
Under review as a conference paper at ICLR 2024

STANHOP: SPARSE TANDEM HOPFIELD MODEL FOR
MEMORY-ENHANCED TIME SERIES PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present STanHop-Net (Sparse Tandem Hopfield Network) for multivari-
ate time series prediction with memory-enhanced capabilities. At the heart of
our approach is STanHop, a novel Hopfield-based neural network block, which
sparsely learns and stores both temporal and cross-series representations in a data-
dependent fashion. In essence, STanHop sequentially learn temporal represen-
tation and cross-series representation using two tandem sparse Hopfield layers.
In addition, StanHop incorporates two additional external memory modules: a
Plug-and-Play module and a Tune-and-Play module for train-less and task-aware
memory-enhancements, respectively. They allow StanHop-Net to swiftly respond
to certain sudden events. Methodologically, we construct the StanHop-Net by
stacking STanHop blocks in a hierarchical fashion, enabling multi-resolution fea-
ture extraction with resolution-specific sparsity. Theoretically, we introduce a
sparse extension of the modern Hopfield model and show that it endows a tighter
memory retrieval error compared to the dense counterpart without sacrificing
memory capacity. Empirically, we validate the efficacy of our framework on both
synthetic and real-world settings.

1 INTRODUCTION
In this work, we aim to enhance multivariate time series prediction by incorporating relevant addi-
tional information specific to the inference task at hand. This problem holds practical importance
due to its wide range of real-world applications. On one hand, multivariate time series prediction
itself poses a unique challenge given its multi-dimensional sequential structure and noise-sensitivity
(Masini et al., 2023; Reneau et al., 2023; Nie et al., 2022; Fawaz et al., 2019). A proficient model
should robustly not only discern the correlations between series within each time step, but also grasp
the intricate dynamics of each series over time. On the other hand, in many real-world prediction
tasks, one significant challenge with existing time series models is their slow responsiveness to sud-
den or rare events. For instance, events like the 2008 financial crisis and the pandemic-induced mar-
ket turmoil in 2021 (Laborda and Olmo, 2021; Bond and Dow, 2021; Sevim et al., 2014; Bussiere
and Fratzscher, 2006), or extreme climate changes in weather forecasting (Le et al., 2023; Sheshadri
et al., 2021) often lead to compromised model performance. To combat these challenges, we present
STanHop-Net (Sparse Tandem Hopfield Network), a novel Hopfield-based deep learning model,
for multivariate time series prediction, equipped with optional memory-enhanced capabilities.

Our motivation comes from the connection between associative memory models of human brain
(specifically, the modern Hopfield models) and the attention mechanism (Hu et al., 2023; Ramsauer
et al., 2020). Based on this link, we propose to enhance time series models with external information
(e.g., real-time or relevant auxiliary data) via the memory retrieval mechanism of Hopfield models.
In its core, we utilize and extend the deep-learning-compatible Hopfield layers (Hu et al., 2023;
Ramsauer et al., 2020). Differing from typical transformer-based architectures, these layers not only
replace the attention mechanisms (Ramsauer et al., 2020; Widrich et al., 2020) but also serve as
differentiable memory modules, enabling integration of external stimuli for enhanced predictions.

In this regard, we first introduce a set of generalized sparse Hopfield layers, as an extension of the
sparse modern Hopfield model (Hu et al., 2023). Based on these layers, we propose a structure
termed the STanHop (Sparse Tandem Hopfield layers) block. In STanHop, there are two sequen-
tially joined sub-blocks of generalized sparse Hopfield layers, hence tandem. This tandem design
sparsely learn and store temporal and cross-series representations in a sequential manner.

1

Under review as a conference paper at ICLR 2024

Furthermore, we introduce STanHop-Net (Sparse Tandem Hopfield Network) for time series, con-
sisting of multiple layers of STanHop blocks to cater for multi-resolution representation learning. To
be more specific, rather than relying only on the input sequence for predictions, each stacked Stan-
Hop block is capable of incorporating additional information through the Hopfield models’ memory
retrieval mechanism from a pre-specified external memory set. This capability facilitates the injec-
tion of external memory at every resolution level when necessary. Consequently, STanHop-Net not
only excels at making accurate predictions but also allows users to integrate additional information
they consider valuable for their specific downstream inference tasks with minimal effort.

We provide visual overviews of STanHop-Net in Figure 1 and STanHop block in Figure 2 .

Contributions. We summarize our contributions as follows:
• Theoretically, we introduce a sparse extension of the modern Hopfield model, termed the gen-

eralized sparse Hopfield model. We show that it not only offer a tighter memory retrieval error
bound compared to the dense modern Hopfield model (Ramsauer et al., 2020), but also retains
the robust theoretical properties of the dense model, such as fast fixed point convergence and
exponential memory capacity.

• Computationally, we show the one-step approximation of the retrieval dynamics of the gener-
alized sparse Hopfield model is connected to sparse attention mechanisms, akin to (Hu et al.,
2023; Ramsauer et al., 2020). This connection allows us to introduce the GSH layers featuring
learnable sparsity, for time series representation learning. As a result, these layers achieve faster
memory-retrieval convergence and greater noise-robustness compared to the dense model.

• Methodologically, with GSH layer, we present STanHop (Sparse Tandem Hopfield layers)
block, a hierarchical tandem Hopfield model design to capture the intrinsic multi-resolution
structure of both temporal and cross-series dimensions of time series with resolution-specific
sparsity at each level. In addition, we introduce the idea of pseudo-label retrieval, and de-
but two external memory plugin schemes — Plug-and-Play and Tune-and-Play memory plugin
modules — for memory-enhanced predictions.

• Experimentally, we validate STanHop-Net in multivariate time series predictions, considering
both with and without the incorporation of external memory. When external memory isn’t
utilized, STanHop-Net consistently matches or surpasses many popular baselines, including
Crossformer (Zhang and Yan, 2022) and DLinear (Zeng et al., 2023), across diverse real-world
datasets. When external memory is utilized, STanHop-Net demonstrates further performance
boosts in many settings, benefiting from both proposed external memory schemes.

Organization. Section 3 introduces the generalized sparse Hopfield model. Section 4 presents the
STanHop-Net. Section 5 provides experimental studies. Section 6 gives concluding discussions.
Finally, Appendix B discusses related works and limitations.

Notations. We write ⟨a,b⟩ := aTb as the inner product for vectors a,b. The index set {1, · · · , I}
is denoted by [I], where I ∈ N+. The spectral norm is denoted by ∥·∥, which is equivalent to
the l2-norm when applied to a vector. Throughout this paper, we denote the memory patterns
(keys) by ξ ∈ Rd and the state/configuration/query pattern by x ∈ Rd with n := ∥x∥, and
Ξ := (ξ1, · · · , ξM) ∈ Rd×M as shorthand for stored memoery (key) patterns {ξµ}µ∈[M]. More-
over, we set m := Maxµ∈[M] ∥ξµ∥ be the largest norm of memory patterns.

2 BACKGROUND: MODERN HOPFIELD MODELS

Let x ∈ Rd be the query pattern and Ξ = (ξ1, · · · , ξM) ∈ Rd×M the M memory patterns.

Hopfield Models. Hopfield models are associative models that store a set of memory patterns Ξ
in such a way that a stored pattern ξµ can be retrieved based on a partially known or contaminated
version, a query x. The models achieve this by embedding the memories Ξ in the energy landscape
E(x) of a physical system (e.g., the Ising model in (Hopfield, 1982) or its higher-order general-
izations (Lee et al., 1986; Peretto and Niez, 1986; Newman, 1988)), where each memory ξµ corre-
sponds to a local minimum. When a query x is introduced, the model initiates energy-minimizing
retrieval dynamics T at the query’s location. This process then navigate the energy landscape to
locate the nearest local minimum ξµ, effectively retrieving the memory most similar to the query x.

Constructing the energy function, E(x), is straightforward. As outlined in (Krotov and Hopfield,
2016), memories get encoded into E(x) using the overlap-construction: E(x) = F (ΞTx), where
F : RM → R is a smooth function. This ensures that the memories {ξµ}µ∈[M] sit at the stationary

2

Under review as a conference paper at ICLR 2024

points of E(x), given ∇xF (ΞTx)|ξµ
= 0 for all µ ∈ [M]. The choice of F results in different Hop-

field model types, as demonstrated in (Krotov and Hopfield, 2016; Demircigil et al., 2017; Ramsauer
et al., 2020; Krotov and Hopfield, 2020). However, determining a suitable retrieval dynamics, T ,
for a given energy E(x) is more challenging. For effective memory retrieval, T must:

(T1) Monotonically reduce E(x) when applied iteratively.
(T2) Ensure its fixed points coincide with the stationary points of E(x) for precise retrieval.

Modern Hopfield Models. Ramsauer et al. (2020) propose the modern Hopfield model with a spe-
cific set of E and T satisfying above requirements, and integrate it into deep learning architectures
via its strong connection with attention mechanism, offering enhanced performance, and theoreti-
cally guaranteed exponential memory capacity. Specifically, they introduce

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩+ Const., and TDense(x) = Ξ Softmax(βΞTx) = xnew, (2.1)

where ΞTx = (⟨ξ1,x⟩ , . . . , ⟨ξM ,x⟩) ∈ RM , lse (β, z) := log
(∑M

µ=1 exp{βzµ}
)
/β is the log-

sum-exponential for any given vector z ∈ RM and β > 0. Their analysis concludes that:

• TDense converges well (Ramsauer et al., 2020, Theorem 1,2) and can retrieve patterns accurately
in just one step (Ramsauer et al., 2020, Theorem 4), i.e. (T1) and (T2) are satisfied.

• The modern Hopfield model (2.1) possesses an exponential memory capacity in pattern size d
(Ramsauer et al., 2020, Theorem 3).

• Notably, the one-step approximation of TDense mirrors the attention mechanism in transformers,
leading to a novel deep architecture design: the Hopfield layers.

In a related vein, Hu et al. (2023) introduce a principled approach to constructing modern Hopfield
models using the convex conjugate of the entropy regularizer. Unlike the original modern Hopfield
model (Ramsauer et al., 2020), the key insight of (Hu et al., 2023) is that the convex conjugate of
various entropic regularizers can yield distributions with varying degrees of sparsity. Leveraging
this understanding, we introduce the generalized sparse Hopfield model in the next section.

3 GENERALIZED SPARSE HOPFIELD MODEL
In this section, we extend the entropic regularizer construction of the sparse modern Hopfield model
(Hu et al., 2023) by replacing the Gini entropic regularizer with the Tsallis α-entropy (Tsallis, 1988),

Ψα(p) :=

{
1

α(α−1)

∑M
µ=1

(
pµ − pαµ

)
, α ̸= 1,

1
2∥p∥

2 − 1
2 , α = 1,

, for α ≥ 1, (3.1)

thereby introducing the generalized sparse Hopfield model. Subsequently, we verify the connection
between the memory retrieval dynamics of the generalized sparse Hopfield model and attention
mechanism. This leads to the Generalized Sparse Hopfield (GSH) layers for deep learning.

3.1 ENERGY FUNCTION, RETRIEVAL DYNAMICS AND FUNDAMENTAL LIMITS

Let z,p ∈ RM , and ∆M := {p ∈ RM
+ |

∑M
µ pµ = 1} be the (M − 1)-dimensional unit simplex.

