al. [41], Geiping et al. [7], Yin et al.
[40], Deng et al. [3]. Similar to these works, LAMP can be used to compromise the privacy of
client data in real-world FL setups, especially when no defenses are used by the clients. Our attack
emphasizes that text data, which is commonly used in federated settings [30], is highly vulnerable to
gradient leakage attacks, similarly to data in other domains, and that when FL is applied in practice
extra steps need to be taken to mitigate the potential risks. Further, in line with the related work, we
study a range of possible mitigations to our attack in Tables 1, 5 and 8 in the paper, thus promoting
possible practical FL implementations that will be less vulnerable including those defended with
Gaussian noise and gradient pruning and those using bigger batch sizes.

18


	Introduction
	Related Work
	Background
	Federated Learning
	Transformer Networks
	Calculating Perplexity on Pretrained Models

	Extracting Text with LAMP
	Notation
	Continuous Optimization
	Discrete Optimization
	Complete Reconstruction Attack

	Experimental Evaluation
	Conclusion
	Discussion
	Threat Model Discussion
	Improvements over Prior Work

	Detailed Text Reconstruction Example
	Additional Experiments
	Dependency of Experimental Results to the Chosen Sentences
	Attacking Gradient Masking Defense
	Dependence on the Number of Initializations

	Additional Experimental Details
	Total Runtime of the Experiments
	Potential Negative Societal Impact of This Work