Energy Function. We introduce the generalized sparse Hopfield energy function1:

H(x) = −Ψ⋆
α

(
βΞTx

)
+

1

2
⟨x,x⟩+ Const., with Ψ⋆

α(z) :=

∫
dzα-EntMax(z), (3.2)

where α-EntMax(·) : RM → ∆M is a finite-domain distribution map defined as follows.

Definition 3.1. The variational form of α-EntMax is defined by the optimization problem
α-EntMax(z) := ArgMax

p∈∆M

[⟨p, z⟩ −Ψα(p)], (3.3)

where Ψα(·) is the Tsallis entropic regularizer given by (3.1).

Remark 3.1. Peters et al. (2019) provide a close-form expression for α-EntMax as

α-EntMax(z) = [(α− 1)z− τ(z)]
1

α−1 , (3.4)

where we denote [t]+ := max{t, 0}, and τ is the threshold function RM → R such that
∑M

µ=1[(α−
1)z− τ(z)]

1
α−1 = 1 satisfies the normalization condition of probability distribution.

1This energy function (3.2) is equivalent up to an additive constant.

3

Under review as a conference paper at ICLR 2024

Intuitively, Ψ⋆
α(p) is the convex conjugate of the Tsallis entropic regularizer Ψα(p) and hence

Lemma 3.1. ∇Ψ⋆
α(z) = ArgMaxp∈∆M [⟨p, z⟩ −Ψα(p)] = α-EntMax(z).

Proof. See Appendix C.1 for a detailed proof.
Retrieval Dynamics. With Lemma 3.1, it is clear to see that the energy function (3.2) aligns with
the overlap-function construction of Hopfield models, as in (Hu et al., 2023; Ramsauer et al., 2020).
Next, we introduce the corresponding retrieval dynamics satisfying the monotinicity property (T1).

Lemma 3.2 (Generalized Sparse Hopfield Retrieval Dynamics). Let t be the iteration number. The
retrieval dynamics of the generalized sparse Hopfield model is a 1-step update of the form

T (xt) := ∇xΨ
⋆
α

(
βΞTxt

)
= α-EntMax

(
βΞTxt

)
= xt+1, (3.5)

that minimizes the energy function (3.2) monotonically over t.

Proof. See Appendix C.2 for a detailed proof.
To see how this model store and retrieve memory patterns, we first introduce the following definition.

Definition 3.2 (Stored and Retrieved). Assuming that every pattern ξµ surrounded by a sphere Sµ

with finite radius R := 1
2 Minµ,ν∈[M] ∥ξµ − ξν∥, we say ξµ is stored if there exists a generalized

fixed point of T , x⋆
µ ∈ Sµ, to which all limit points x ∈ Sµ converge to, and Sµ∩Sν = ∅ for µ ̸= ν.

We say ξµ is ϵ-retrieved by T with x for an error ϵ, if ∥T (x)− ξµ∥ ≤ ϵ.

To ensure the convergence property (T2) of retrieval dynamics (3.5), we have the next lemma.

Lemma 3.3 (Convergence of Retrieval Dynamics T). Given the energy function (3.2) and retrieval
dynamics T (x) (3.5), respectively. For any sequence {xt}∞t=0 generated by the iteration xt′+1 =
T (xt′), all limit points of this sequence are stationary points ofH.

Proof. See Appendix C.3 for a detailed proof.
Intuitively, Lemma 3.3 suggests that for any query x, T (given by (3.5)) monotonically and itera-
tively approaches stationary points ofH (given by (3.2)), where the memory patterns {ξµ}µ∈[M] are
stored. This completes the construction of a well-defined modern Hopfield model.

Fundamental Limits. To highlight the computational benefits of the generalized sparse Hopfield
model, we analyze the fundamental limits of the memory retrieval error and memory capacity.

Theorem 3.1 (Retrieval Error). Let TDense be the retrieval dynamics of the dense modern Hopfield
model (Ramsauer et al., 2020). For all x ∈ Sµ, it holds ∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥, and

for 2 ≥ α ≥ 1, ∥T (x)− ξµ∥ ≤ 2m(M − 1) exp

{
−β
(
⟨ξµ,x⟩ − Max

ν∈[M]
⟨ξµ, ξν⟩

)}
, (3.6)

for α ≥ 2, ∥T (x)− ξµ∥ ≤ m+ d
1/2mβ

[
κ

(
Max
ν∈[M]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
. (3.7)

Corollary 3.1.1 (Noise-Robustness). In cases of noisy patterns with noise η, i.e. x̃ = x+ η (noise
in query) or ξ̃µ = ξµ + η (noise in memory), the impact of noise η on the sparse retrieval error
∥T (x)− ξµ∥ is linear for α ≥ 2, while its effect on the dense retrieval error ∥TDense(x)− ξµ∥ (or
∥T (x)− ξµ∥ with 2 ≥ α ≥ 1) is exponential.

Proof. See Appendix C.4 for a detailed proof.
Intuitively, Theorem 3.1 implies the sparse model converge faster to memory patterns than the dense
model (Ramsauer et al., 2020), and the larger sparsity leads the lower retrieval error.

Lemma 3.4 (Memory Capacity Lower Bound). Suppose the probability of successfully storing and
retrieving memory pattern is given by 1−p. The number of memory patterns sampled from a sphere
of radius m that the sparse Hopfield model can store and retrieve has a lower bound: M ≥ √pC d−1

4 ,
where C is the solution for C = b/W0(exp{a+ln b}) with W0(·) being the principal branch of Lambert
W function (Olver et al., 2010), a := 4/d−1

{
ln [2m(

√
p−1)/(R+δ)] + 1

}
and b := 4m2β/5(d−1). For

sufficiently large β, the sparse Hopfield model has a larger lower bound on the exponential-in-d
memory capacity compared to that of dense counterpart (Ramsauer et al., 2020): M ≥MDense.

4

Under review as a conference paper at ICLR 2024

Figure 1: STanHop-Net Overview. Patch Embedding: Given an input multivariate time series X ∈
RC×T×d consisting C univariate series, T time steps and d features, the patch embedding aggregates temporal
information for each univariate series, subsequently reducing temporal dimensionality from T to P = T/P
for all d features. STanHop Block: The STanHop block leverages the Generalized Sparse Hopfield (GSH)
model (Section 3). It captures time series representations from its input through two tandem sparse-Hopfield-
layers sub-blocks (i.e. TimeGSH and SeriesGSH, see Figure 2), catering to both temporal and cross-series
dimensions. STanHop-Net: Using a stacked encoder-decoder structure, STanHop-Net facilitates hierarchical
multi-resolution learning. This design allows STanHop-Net to extract distill representations from both temporal
and cross-series dimensions across multiple scales (multi-resolution in a hardwired fashion via coarse-graining
layers, see Section 4.4). Moreover, each stacked block has optional external memory plugin functionalities for
enhanced predictions (Section 4.3). These representations from all resolutions are then merged, providing a
holistic representation learning for downstream predictions specially tailored for time series data.

Proof. See Appendix C.5 for a detailed proof.

Lemma 3.4 offers a lower bound on the count of patterns effectively stored and retrievable by T with
a minimum precision of R, as defined in Definition 3.2. Essentially, the capacity of the generalized
sparse Hopfield model to store and retrieve patterns grows exponentially with pattern size d. This
mirrors findings in (Hu et al., 2023; Ramsauer et al., 2020). Notably, when α = 2, the results of
Theorem 3.1 and Lemma 3.4 reduce to those of (Hu et al., 2023).

3.2 GENERALIZED SPARSE HOPFIELD (GSH) LAYERS FOR DEEP LEARNING

Now we introduce the Generalized Sparse Hopfield (GSH) layers for deep learning, by drawing the
connection between the generalized sparse Hopfield model and attention mechanism.

Generalized Sparse Hopfield (GSH) Layer. Following (Hu et al., 2023), we extend (3.5) to multiple
queries X := {xi}i∈[T]. From previous section, we say that the Hopfield model, as defined by
(3.2) and (3.5), functions within the associative spaces X and Ξ. Given any raw query R and
memory Y that are input into the Hopfield model2, we compute X and Ξ as XT = RWQ := Q
and ΞT = YWK := K, using matrices WQ and WK . Therefore, we rewrite T in (3.5) as
(Qnew)

T
= KT α-EntMax

(
βKQT

)
. Taking transpose and projecting K to V with WV , we have

Z := QnewWV = α-EntMax
(
βQKT

)
KWV = α-EntMax

(
βQKT

)
V, (3.8)

which leads to the attention mechanism with α-EntMax activation function. Plugging back the raw
patterns R and Y, we arrive the foundation of the Generalized Sparse Hopfield (GSH) layer,

GSH (R,Y) = Z = α-EntMax
(
βRWQW

T
KYT

)
YWKWV . (3.9)

By (3.6), T retrieves memory patterns with high accuracy after a single activation. This allows (3.9)
to integrate with deep learning architectures just like (Hu et al., 2023; Ramsauer et al., 2020).
Remark 3.2. α is a learnable parameter (Correia et al., 2019), enabling GSH to learn input sparsity.

GSHPooling and GSHLayer Layers. Following (Hu et al., 2023), we introduce two more variants:
the GHSPooling and GSHLayer layers. They are similar to the GSH, and only differ in how to obtain
the associative sets Q,Y. For GHSPooling (Y), K = YWK ,V = KWV , and Q is a learnable
variable independent from any input. For GSHLayer (R,Y), we have K = V = Y, and Q = R.
Note that GSHLayer can have Q as learnable parameter or as an input. Where if Q was served as
an input, the whole GSHLayer has no learnable parameters and can be used as a lookup table. We
provide an example of memory retrieval for image completion using GSHLayer in Appendix D.3.

4 METHODOLOGY
In this section, we introduce a Hopfield-based deep architecture (STanHop-Net) tailored for
memory-enhanced learning of noisy multivariate time series. These additional memory-enhanced

2The raw query R and memory Y may originate from data, external sets, or hidden representations through-
out a given deep learning pipeline. They are not necessarily usable as X and Ξ. Therefore, to use (3.5), they
must be mapped into d-dimensional associative spaces.

5

Under review as a conference paper at ICLR 2024

functionalities enable STanHop-Net to effectively handle the problem of slow response to sudden
or rare events (e.g, 2021 pandemic meltdown in financial market) by making predictions using both
in-context inputs (e.g., historical data) and external stimuli (e.g., real-time or relevant past data). In
the following, we consider multivariate time series X ∈ RC×T×d comprised of C univariate series.
Each univariate series has T time steps and d features.

4.1 PATCHED EMBEDDING
Motivated by (Zhang and Yan, 2023), we use a patching technique on model input that groups adja-
cent time steps into subseries patches. This method extends the input time horizon without altering
token length, enabling us to capture local semantics and critical information more effectively, which
is often missed at the point-level. We define the multivariate input sequence as X ∈ RC×T×d, where
C, T, d denotes the number of variates, number of time steps and the number of dimensions of each
variate. Given a time series sequence X = {x1, ...,xT } and a patch size P , the patching operation
divides X into S = {s1, ..., sT/P }. For each patched sequence si ∈ RC×P×d for i ∈ [T/P], we
define the patched embedding as EMB (si) = Eembsi+Epos (i) ∈ RDemb , where Demb is the embed-
ding dimension, Eemb ∈ RDemb×P , and Epos ∈ RT/P×Demb is the positional encoding. When T is
not divisible to P , assuming T = P × Cn + c with Cn, c ∈ N+, we pad the sequence by repeating
the first c elements in the sequence. Consequently, this patching embedding significantly improves
computational efficiency and memory usage.

4.2 STANHOP: SPARSE TANDEM HOPFIELD BLOCK

We introduce STanHop (Sparse Tandem Hopfield) block which comprises one GSHLayer-based
external memory plugin module, and two tandem sub-blocks of GSH layers to process both time
and series dimensions, i.e. TimeGSH and SeriesGSH sub-blocks in Figure 2. In essence, STanHop
not only sequentially extracts temporal and cross-series information of multivariate time series with
(learnable) data-dependent sparsity, but also utilizes both acquired (in-context) representations and
external stimulus through the memory plugin modules for the downstream prediction tasks.

Given a hidden vector, R ∈ RC×T×Dhidden , and its corresponding external memory set Y ∈
RM×C×T×Dhidden , where C denotes the channel number and T denotes the number of time seg-
ments (patched time steps), To clarify, the GSH layer only operates on the last two dimensions, i.e.,
t ∈ T and d ∈ Dhidden. Thus, the operation GSH (Z,Z) extracts information of the temporal dynam-
ics of Z from the segmented time series. Here we define the dimensional transpose operation T.
For a given tensor X ∈ Ra×b×c, we have Tacb

abc(X) := X′ ∈ Ra×c×b, i.e. this operation rearranges
the dimensions of the original tensor X from (a, b, c) to a new order (a, c, b). Given a set of query
pattern Q ∈ RlenQ×Dhidden , we define a single block of STanHop as

Z = Memory (R,Y) , (Memory Plugin Module, see Section 4.3)

Zt = Tcth
tch (LayerNorm (Z+ FF (GSH(Z,Z)))) ∈ RT×C×Dhidden , (Temporal GSH)

Zp = GSHPooling
(
R⋆,Zt

)
∈ RT×lenQ×Dhidden , (R⋆ is learnable and randomly initialized)

Zc = GSH
(
Zt,Zp

)
∈ RT×C×Dhidden , (Cross-series GSH)

Z∗ = LayerNorm
(
Zt + FF (Zc)

)
∈ RT×C×Dhidden ,

Zout = LayerNorm (Z∗ + FF(Z∗)) ∈ RT×C×Dhidden ,

where Memory(·, ·) is the external memory plugin module introduced in the next section. Note that,
if we choose to turn off the external memory functionalities (or external memory is not available)
during training, we set Y = R such that Memory(R,R) = R (see Section 4.3 for details). Here
GSHPooling(R⋆,Zt) takes Zt and a randomly initialized query R⋆ as input. Importantly, R⋆ not
only acts as learnable prototype patterns learned by pooling over Zt, but also as a knob to control
the computational complexity by picking the hidden dimension of R⋆. We summarize the STanHop
block as Zout = STanHop (R,Y) ∈ RT×C×Dhidden .

4.3 EXTERNAL MEMORY PLUGIN MODULE AND PSEUDO-LABEL RETRIEVAL
Here we introduce the external memory modules (i.e., Memory(·, ·) in Section 4.2 or Memory Plugin
blocks in Figure 2) for external memory functionalities. These modules are tailored for time series
modeling by incorporating task-specific supplemental information (such as relevant historical data
for sudden or rare events predictions) for subsequent inference. To this end, we introduce two
memory plugin modules: Plug-and-Play Memory Plugin and Tune-and-Play Memory Plugin.
For query R and memory Y, we denote them by PlugMemory(R,Y) and TuneMemory(R,Y).

6

Under review as a conference paper at ICLR 2024

Figure 2: STanHop Block. (Left) Tandem Hopfield-Layer Blocks: TimeGSH and SeriesGSH. Notably, in
the GSHPooling block of SeriesGSH, the learnable query R⋆ is initialized randomly and employed to store
learned prototype patterns from temporal representations extracted during training. (Right) Plug-and-Play and
Tune-and-Play Memory Plugins.
Plug-and-Play Memory Plugin. This module enables performance enhancement utilizing external
memory without any fine-tuning. Given a trained STanHop-Net (without external memory), we
use a parameter fixed GSHLayer for memory retrieval. Explicitly, given an input sequence R ∈
R|R|×Dhidden and a corresponding external memory set Y ∈ RM×|R|×d, where |R| and Dhidden are the
sequence length and hidden dimension of R respectively. We define the memory retrieval operation
as Z = PlugMemory (R,Y) = LayerNorm (R+ GSHLayer (R,Y)) with all parameters fixed.

Tune-and-Play Memory Plugin. Here we propose the idea of “pseudo-label retrieval” using
GSHLayer for time series prediction. Specifically, we use modern Hopfield models’ memory re-
trieval mechanism to generate pseudo-labels for a given R from a label-included memory set
Ỹ, thereby enhancing predictions. Intuitively, this method supplements predictions by learning
from demonstrations and we use the retrieved pseudo-labels (i.e., learned pseudo-predictions) as
additional features. An illustration of this mechanism is shown in Figure 2. Firstly, we pre-
pare the label-included external memory as Ỹ = Y ⊕ Ylabel, where Ỹ is the concatenation of
memory sequences and their corresponding labels. Next, we denote the padded R as R̃, where
R̃ ∈ R|Ỹ|×d. And we utilize the GSHLayer to retrieve the pseudo-label from the memory se-
quences as Zout. Then we concatenate R and the pseudo-label Zout and send it to a feed forward
layer to encode the pseudo-label information: Zout = GSHLayer(R̃, Ỹ), Zpseudo = R ⊕ Zout and
then Z̃ = LayerNorm (FF (Zpseudo) + Zpseudo). In other words, we first obtain a weight matrix from
the association between R̃ and Ỹ, and then multiply this weight matrix with Ylabel to obtain Zout.
We summarize the Tune-and-Play memory plugin as Z̃ = TuneMemory(R,Y).

4.4 COARSE-GRAINING
To cope with the intrinsic multi-resolution inductive bias of time series, we introduce a coarse-
graining layer in each STanHop block. Given an hidden vector output, Z ∈ RC×T×Dhidden , grain
level ∆, and a weight matrix W ∈ RDhidden×2Dhidden , and ⊕ denotes the concatenation operation. We
denote Zc,t,d with c ∈ [C], t ∈ [T], d ∈ [Dhidden] as the element representing the c-th series, t-th time
segment, and d-th dimension. The coarse-graining layer consists a vector concatenation and a matrix
multiplication: Ẑc,t,: = Zc,t,: ⊕ Zc,t+∆,: ∈ R2Dhidden and then Z̃c,t,: = WẐc,t,: ∈ RDhidden , such that
Ẑ ∈ RC×T×2Dhidden and Z̃ ∈ RC×T×Dhidden , similar to (Liu et al., 2021b; Zhang and Yan, 2023).
Operationally, it first obtains the representation of smaller resolution, and then distills information
via a linear transformation. We express this course-graining layer as CoarseGrain (Z,∆) = Z̃.

4.5 MULTI-LAYER STANHOP FOR MULTI-RESOLUTION LEARNING
Finally, we construct the STanHop-Net by stacking STanHop blocks in a hierarchical fashion, en-
abling multi-resolution feature extraction with resolution-specific sparsity. Given a prediction win-
dow size P ∈ R, number of layer L ∈ R, and a learnable positional embedding for the decoder
Edec, we construct our multi-layer STanHop as an autoencoder structure. The encoder structure
consists of a course-graining operation first, following by an STanHop layer. The decoder follows
the similar structure as the standard transformer decoder (Vaswani et al., 2017), but we replace the
cross-attention mechanism to a GSH layer, and self-attention layer as STanHop layer. We summarize
the STanHop-Net network structure in Figure 1, and in Algorithm 2 in appendix.

7

Under review as a conference paper at ICLR 2024
Table 1: Accuracy Comparison for Multivariate Time Series Predictions without External Memory.
We implement 3 STanHop variants, STanHop-Net (D) with Dense Hopfield layer (Ramsauer et al., 2020),
STanHop-Net (S) with Sparse SparseHopfield layer (Hu et al., 2023) and STanHop-Net with our GSH layer
respectively. We report the average Mean Square Error (MSE) and Mean Absolute Error (MAE) metrics of 10
runs, with variance omitted as they are all ≤ 0.44%. We benchmark our method against leading transformer-
based methods (FEDformer (Zhou et al., 2022), Informer (Zhou et al., 2021) and Autoformer (Wu et al., 2021),
Crossformer (Zhang and Yan, 2022)) and a linear model with seasonal-trend decomposition (DLinear (Zeng
et al., 2023)). We evaluate each dataset with different prediction horizons (showed in the second column). We
have the best results bolded and the second best results underlined. In 47 out of 58 settings, STanHop-Nets
rank either first or second. Our results indicate that our proposed STanHop-Net delivers consistent top-tier
performance compared to all the baselines, even without external memory.

Models FEDFormer DLinear Informer Autoformer Crossformer STanHop-Net (D) STanHop-Net (S) STanHop-Net
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.318 0.384 0.312 0.355 0.577 0.549 0.439 0.440 0.305 0.367 0.301 0.363 0.298 0.360 0.294 0.351
48 0.342 0.396 0.352 0.383 0.685 0.625 0.429 0.442 0.352 0.394 0.356 0.406 0.355 0.399 0.340 0.387

168 0.412 0.449 0.416 0.430 0.931 0.752 0.493 0.479 0.410 0.441 0.398 0.440 0.419 0.458 0.398 0.437
336 0.456 0.474 0.450 0.452 1.128 0.873 0.509 0.492 0.440 0.461 0.458 0.472 0.484 0.484 0.450 0.472
720 0.521 0.515 0.484 0.501 1.215 0.896 0.539 0.537 0.519 0.524 0.516 0.522 0.541 0.533 0.512 0.511

E
T

T
m

1

24 0.290 0.364 0.217 0.289 0.323 0.369 0.410 0.428 0.211 0.293 0.205 0.278 0.191 0.270 0.195 0.273
48 0.342 0.396 0.278 0.330 0.494 0.503 0.483 0.464 0.300 0.352 0.303 0.340 0.293 0.341 0.270 0.333
96 0.366 0.412 0.310 0.354 0.678 0.614 0.502 0.476 0.320 0.373 0.325 0.377 0.322 0.362 0.286 0.352

288 0.398 0.433 0.369 0.386 1.056 0.786 0.604 0.522 0.404 0.427 0.410 0.429 0.395 0.413 0.373 0.405
672 0.455 0.464 0.416 0.417 1.192 0.926 0.607 0.530 0.569 0.528 0.574 0.516 0.556 0.510 0.400 0.460

E
C

L

48 0.229 0.338 0.155 0.258 0.344 0.393 0.241 0.351 0.156 0.255 0.159 0.264 0.170 0.273 0.152 0.252
168 0.263 0.361 0.195 0.287 0.368 0.424 0.299 0.387 0.231 0.309 0.296 0.368 0.288 0.373 0.227 0.304
336 0.305 0.386 0.238 0.316 0.381 0.431 0.375 0.428 0.323 0.369 0.326 0.374 0.317 0.375 0.317 0.369
720 0.372 0.434 0.272 0.346 0.406 0.443 0.377 0.434 0.404 0.423 0.412 0.428 0.440 0.450 0.435 0.447
960 0.393 0.449 0.299 0.367 0.460 0.548 0.366 0.426 0.433 0.438 0.446 0.447 0.467 0.463 0.443 0.446

W
T

H

24 0.357 0.412 0.357 0.391 0.335 0.381 0.363 0.396 0.294 0.343 0.304 0.351 0.303 0.352 0.292 0.341
48 0.428 0.458 0.425 0.444 0.395 0.459 0.456 0.462 0.370 0.411 0.374 0.411 0.372 0.411 0.363 0.402

168 0.564 0.541 0.516 0.516 0.608 0.567 0.574 0.548 0.473 0.494 0.480 0.501 0.496 0.511 0.332 0.393
336 0.533 0.536 0.536 0.537 0.702 0.620 0.600 0.571 0.495 0.515 0.507 0.526 0.514 0.530 0.499 0.515
720 0.562 0.557 0.582 0.571 0.831 0.731 0.587 0.570 0.526 0.542 0.545 0.557 0.548 0.556 0.533 0.546

IL
I

24 2.687 1.147 2.940 1.205 4.588 1.462 3.101 1.238 3.041 1.186 3.305 1.241 3.194 1.176 3.121 1.139
36 2.887 1.160 2.826 1.184 4.845 1.496 3.397 1.270 3.406 1.232 3.542 1.314 3.193 1.169 3.288 1.182
48 2.797 1.155 2.677 1.155 4.865 1.516 2.947 1.203 3.459 1.221 3.409 1.208 3.15 1.142 3.122 1.120
60 2.809 1.163 3.011 1.245 5.212 1.576 3.019 1.202 3.640 1.305 3.668 1.269 3.43 1.196 3.416 1.180

Tr
af

fic

24 0.562 0.375 0.351 0.261 0.608 0.334 0.550 0.363 0.491 0.271 0.484 0.266 0.499 0.277 0.505 0.294
48 0.567 0.374 0.370 0.270 0.644 0.359 0.595 0.376 0.519 0.295 0.516 0.293 0.516 0.290 0.315 0.269

168 0.607 0.385 0.395 0.277 0.660 0.391 0.649 0.407 0.513 0.289 0.511 0.301 0.517 0.289 0.508 0.286
336 0.624 0.389 0.415 0.289 0.747 0.405 0.624 0.388 0.530 0.300 0.531 0.316 0.544 0.303 0.506 0.299
720 0.623 0.378 0.455 0.313 0.792 0.430 0.674 0.417 0.573 0.313 0.569 0.303 0.563 0.311 0.539 0.300

5 EXPERIMENTAL STUDIES
We demonstrate the validity of STanHop-Net and external memory modules by testing them on
various experimental settings with both synthetic and real-world datasets.

5.1 MULTIVARIATE TIME SERIES PREDICTION WITHOUT EXTERNAL MEMORY
Table 1 includes the experiment results of the multivariate time series predictions using STanHop-
Net without external memory. We implement three variants of STanHop-Net: StanHop-Net,
StanHop-Net (D) and StanHop-Net (S), with GSH, Hopfield (Ramsauer et al., 2020) and
SparseHopfield (Hu et al., 2023) layers respectively. Our results show that in 47 out of 58 cases,
STanHop-Nets rank in the top two, delivering top-tier performance compared to all baselines.

Data. Following (Zhang and Yan, 2023; Zhou et al., 2022; Wu et al., 2021), we use 6 realistic
datasets: ETTh1 (Electricity Transformer Temperature-hourly), ETTm1 (Electricity Transformer
Temperature-minutely), WTH (Weather), ECL (Electricity Consuming Load), ILI (Influenza-Like
Illness), Traffic. The first four datasets are split into train/val/test ratios of 14/5/5, and the last two
are split into 7/1/2. Metrics. We use Mean Square Error (MSE) and Mean Absolute Error (MAE)
as accuracy metrics. Setup. Here we use the same setting as in (Zhang and Yan, 2022): multivariate
time series predictions tasks on 6 real-world datasets. For each dataset, we evaluate our models
with several different prediction horizons. For all experiments, we report the mean MSE, MAE
over 10 runs. Baselines. We benchmark our method against 5 leading methods listed in Table 1.
Baseline results are quoted from competing papers when possible and reproduced otherwise. Hy-
perparameters. For each experiment, we optimize the hyperparameters using the “sweep” function
from Weights and Biases (Biewald et al., 2020). We conduct 100 random search iterations for each
setting, selecting the best set based on the validation performance.

For datasets, hyperparameter tuning, implementations and training details, please see Appendix F.

5.2 MEMORY-ENHANCED PREDICTION: MEMORY PLUGIN VIA HOPFIELD LAYER
In Table 2, we showcase STanHop-Net with external memory enhancements delivers performance
boosts in many scenarios. The external memory enhancements support two plugin schemes, Plug-
and-Play and Tune-and-Play. They focus on different benefits. TuneMemory is especially useful

8

Under review as a conference paper at ICLR 2024

Figure 3: Visualization of Memory Plugin Scenarios Case 3 & 4. From Left to Right: MAE against
different noise levels with (1) ETTh1 + prediction horizon 336; (2) ETTh1 + prediction horizon 168; (3)
ETTm1 + prediction horizon 288; and (4) ETTm1 + prediction horizon 96. The results show the robustness of
PlugMemory against different level of noise.

for task-relevant knowledge incorporation by fine-tuning on an external task-relevant memory set3.
On the other hand, PlugMemory provides a more robust representation of inputs with high uncer-
tainty by doing a retrieval (Figure 2) on an external task-relevant memory set, without the work of
any training or fine-tuning. Below we provide 4 practical scenarios to showcase the aforementioned
benefits of TuneMemory and PlugMemory external memory modules. The detailed setups of each
case can be found in the appendix.

Case 1 (TuneMemory). We take the single variate, Number of Influenza incidence in a week (denoted
as ILI OT), from the ILI dataset as a straightforward example. In this dataset, we are aware of
the existence of recurring annual patterns, which can be readily identified through visualizations in
Figure 8. Notably, the signal patterns around the spring of 2014 closely resemble past springs. Thus,
in predictions tasks with input located in the yearly recurring period, we collect similar patterns from
the past to form a task-relevant external memory set.

Case 2 (TuneMemory). In many sociological studies (Wang et al., 2021b;a), electricity usage ex-
hibits consistent patterns across different regions, influenced by the daily and weekly routines of
residents and local businesses. Thus, we collect sequences that match the length of the input se-
quence but are from 1 to 20 weeks prior, obtaining a task-relevant external memory set of size 20.
We report the results of Case 1 and Case 2 in Table 2.

In addition, we also include analysis of “bad” external memory sets, to verify the effectiveness of
incorporating informative external memory sets. We construct the “bad” external memory sets by
randomly selecting from dataset without any task-relevant preference, see Appendix F.2 for more
details about such selection. The results indicate that, by properly selecting external memory sets,
we further improve the models’ performance. On the contrary, randomly chosen external memory
sets can negatively impact performance.

Case 3 (PlugMemory). Through PlugMemory, informative patterns can be extracted from a memory
set for the given noisy input. To verify this ability, we construct the external memory sets based on
the weekly pattern spotted in ETTh1 and ETTm1, and add noise of different scales into the input
sequence. We add the noise following x← x+ scale · std(x). For Case 3, we use the ETTh1 dataset.
Case 4 (PlugMemory). For Case 4, we evaluate PlugMemory on the ETTm1 dataset.

Table 2: Performance Comparison of the StanHop Model with TuneMemory and Ablation Using Bad
External Memory Sets (TuneMemory(b)). We report the mean MSE and MAE over 10 runs with variances
omitted as they are ≤ 0.79%. For ILI OT, we consider prediction horizons of 12, 24, and 60. For ETTh1, we
choose prediction horizons of 24, 48, and 720, covering both short and long durations. The results indicate that
using dataset insights and TuneMemory enhances our model’s performance.

Case 1 (ILI OT) | Case 2 (ETTh1)

Default TuneMemory TuneMemory(b) | Default TuneMemory TuneMemory(b)

MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE

12 4.011 1.701 3.975 (-0.9%) 1.693 (-0.5%) 4.340 (+8.2%) 1.789 (+5.1%) | 24 0.294 0.351 0.284 (-3.4%) 0.351 (±0%) 0.300 (+2%) 0.361 (+2.8%)
24 4.254 1.771 3.960 (-6.9%) 1.690 (-4.6%) 4.271 (+0.4%) 1.776 (+0.3%) | 48 0.340 0.387 0.328 (-3.5%) 0.379 (-2.1%) 0.342 (+0.6%) 0.388 (+0.3%)
60 3.613 1.685 3.572 (-1.1%) 1.528 (-9.3%) 3.821 (+5.8%) 1.725 (+2.4%) | 720 0.512 0.511 0.504 (-1.6%) 0.512 (-0.2%) 0.514 (+0.4%) 0.521 (+2.0%)

6 CONCLUSION
We propose the generalized sparse modern Hopfield model and present STanHop-Net, a Hopfield-
based time series prediction model with external memory functionalities. Our design improves time
series forecasting performance, quickly reacts to unexpected or rare events, and offers both strong
theoretical guarantees and empirical results. Empirically, STanHop-Nets rank in the top two in 47
out of our 58 experiment settings compared to the baselines. Furthermore, with PlugMemory and
TuneMemory modules, it showcases average performance boosts of ∼12% and ∼3% for each.

3Task-relevant means the relevance to the inputs of the time series forecasting. A task-relevant memory set
could be a set of some history time series segments that are relevant to the inputs of the prediction

9

Under review as a conference paper at ICLR 2024

REFERENCES

Dimitri P Bertsekas, W Hager, and O Mangasarian. Nonlinear programming. athena scientific bel-
mont. Massachusets, USA, 1999.

Lukas Biewald et al. Experiment tracking with weights and biases. Software available from wandb.
com, 2:233, 2020.

Philip Bond and James Dow. Failing to forecast rare events. Journal of Financial Economics, 142
(3):1001–1016, 2021.

Johann S Brauchart, Alexander B Reznikov, Edward B Saff, Ian H Sloan, Yu Guang Wang, and
Robert S Womersley. Random point sets on the sphere—hole radii, covering, and separation.
Experimental Mathematics, 27(1):62–81, 2018.

Matthieu Bussiere and Marcel Fratzscher. Towards a new early warning system of financial crises.
journal of International Money and Finance, 25(6):953–973, 2006.

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. arXiv
preprint arXiv:1909.00015, 2019.

John M Danskin. The theory of max-min and its application to weapons allocation problems, vol-
ume 5. Springer Science & Business Media, 2012.

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a model
of associative memory with huge storage capacity. Journal of Statistical Physics, 168:288–299,
2017.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917–963, 2019.

Andreas Fürst, Elisabeth Rumetshofer, Johannes Lehner, Viet T Tran, Fei Tang, Hubert Ramsauer,
David Kreil, Michael Kopp, Günter Klambauer, Angela Bitto, et al. Cloob: Modern hopfield
networks with infoloob outperform clip. Advances in neural information processing systems, 35:
20450–20468, 2022.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model, 2023. URL https://arxiv.org/abs/2309.12673.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Leo Kozachkov, Ksenia V Kastanenka, and Dmitry Krotov. Building transformers from neurons and
astrocytes. Proceedings of the National Academy of Sciences, 120(34):e2219150120, 2023. URL
https://www.biorxiv.org/content/10.1101/2022.10.12.511910v1.

Dmitry Krotov. A new frontier for hopfield networks. Nature Reviews Physics, pages 1–2, 2023.

Dmitry Krotov and John Hopfield. Large associative memory problem in neurobiology and machine
learning. arXiv preprint arXiv:2008.06996, 2020.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in neural information processing systems, 29, 2016.

Ricardo Laborda and Jose Olmo. Volatility spillover between economic sectors in financial crisis
prediction: Evidence spanning the great financial crisis and covid-19 pandemic. Research in
International Business and Finance, 57:101402, 2021.

10

https://arxiv.org/abs/2309.12673
https://www.biorxiv.org/content/10.1101/2022.10.12.511910v1

Under review as a conference paper at ICLR 2024

Phong VV Le, James T Randerson, Rebecca Willett, Stephen Wright, Padhraic Smyth, Clement
Guilloteau, Antonios Mamalakis, and Efi Foufoula-Georgiou. Climate-driven changes in the pre-
dictability of seasonal precipitation. Nature communications, 14(1):3822, 2023.

YC Lee, Gary Doolen, HH Chen, GZ Sun, Tom Maxwell, and HY Lee. Machine learning using
a higher order correlation network. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States); Univ. of Maryland, College Park, MD (United States), 1986.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022, 2021b.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In International conference on machine learning, pages 1614–1623.
PMLR, 2016.

Ricardo P Masini, Marcelo C Medeiros, and Eduardo F Mendes. Machine learning advances for
time series forecasting. Journal of economic surveys, 37(1):76–111, 2023.

Charles M Newman. Memory capacity in neural network models: Rigorous lower bounds. Neural
Networks, 1(3):223–238, 1988.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Frank WJ Olver, Daniel W Lozier, Ronald F Boisvert, and Charles W Clark. NIST handbook of
mathematical functions hardback and CD-ROM. Cambridge university press, 2010.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models in
reinforcement learning. In International Conference on Machine Learning, pages 17156–17185.
PMLR, 2022.

Pierre Peretto and Jean-Jacques Niez. Long term memory storage capacity of multiconnected neural
networks. Biological Cybernetics, 54(1):53–63, 1986.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702, 2019.

Hubert Ramsauer, Bernhard Schafl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlovic, Geir Kjetil Sandve, et al. Hopfield
networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

Alex Reneau, Jerry Yao-Chieh Hu, Chenwei Xu, Weijian Li, Ammar Gilani, and Han Liu. Feature
programming for multivariate time series prediction. arXiv preprint arXiv:2306.06252, 2023.

Johannes Schimunek, Philipp Seidl, Lukas Friedrich, Daniel Kuhn, Friedrich Rippmann, Sepp
Hochreiter, and Günter Klambauer. Context-enriched molecule representations improve few-shot
drug discovery. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=XrMWUuEevr.

Cuneyt Sevim, Asil Oztekin, Ozkan Bali, Serkan Gumus, and Erkam Guresen. Developing an early
warning system to predict currency crises. European Journal of Operational Research, 237(3):
1095–1104, 2014.

11

https://openreview.net/forum?id=XrMWUuEevr

Under review as a conference paper at ICLR 2024

Aditi Sheshadri, Marshall Borrus, Mark Yoder, and Thomas Robinson. Midlatitude error growth
in atmospheric gcms: The role of eddy growth rate. Geophysical Research Letters, 48(23):
e2021GL096126, 2021.

Bharath K Sriperumbudur and Gert RG Lanckriet. On the convergence of the concave-convex pro-
cedure. In Nips, volume 9, pages 1759–1767, 2009.

Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of statistical
physics, 52:479–487, 1988.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xinlei Wang, Caomingzhe Si, Jinjin Gu, Guolong Liu, Wenxuan Liu, Jing Qiu, and Junhua Zhao.
Electricity-consumption data reveals the economic impact and industry recovery during the pan-
demic. Scientific Reports, 11(1):19960, 2021a.

Zhe Wang, Tianzhen Hong, Han Li, and Mary Ann Piette. Predicting city-scale daily electricity
consumption using data-driven models. Advances in Applied Energy, 2:100025, 2021b.

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert Ramsauer, Lukas Gruber, Markus Hol-
zleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, et al. Modern
hopfield networks and attention for immune repertoire classification. Advances in Neural Infor-
mation Processing Systems, 33:18832–18845, 2020.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure (cccp). Advances in neural
information processing systems, 14, 2001.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15(4):
915–936, 2003.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pages 27268–27286. PMLR, 2022.

12

Under review as a conference paper at ICLR 2024

Supplementary Material

A Broader Impacts 14

B Related Works 14

C Proofs of Main Text 16
C.1 Lemma 3.1 . 16
C.2 Lemma 3.2 . 16
C.3 Lemma 3.3 . 17
C.4 Theorem 3.1 . 18
C.5 Lemma 3.4 . 19

D Methodology Details 22
D.1 The Multi-Step GSH Updates . 22
D.2 GSHPooling and GSHLayer . 22
D.3 Example: Memory Retrieval for Image Completion 22
D.4 Pseudo Label Retrieval . 23
D.5 Algorithm for STanHop-Net . 23

E Additional Numerical Experiments 24
E.1 Numerical Verification’s of Theoretical Results 24
E.2 Computational Cost Analysis of Memory Modules. 25
E.3 Ablation Studies . 25

F Experiment Details 27
F.1 Experiment Details of Multivariate Time Series Predictions without Memory En-

hancements . 27
F.2 External Memory Plugin Experiment Details . 29

13

Under review as a conference paper at ICLR 2024

A BROADER IMPACTS

We envision this approach as a means to refine large foundation models for time series, through a
perspective shaped by neuroscience insights. Such memory-enhanced time series foundation models
are vital in applications like eco- and climatic-modeling. For example, with a multi-modal time
series foundation model, we can effectively predict, detect, and mitigate emerging biological threats
associated with the rapid changes in global climate. To this end, the differentiable external memory
modules become handy, as they allow users to integrate real-time data into pre-trained foundation
models and thus enhance the model’s responsiveness in real-time scenarios. Specifically, one can
use this memory-enhanced technique to embed historical, sudden, or rare events into any given time
series foundation model, thereby boosting its overall performance.

B RELATED WORKS

Transformers for Time Series Prediction. As suggested in Section 3 and (Hu et al., 2023; Ram-
sauer et al., 2020), besides the additional memory functionalities, the Hopfield layers act as promis-
ing alternatives for the attention mechanism. Therefore, we discuss and compare STanHop-Net with
existing transformer-based time series prediction methods here.

Transformers have gained prominence in time series prediction, inspired by their success in Natural
Language Processing and Computer Vision. One challenge in time series prediction is managing
transformers’ quadratic complexity due to the typically long sequences. To address this, many re-
searchers have not only optimized for prediction performance but also sought to reduce memory and
computational complexity. LogTrans (Li et al., 2019) proposes a transformer-based neural network
for time series prediction. They propose a convolution layer over the vanilla transformer to better
capture local context information and a sparse attention mechanism to reduce memory complexity.
Similarly, Informer (Zhou et al., 2021) proposes convolutional layers in between attention blocks to
distill the dominating attention and a sparse attention mechanism where the keys only attend to a
subset of queries. Reformer (Kitaev et al., 2020) replaces the dot-product self-attention in the vanilla
transformer with a hashing-based attention mechanism to reduce the complexity. Besides directly
feeding the raw time series inputs to the model, many works focus on transformer-based time se-
ries prediction by modeling the decomposed time series. Autoformer (Wu et al., 2021) introduces a
series decomposition module to its transformer-based model to separately model the seasonal com-
ponent and the trend-cyclical of the time series. FEDformer (Zhou et al., 2022) also models the
decomposed time series and they introduce a block to extract signals by transforming the time series
to the frequency domain.

Compared to STanHop, the above methods do not model multi-resolution information. Besides,
Reformer’s attention mechanism sacrifices the global receptive field compared to the vanilla self-
attention mechanism and our method, which harms the prediction performance.

Some works intend to model the multi-resolution or multi-scale signals in the time series with a
dedicated network design. Pyraformer (Liu et al., 2021a) designs a pyramidal attention module
to extract the multi-scale signals from the raw time series. Crossformer (Zhang and Yan, 2022)
proposes a multi-scale encoder-decoder architecture to hierarchically extract signals of different
resolutions from the time series. Compared to these methods. STanHop adopts a more fine-grained
multi-resolution modeling mechanism that is capable of learning different sparsity levels for signals
in the data of different resolutions.

Furthermore, all of the above works on time series prediction lack the external memory retrieval
module as ours. Thus, our STanHop method and its variations have a unique advantage in that we
have a fast response to real-time unexpected events.

Hopfield Models and Deep Learning. Hopfield Models (Hopfield, 1984; 1982; Krotov and Hop-
field, 2016) have garnered renewed interest in the machine learning community due to the connection
between their memory retrieval dynamics and attention mechanisms in transformers via the Mod-
ern Hopfield Models (Hu et al., 2023; Ramsauer et al., 2020). Furthermore, these modern Hopfield
models enjoy superior empirical performance and possess several appealing theoretical properties,
such as rapid convergence and guaranteed exponential memory capacity. By viewing modern Hop-
field models as generalized attentions with enhanced memory functionalities, these advancements

14

Under review as a conference paper at ICLR 2024

pave the way for innovative Hopfield-centric architectural designs in deep learning. Consequently,
their applicability spans diverse areas like physics (Krotov, 2023), biology (Schimunek et al., 2023;
Kozachkov et al., 2023; Widrich et al., 2020), reinforcement learning (Paischer et al., 2022), and
large language models (Fürst et al., 2022).

This work pushes this line of research forward by presenting a Hopfield-based deep architecture
(StanHop-Net) tailored for memory-enhanced learning in noisy multivariate time series. In particu-
lar, our model emphasizes in-context memorization during training and bolsters retrieval capabilities
with an integrated external memory component.

Sparse Modern Hopfield Model. Our work extends the theoretical framework proposed in (Hu
et al., 2023) for modern Hopfield models. Their primary insight is that using different entropic reg-
ularizers can lead to distributions with varying sparsity. Using the Gibbs entropic regularizer, they
reproduce the results of the standard dense Hopfield model (Ramsauer et al., 2020) and further pro-
pose a sparse variant with the Gini entropic regularizer, providing improved theoretical guarantees.
However, their sparse model primarily thrives with data of high intrinsic sparsity. To combat this, we
enrich the link between Hopfield models and attention mechanisms by introducing learnable spar-
sity and showing that the sparse model from (Hu et al., 2023) is a specific case of our model when
setting α = 2. Unlike (Hu et al., 2023), our generalized sparse Hopfield model ensures adaptable
sparsity across various data types without sacrificing theoretical integrity. By making this sparsity
learnable, we introduce the GSH layers. These new Hopfield layers adeptly learn and store sparse
representations in any deep learning pipeline, proving invaluable for inherently noisy time series
data.

15

Under review as a conference paper at ICLR 2024

C PROOFS OF MAIN TEXT

C.1 LEMMA 3.1

Proof of Lemma 3.1. Firstly, we introduce the notion of convex conjugate.

Definition C.1. Let F (p, z) := ⟨p, z⟩ −Ψα(p). The convex conjugate of Ψα, Ψ⋆ takes the form:

Ψ⋆(z) = Max
p∈∆M

⟨p, z⟩ −Ψα(p) = Max
p∈∆M

F (p, z). (C.1)

By Danskin’s theorem (Danskin, 2012; Bertsekas et al., 1999), the function Ψ⋆ is convex and its
partial derivative with respect to z is equal to that of F , i.e. ∂Ψ⋆

/∂z = ∂F/∂z, if the following three
conditions are satisfied for Ψ⋆ and F :

(i) F (p, z) : P × RM → R is a continuous function, where P ⊂ RM is a compact set.

(ii) F is convex in z, i.e. for each given p ∈ P , the mapping z→ F (p, z) is convex.

(iii) There exists an unique maximizing point p̂ such that F (p̂, z) = Maxp∈P F (p, z).

Since both ⟨p, z⟩ and Ψα are continuous functions and every component of p is ranging from 0 to 1,
the function F is continuous and the domain P is a compact set. Therefore, condition (i) is satisfied.

Since we require p ∈ ∆M (i.e. P = ∆M) to be probability distributions, for any fixed p, F (p, z) =
⟨p, z⟩ − Ψα(p) reduces to an affine function depending only on input z. Due to the inner product
form, this affine function is convex in z, and hence condition (ii) holds for all given p ∈ P = ∆M .

Since, for any given z, α-EntMax only produces one unique probability distribution p⋆, condition
(iii) is satisfied. Therefore, from Danskin’s theorem, it holds

∇zΨ
⋆(z) =

∂F

∂z
=

∂

∂z
(⟨p, z⟩ −Ψα(p)) = p = α-EntMax(z). (C.2)

C.2 LEMMA 3.2

Our proof is built on (Hu et al., 2023, Lemma 2.1). We first derive T by utilizing Lemma 3.1
and Remark 3.1, along with the convex-concave procedure (Yuille and Rangarajan, 2003;
2001). Then, we show the monotonicity of minimizing H with T by constructing an itera-
tive upper bound of H which is convex in xt+1 and thus, can be lowered iteratively by the
convex-concave procedure.

Proof. From Lemma 3.1, the conjugate convex of Ψ, Ψ⋆, is always convex, and, therefore, −Ψ⋆ is
a concave function. Then, the energy function H defined in (3.2) is the sum of the convex function
H1(x) :=

1
2 ⟨x,x⟩ and the concave functionH2(x) := −Ψ⋆

(
ΞTx

)
.

Furthermore, by definition, the energy functionH is differentiable.

Every iteration step of convex-concave procedure applied onH gives

∇xH1 (xt+1) = −∇xH2 (xt) , (C.3)

which implies that

xt+1 = ∇xΨ(Ξxt) = Ξα-EntMax
(
ΞTxt

)
. (C.4)

16

Under review as a conference paper at ICLR 2024

On the basis of (Yuille and Rangarajan, 2003; 2001), we show the decreasing property of (3.2) over
t via solving the minimization problem of energy function:

Min
x

[H(x)] = Min
x

[H1(x) +H2(x)] , (C.5)

which, in convex-concave procedure, is equivalent to solve the iterative programming

xt+1 ∈ ArgMin
x

[H1(x) + ⟨x,∇xH2 (xt)⟩] , (C.6)

for all t. The concept behind this programming is to linearize the concave functionH2 around the
solution for current iteration, xt, which makesH1(xt+1) + ⟨xt+1,∇xH2(xt)⟩ convex in xt+1.

The convexity ofH1 and concavity ofH2 imply that the inequalities

H1(x) ≥ H1(y) + ⟨(x− y) ,∇xH1(y)⟩ , (C.7)
H2(x) ≤ H2(y) + ⟨(x− y) ,∇xH2(y)⟩ , (C.8)

hold for all x,y, which leads to

H(x) = H1(x) +H2(x) (C.9)
≤ H1(x) +H2(y) + ⟨(x− y),∇xH2(y)⟩ := HU (x,y) , (C.10)

where the upper bound ofH is defined asHU . Then, the iteration (C.6)

xt+1 ∈ ArgMin
x

[HU (x,xt)] = ArgMin
x

[H1(x) + ⟨x,∇xH2(xt)⟩] , (C.11)

can makeHU decrease iteratively and thus decreases the value of energy functionH monotonically,
i.e.

H(xt+1) ≤ HU (xt+1,xt) ≤ HU (xt,xt) = H(xt), (C.12)

for all t. Equation (C.10) shows that the retrieval dynamics defined in (3.2) can lead the energy
functionH to decrease with respect to the increasing t.

C.3 LEMMA 3.3

To prove the convergence property of retrieval dynamics T , first we introduce an auxiliary lemma
from (Sriperumbudur and Lanckriet, 2009).

Lemma C.1 ((Sriperumbudur and Lanckriet, 2009), Lemma 5). Following Lemma 3.3, x is called
the fixed point of iteration T with respect toH if x = T (x) and is considered as a generalized fixed
point of T if x ∈ T (x). If x⋆ is a generalized fixed point of T , then, x⋆ is a stationary point of the
energy minimization problem (C.5).

Proof. Since the energy function H monotonically decreases with respect to increasing t in
Lemma 3.2, we can follow [(Hu et al., 2023), Lemma 2.2] to guarantee the convergence prop-
erty of T by checking the necessary conditions of Zangwill’s global convergence. After satisfying
these conditions, Zangwill global convergence theory ensures that all the limit points of {xt}∞t=0
are generalized fixed points of the mapping T and it holds limt→∞H (xt) = H (x⋆), where x⋆

are some generalized fixed points of T . Furthermore, auxiliary Lemma C.1 implies that x⋆ are also
the stationary points of energy function H. Therefore, we guarantee that T can iteratively lead the
query x to converge to the local optimum ofH.

17

Under review as a conference paper at ICLR 2024

C.4 THEOREM 3.1

Proof. We observe

∥T (x)− ξµ∥ − ∥TDense(x)− ξµ∥

=

∥∥∥∥∥
κ∑

ν=1

ξν
[
(α+ δ)-entmax

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥−
∥∥∥∥∥

κ∑
ν=1

ξν
[
α-entmax

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥ (C.13)

≤

∥∥∥∥∥
κ∑

ν=1

[
(α+ δ)-entmax(βΞTx)

]
ν
ξν

∥∥∥∥∥−
∥∥∥∥∥

κ∑
ν=1

[
α-entmax

(
βΞTx

)]
ν
ξν

∥∥∥∥∥ ≤ 0, (C.14)

which gives

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥. (C.15)

For 2 ≥ α ≥ 1: Then, we derive the upper bound on ∥Tdense(x)− ξµ∥ based on (Hu et al., 2023,
Theorem 2.2):

∥Tdense(x)− ξµ∥ =

∥∥∥∥∥
M∑
ν=1

[Softmax(βΞTx)]νξν − ξµ

∥∥∥∥∥ (C.16)

=

∥∥∥∥∥∥
M∑

ν=1,ν ̸=µ

[Softmax(βΞTx)]νξν − (1− Softmax(βΞTx))ξµ

∥∥∥∥∥∥ (C.17)

≤ 2ϵ̃m, (C.18)

where ϵ̃ := (M − 1) exp
{
−β∆̃µ

}
= (M − 1) exp

{
−β
(
⟨ξµ,x⟩ −Maxν∈[M] ⟨ξµ, ξν⟩

)}
. Conse-

quently, (3.6) results from above and (Ramsauer et al., 2020, Theorem 4,5).

For α ≥ 2. Following the setting of α-EntMax in (Peters et al., 2019), the equation

2-EntMax(βΞTx) = Sparsemax(βΞTx) (C.19)

holds. According to the closed form solution of Sparsemax in (Martins and Astudillo, 2016), it
holds

[Sparsemax
(
βΞTx

)
]µ ≤

[
βΞTx

]
µ
−
[
βΞTx

]
(κ)

+
1

κ
, (C.20)

for all µ ∈ [M]. Then, the sparsemax retrieval error is

∥TSparsemax (x)− ξµ∥ =
∥∥Ξ Sparsemax

(
βΞTx

)
− ξµ

∥∥ =

∥∥∥∥∥
κ∑

ν=1

ξ(ν)
[
Sparsemax

(
βΞTx

)]
(ν)
− ξµ

∥∥∥∥∥
≤ m+mβ

∥∥∥∥∥
κ∑

ν=1

([
ΞTx

]
(ν)
−
[
ΞTx

]
(κ)

+
1

βκ

)
ξ(ν)

m

∥∥∥∥∥ (
By (C.20)

)
≤ m+ d

1/2mβ

[
κ

(
Max
ν∈[M]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
. (C.21)

By the first inequality of Theorem 3.1, for α ≥ 2, we have

∥T (x)− ξµ∥ ≤ ∥TSparsemax(x)− ξµ∥ ≤ m+ d
1/2mβ

[
κ

(
Max
ν∈[M]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
,

which completes the proof of (3.7).

18

Under review as a conference paper at ICLR 2024

C.5 LEMMA 3.4

Our proof, built on (Hu et al., 2023, Lemma 2.1), proceeds in 3 steps:

• (Step 1.) We establish a more refined well-separation condition, ensuring that patterns
{ξµ}µ∈[M] are well-stored inH and can be retrieved by T with an error ϵ at most R.

• (Step 2.) This condition is then related to the cosine similarity of memory patterns, from
which we deduce an inequality governing the probability of successful pattern storage and
retrieval.

• (Step 3.) We pinpoint the conditions for exponential memory capacity and confirm their
satisfaction.

Since the generalized sparse Hopfield shares the same well-separation condition (shown in
below Lemma C.2), it has the same exponential memory capacity as the sparse Hopfield model
(Hu et al., 2023, Lemma 3.1). For completeness, we restate the proof of (Hu et al., 2023,
Lemma 3.1) below.

Step 1. To analyze the memory capacity of the proposed model, we first present the following two
auxiliary lemmas.

Lemma C.2. [Corollary 3.1.1 of (Hu et al., 2023)] Let δ := ∥TDense − ξµ∥ − ∥T − ξµ∥. Then, the
well-separation condition can be formulated as:

∆µ ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (C.22)

Furthermore, if δ = 0, this bound reduces to well-separation condition of Softmax-based Hopfield
model.

Proof of Lemma C.2. Let TDense be the retrieval dynamics given by the dense modern Hopfield
model (Ramsauer et al., 2020), and ∥T (x)− ξµ∥ and ∥TDense(x)− ξµ∥ be the retrieval error of
generalized sparse and dense modern Hopfield model, respectively. By Theorem 3.1, we have

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥. (C.23)

By (Ramsauer et al., 2020, Lemma A.4), we have

∥TDense(x)− ξµ∥ ≤ 2ϵ̃m, (C.24)

where ϵ̃ := (M − 1) exp
{
−β∆̃µ

}
= (M − 1) exp

{
−β
(
⟨ξµ,x⟩ −Maxν∈[M] ⟨ξµ, ξν⟩

)}
. Then,

by the Cauchy-Schwartz inequality

|⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩| ≤ ∥ξµ − x∥ · ∥ξµ∥ ≤ ∥ξµ − x∥m, ∀µ ∈ [M], (C.25)

we observe that ∆̃µ can be expressed in terms of ∆µ:

∆̃µ ≤ ∆µ − 2∥ξµ − x∥m = ∆µ − 2mR, (C.26)

where R is radius of the sphere Sµ. Thus, inserting the upper bound given by (C.24) into (3.6), we
obtain

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ ≤ 2ϵ̃m (C.27)
≤ 2(M − 1) exp{−β (∆µ − 2mR)}m. (C.28)

Then, for any given δ := ∥TDense(x)− ξµ∥ − ∥T (x)− ξµ∥ ≤ 0, the retrieval error ∥T (x)− ξµ∥
has an upper bound:

∥T (x)− ξµ∥ ≤ 2(M − 1) exp{−β (∆µ − 2mR+ δ)}m− δ ≤ ∥TDense(x)− ξµ∥. (C.29)

19

Under review as a conference paper at ICLR 2024

Therefore, for T to be a mapping T : Sµ → Sµ, we need the well-separation condition

∆µ ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (C.30)

Lemma C.3 ((Hu et al., 2023; Ramsauer et al., 2020)). If the identity

ac+ c ln c− b = 0, (C.31)

holds for all real numbers a, b ∈ R, then c takes a solution:

c =
b

W0(exp(a+ ln b))
. (C.32)

Proof of Lemma C.3. We restate the proof of (Hu et al., 2023, Lemam 3.1) here for completeness.

With the given equation ac+ c ln c− b = 0, we solve for c by following steps:

ac+ c ln c− b = 0,

a+ ln c =
b

c
,

b

c
+ ln

(
b

c

)
= a+ ln b,

b

c
exp

(
b

c

)
= exp(a+ ln b),

b

c
= W0(exp(a+ ln b)),

c =
b

W0(exp(a+ ln b))
.

Then, we present the main proof of Lemma 3.4.

Proof of Lemma 3.4. Since the generalized Hopfield model shares the same well-separation condi-
tion as the sparse Hopfield model (Hu et al., 2023), the proof of the exponential memory capacity
automatically follows that of (Hu et al., 2023). We restate the proof of (Hu et al., 2023, Corol-
lary 3.1.1) here for completeness.

(Step 2.) & (Step 3.) Here we define ∆min and θµν as ∆min := Minµ∈[M] ∆µ and the angle
between two patterns ξµ and ξν , respectively. Intuitively, θµν ∈ [0, π] represent the pairwise corre-
lation of two patterns the two patterns and hence

∆min = Min
1≤µ≤ν≤M

[
m2 (1− cos(θµν))

]
= m2 [1− cos(θmin)] , (C.33)

where θmin := Min1≤µ≤ν≤M θµν ∈ [0, π].

From the well-separation condition (C.2), we have

∆µ ≥ ∆min ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (C.34)

20

Under review as a conference paper at ICLR 2024

Hence, we have

m2 [1− cos(θmin)] ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (C.35)

Therefore, we are able to write down the probability of successful storage and retrieval, i.e. minimal
separation ∆min satisfies Lemma C.2:

P

(
m2 [1− cos(θmin)] ≥

1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

)
= 1− p. (C.36)

By (Olver et al., 2010, (4.22.2)), it holds

cos(θmin) ≤ 1− θ2min

5
for 0 ≤ cos(θmin) ≤ 1, (C.37)

and hence

P

(
M

2
d−1 θmin ≥

√
5M

2
d−1

m

[
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

] 1
2

)
= 1− p. (C.38)

Here we introduce M 2/d−1 on both sides in above for later convenience.

Let ωd := 2π
d+1/2

Γ(d+1
2)

, be the surface area of a d-dimensional unit sphere, where Γ(·) represents the

gamma function. By (Brauchart et al., 2018, Lemma 3.5), it holds

1− p ≥ 1− 1

2
γd−15

d−1
2 M2m−(d−1)

[
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

] d−1
2

, (C.39)

where γd is characterized as the ratio between the surface areas of the unit spheres in (d− 1) and d
dimensions, respectively: γd := 1

d
ωd−1

ωd
.

Since M =
√
pC

d−1
4 is always true for d,M ∈ N+, p ∈ [0, 1] and some real values C ∈ R, we

have

5
d−1
2 C

d−1
2 m−(d−1)

{
1

β
ln

2
(√

pC
d−1
4 − 1

)
m

R+ δ

+
1

β

} d−1
2

≤ 1. (C.40)

Then, we rearrange above as

5C

m2β

{
ln

2
(√

pC
d−1
4 − 1

)
m

R+ δ

+ 1

}
− 1 ≤ 0, (C.41)

and identify

a :=
4

d− 1

{
ln

[
2m(
√
p− 1)

R+ δ

]
+ 1

}
, b :=

4m2β

5(d− 1)
. (C.42)

By Lemma C.3, we have

C =
b

W0(exp{a+ ln b})
, (C.43)

21

Under review as a conference paper at ICLR 2024

where W0(·) is the upper branch of the Lambert W function. Since the domain of the Lambert W
function is x > (−1/e,∞) and the fact exp{a+ ln b} > 0, the solution for (C.43) exists. When the
inequality (C.40) holds, we arrive the lower bound on the exponential storage capacity M :

M ≥ √pC
d−1
4 . (C.44)

In addition, by the asymptotic expansion of the Lambert W function (Hu et al., 2023, Lemma 3.1), it
also holds M ≥MDense, where MDense is the memory capacity of the dense modern Hopfield model
(Ramsauer et al., 2020).

D METHODOLOGY DETAILS

D.1 THE MULTI-STEP GSH UPDATES

GSH inherits the capability of multi-step update for better retrieval accuracy, which is summarized
in below Algorithm 1 for a given number of update steps κ. In practice, we find that a single update
suffices, consistent with our theoretical finding (3.6) of Theorem 3.1.

Algorithm 1 Multi-Step Generalized Sparse Hopfield Update

Require: κ ∈ R ≥ 1,Q ∈ RlenQ×DQ ,Y ∈ RlenY ×DY

for i→ 1 to κ do
Qnew = GSH (Q,Y) Hopfield Update
Q← Qnew

end for
return Q

D.2 GSHPooling AND GSHLayer

Here we provide the operational definitions of the GSHPooling and the GSHLayer.

Definition D.1 (Generalized Sparse Hopfield Pooling (GSHPooling)). Given inputs Y ∈
RlenY ×DY , and lenQ query patterns Q ∈ RlenQ×DK the 1-step Sparse Adaptive Hopfield Pooling
update is

GSHPooling (Y) = α-EntMax
(
QKT /

√
Dk

)
V, (D.1)

Here we have K,V equal to V = YWKWV , K = YWK , and WV ∈ RDK×DK ,WK ∈
RDK×DK . Where d is the dimension of K. And the query pattern Q is a learnable variable, and is
independent from the input, the size of lenQ controls how many query patterns we want to store.

Definition D.2 (Generalized Sparse Hopfield Layer (GSHLayer)). Given inputs Y ∈ RlenY ×DY ,
and lenQ query patterns Q ∈ RlenQ×DK the 1-step Sparse Adaptive Hopfield Layer update is

GSHLayer (R,Y) = α-EntMax
(
RYT /

√
Dk

)
Y, (D.2)

Here R is the input and Y can be either learnable weights or given as an input.

D.3 EXAMPLE: MEMORY RETRIEVAL FOR IMAGE COMPLETION

The standard memory retrieval mechanism of Hopfield Models contains two inputs, the query x and
the associative memory set Ξ. The goal is to retrieve an associated memory ξ most similar to the
query x from the stored memory set Ξ. For example, in (Ramsauer et al., 2020), the query x is
a corrupted/noisy image from CIFAR10, and the associative memory set Ξ is the CIFAR10 image
dataset. All images are flattened into vector-valued patterns. This task can be achieved by taking
the query as R = x and the associative memory set as Y = Ξ for GSHLayer with fixed parameters.
After steps of updates, we expect the output of the GSHLayer to be the recovered version of x.

22

Under review as a conference paper at ICLR 2024

D.4 PSEUDO LABEL RETRIEVAL

Here, we present the use of the memory retrieval mechanism from modern Hopfield models to
generate pseudo-labels for queries R, thereby enhancing predictions. Given a set of memory patterns
Y and their corresponding labels Ylabel, we concatenate them together to form the label-included
memory set Ỹ. Take CIFAR10 for example, we can concatenate the flatten images along with their
one-hot encoded labels together as the memory set. For the query, we use the input with padded
zeros concatenated at the end of it. The goal here is to “retrieve” the padding part in the query,
which is expected to be the retrieved “pseudo-label”. Note that this pseudo-label will be a weighted
sum over all other labels in the associative memory set. An illustration of this mechanism can be
found in Figure 2. For the retrieved pseudo-label, we can either use it as the final prediction, or use
it as pseudo-label to provide extra information for the model.

D.5 ALGORITHM FOR STANHOP-NET

Here we summarize the STanHop-Net as below algorithm.

Algorithm 2 STanHop-Net

Require: L ≥ 1,Z ∈ RT×C×D0
hidden

for ℓ→ 1 to L do
Zℓ

enc = STanHop
(
Coarse-Graining

(
Zℓ−1

enc ,∆
))

encoder forward
end for
Z0

dec = Edec learnable positional embedding
for ℓ→ 1 to L do decoder forward

Z̃ℓ
dec = STanHop

(
Zℓ−1

dec

)
Ẑℓ

dec = GSH
(
Zℓ

dec,Z
ℓ
enc

)
Žℓ

dec = LayerNorm
(
Ẑℓ

dec + Z̃ℓ
dec

)
Zℓ

dec = LayerNorm
(
Žℓ

dec + MLP
(
Žℓ

dec

))
end for
return ZL

dec ∈ RP
T ×C×Dhidden

23

Under review as a conference paper at ICLR 2024

E ADDITIONAL NUMERICAL EXPERIMENTS

E.1 NUMERICAL VERIFICATION’S OF THEORETICAL RESULTS

Faster Fixed Point Convergence and Better Generalization. In Figure 4, to support our theo-
retical results in Section 4, we numerically analyze the convergence behavior of the GSH, compared
with the dense modern Hopfield layer Hopfield.

Figure 4: The training and validation loss curves of STanHop (D), i.e. STanHop-Net with dense modern
Hopfield Hopfield layer, and STanHop-Net with GSH layer. The results show that the generalized sparse
Hopfield model enjoys faster convergence than the dense model and also obtain better generalization.

In Figure 4, we plot the loss curves for STanHop-Net using both generalized sparse and dense
modern models on the ETTh1 dataset for the multivariate time series prediction tasks.

The results reveal that the generalized sparse Hopfield model (GSH) converges faster than the dense
model (Hopfield) and also achieves better generalization. This empirically supports our theoret-
ical findings presented in Theorem 3.1, which suggest that the generalized sparse Hopfield model
provides faster retrieval convergence with enhanced accuracy.

Memory Capacity and Noise Robustness. Following (Hu et al., 2023), we also conduct exper-
iments verifying our memory capacity and noise robustness theoretical results (Lemma 3.4 and
Theorem 3.1), and report the results in Figure 5. The plots present average values and standard
deviations derived from 10 trials.

Figure 5: Left: Memory Capacity measured by successful half-masked retrieval rates. Right: Memory
Robustness measured by retrieving patterns with various noise levels. A query pattern is considered accurately
retrieved if its cosine similarity error falls below a specified threshold. We set error threshold of 20% and
β=0.01 for better visualization. We plot the average and variance from 10 trials. These findings demonstrate
the generalized sparse Hopfield model’s ability of capturing data sparsity, improved memory capacity and its
noise robustness.

Regarding memory capacity (displayed on the left side of Figure 5), we evaluate the generalized
sparse Hopfield model’s ability to retrieve half-masked patterns from the MNIST dataset, in com-
parison to the Dense modern Hopfield model (Ramsauer et al., 2020).

Regarding robustness against noisy queries (displayed on the right side of Figure 5), we introduce
Gaussian noises of varying variances (σ) to the images.

24

Under review as a conference paper at ICLR 2024

These findings demonstrate the generalized sparse Hopfield model’s ability of capturing data spar-
sity, improved memory capacity and its noise robustness.

E.2 COMPUTATIONAL COST ANALYSIS OF MEMORY MODULES.

Here we analyze the computational cost between the Plug-and-Play memory plugin module and
the baseline. We evaluate 2 matrices: (i) the number of floating point operations (flops) (ii) number
of parameters of the model. Note that for Plug-and-Play module, the parameter amount will not be
affected by the size of external memory set. The result can be found in Figure 6 and Figure 7.

Figure 6: The number of floating-point op-
erations (flops) (in millions) comparison be-
tween Plug-and-Play, Tune-and-Play and the
baseline. The result shows that the Plug-and-
Play, Tune-and-Play successfully reduce the
required computational cost to process an in-
creased amount of data.

Figure 7: The number of Multiply–accumulate
operations (MACs) (in millions) comparison be-
tween Plug-and-Play, Tune-and-Play and the
baseline. The result shows that both of our
memory plugin modules face little MACs in-
creasement while the baseline model MACs in-
crease almost linearly w.r.t. the input size.

E.3 ABLATION STUDIES

Hopfield Model Ablation. Beside our proposed generalized sparse modern Hopfield model, we
also test STanHop-Net with 2 other existing different modern Hopfield models: the dense modern
Hopfield model (Ramsauer et al., 2020) and the sparse modern Hopfield model (Hu et al., 2023).
We report their results in Table 1.

We terms them as STanHop-Net (D) and STanHop-Net (S) where (D) and (S) are for “Dense” and
“Sparse” respectively.

Component Ablation. In order to evaluate the effectiveness of different components in our model,
we perform an ablation study by removing one component at a time. In below, we denote Patch
Embedding as (PE), StanHop as (SH), Hopfield Pooling as (HP), Multi-Resolution as (MR). We
also denote their removals with “w/o” (i.e., without.)

For w/o PE, we set the patch size P equals 1. For w/o MR, we set the coarse level ∆ as 1. For w/o
SH and w/o HP, we replace those blocks/layers with an MLP layer with GELU activation and layer
normalization.

The results are showed in Table 3. From the ablation study results, we observe that removing the
STanHop block gives the biggest negative impact on the performance. Showing that the STanHop
block contributes the most to the model performance. Note that patch embedding also provides a
notable improvement on the performance. Overall, every component provides a different level of
performance boost.

25

Under review as a conference paper at ICLR 2024

Table 3: Component Ablation. We conduct component ablation by separately removing Patch Embedding
(PE), STanHop (SH), Hopfield Pooling (HP), and Multi-Resolution (MR). We report the mean MSE and MAE
over 10 runs, with variances omitted as they are all ≤ 0.15%. The results indicate that while every single
component in STanHop-Net provides performance boost, the impact of STanHop block on model performance
is the most significant among all other components.

Models STanHop w/o PE w/o SH w/o HP w/o MR

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.294 0.360 0.318 0.368 0.305 0.365 0.306 0.363 0.307 0.363
48 0.340 0.387 0.357 0.389 0.352 0.393 0.346 0.387 0.348 0.385

168 0.420 0.452 0.454 0.476 0.480 0.500 0.434 0.455 0.447 0.464
336 0.450 0.472 0.501 0.524 0.530 0.535 0.462 0.473 0.482 0.486
720 0.512 0.520 0.540 0.538 0.610 0.581 0.524 0.526 0.537 0.531

W
T

H

24 0.292 0.341 0.318 0.365 0.335 0.375 0.340 0.374 0.325 0.373
48 0.363 0.402 0.386 0.421 0.414 0.439 0.385 0.420 0.391 0.427

168 0.499 0.515 0.504 0.521 0.507 0.519 0.503 0.525 0.520 0.509
336 0.499 0.515 0.514 0.529 0.532 0.541 0.513 0.528 0.533 0.542
720 0.548 0.556 0.570 0.565 0.569 0.565 0.539 0.548 0.555 0.557

26

Under review as a conference paper at ICLR 2024

F EXPERIMENT DETAILS

F.1 EXPERIMENT DETAILS OF MULTIVARIATE TIME SERIES PREDICTIONS WITHOUT
MEMORY ENHANCEMENTS

Datasets. These datasets, commonly benchmarked in literature (Zhang and Yan, 2022; Wu et al.,
2021; Zhou et al., 2021).

• ETT (Electricity Transformer Temperature) (Zhou et al., 2021): ETT records 2 years of
data from two counties in China. We use two sub-datasets: ETTh1 (hourly) and ETTm1 (every
15 minutes). Each entry includes the “oil temperature” target and six power load features.

• ECL (Electricity Consuming Load): ECL records electricity consumption (Kwh) for 321
customers. Our version, sourced from (Zhou et al., 2021), covers hourly consumption over 2
years, targeting “MT 320”.

• WTH (Weather): WTH records climatological data from approximately 1,600 U.S. sites be-
tween 2010 and 2013, measured hourly. Entries include the “wet bulb” target and 11 climate
features.

• ILI (Influenza-Like Illness): ILI records weekly data on influenza-like illness (ILI) patients
from the U.S. Centers for Disease Control and Prevention between 2002 and 2021. It depicts
the ILI patient ratio against total patient count.

• Traffic: Traffic records hourly road occupancy rates from the California Department of Trans-
portation, sourced from sensors on San Francisco Bay area freeways.

Table 4: Dataset Sources

Dataset URL

ETTh1 & ETTm1 https://github.com/zhouhaoyi/ETDataset
ECL https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
WTH https://www.ncei.noaa.gov/data/local-climatological-data/
ILI https://archive.ics.uci.edu/ml/datasets/seismic-bumps
Traffic https://www.kaggle.com/shrutimechlearn/churn-modelling

Training. We use Adam optimizer to minimize the MSE Loss. The coefficients of Adam opti-
mizer, betas, are set to (0.9, 0.999). We continue training till there are Patience = 3 consecutive
epochs where validation loss doesn’t decrease or we reach 20 epochs. Finally, we evaluate our model
on test set with the best checkpoint on validation set.

Hyperparameters. For hyperparameter search, for each dataset, we conduct hyperparameter opti-
mization using the “Sweep” feature of Weights and Biases (Biewald et al., 2020), with 200 iterations
of random search for each setting to identify the optimal model configuration. The search space for
all hyperparameters are reported in Table 5.

27

https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://www.ncei.noaa.gov/data/local-climatological-data/
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://www.kaggle.com/shrutimechlearn/churn-modelling

Under review as a conference paper at ICLR 2024

Table 5: STanHop-Net hyperparameter space.

Parameter Distribution

Patch size P [6, 12, 24]
FeedForward dimension [64, 128, 256]
Number of encoder layer [1, 2, 3]

Number of pooling vectors [10]
Number of heads [4, 8]

Number of stacked STanHop blocks [1]
Dropout [0.1, 0.2, 0.3]

Learning rate [5e-4, 1e-4, 1e-5, 1e-3]
Input length on ILI [24, 36, 48, 60]

Input length on ETTm1 [24, 48, 96, 192, 288, 672]
Input length on other dataset [24, 48, 96, 168, 336, 720]

Course level [2, 4]
Weight decay [0.0, 0.0005, 0.001]

28

Under review as a conference paper at ICLR 2024

Figure 8: The Visualization of ILI dataset “OT” variate.

F.2 EXTERNAL MEMORY PLUGIN EXPERIMENT DETAILS

The hyperparameter of the external memory plugin experiment can be found in Table 5. For ILI OT,
we set the input length as 24, feed forward dimension as 32 and hidden dimension as 64. For
prediction horizon 60, we set the input length as 48, feed-forward dimension as 128 and hidden
dimension as 256. For ETTh1, we use the same hyperparameter set found via random search in
Table 1.

For the “bad” external memory set intervals, we pick 40 and 200 for ILI OT and ETTh1, which
represents 40 timesteps (weeks) earlier and 200 timessteps (hours) earlier. For ILI dataset, we set
the memory set size as 15 and for ETTh1, we set it as 20.

For Case 3 (ETTh1), we select construct the external memory pattern with interval 168 timesteps
earlier (equivalent to 1 week). For Case 4(ETTm1), we select construct the external memory pattern
with interval 672 timesteps earlier (equivalent to 1 week).

29

	Introduction
	Background: Modern Hopfield Models
	Generalized Sparse Hopfield Model
	Energy Function, Retrieval Dynamics and Fundamental Limits
	Generalized Sparse Hopfield (GSH) Layers for Deep Learning

	Methodology
	Patched Embedding
	STanHop: Sparse Tandem Hopfield Block
	External Memory Plugin Module and Pseudo-Label Retrieval
	Coarse-Graining
	Multi-Layer STanHop for Multi-Resolution Learning

	Experimental Studies
	Multivariate Time Series Prediction without external memory
	Memory-Enhanced Prediction: Memory Plugin via Hopfield Layer

	Conclusion
	Broader Impacts
	Related Works
	Proofs of Main Text
	lemma:Danskin
	lemma:retrievaldyn
	lemma:convergencesparse
	thm:epssparsedense
	thm:memorycapacity

	Methodology Details
	The Multi-Step GSH Updates
	GSHPooling and GSHLayer
	Example: Memory Retrieval for Image Completion
	Pseudo Label Retrieval
	Algorithm for STanHop-Net

	Additional Numerical Experiments
	Numerical Verification's of Theoretical Results
	Computational Cost Analysis of Memory Modules.
	Ablation Studies

	Experiment Details
	Experiment Details of Multivariate Time Series Predictions without Memory Enhancements
	External Memory Plugin Experiment Details

