A Supplementary Material

A.1 Proof of Lemma 1

Before proceeding with a proof of this statement, we recall the famous Hoefding inequality [17] which can be applied to bounded independent random variables, regardless of their distribution.

Proposition 1 (Hoefding's inequality for bounded variables). Let ξ_1, \ldots, ξ_n be independent random variables such that $a \leq \xi_i \leq b$ for all $i \in [n]$. Set $\xi = \sum \xi_i$ and $\mu = \mathbf{E}[\xi]$. Then, for all $\delta > 0$

 $\Pr\{|\xi - \mu| \le n\delta\} \ge 1 - 2\exp(-2\delta^2 n/(b-a)^2).$

Proof. Let $Q \subseteq [n]$. Let $\boldsymbol{x} = (x_1, \ldots, x_n)$ be a vector such that x_i has distribution U(0, 1) for $i \in Q$ and $x_i = 0$ otherwise. Define the random variable $\theta := \operatorname{sign}(\boldsymbol{x}, \beta_1) - \operatorname{sign}(-\boldsymbol{x}, \beta_2)$, where β_1 and β_2 are i.i.d. random variables taken uniformly at random from the set of unknown vectors \mathcal{B} . Clearly, $\mathbf{E}[\theta] = \frac{2}{\ell} \operatorname{pir}(Q, \mathcal{B})$. From the lemma condition, it follows that there exists a set $I \subseteq [m]$ of size at least $(1 - \frac{1}{16\ell})m$ such that $y_i = \operatorname{sign}(\langle \boldsymbol{x}^{(i)}, \boldsymbol{\beta} \rangle)$ for all $i \in I$. Moreover, one can find a subset $I' \subseteq I$ such that $|\{i \in I' : i \leq m/2\}| = |\{i \in I' : i > m/2\}| = \frac{8\ell - 1}{16\ell}m$. By applying Proposition 1 for a set $\{y_i : i \in I', i \leq m/2\} \cup \{y_i : i \in I', i > m/2\}$ with $\xi := \sum_{i \in I'} y_i$, $\mu = \mathbf{E}[\xi] = \frac{|I'|}{2} \frac{2}{\ell} \operatorname{pir}(Q, \mathcal{B}) = \frac{(8\ell - 1)m}{8\ell^2} \operatorname{pir}(Q, \mathcal{B}), a = -1, b = 1$ and $\delta = 1/(2\ell)$, we get

$$\Pr\left\{\left|\xi - \mu\right| \le n\delta\right\} \ge 1 - 2\exp\left(-\Omega(m\ell^{-2})\right)$$

Thus,

$$\Pr\left\{\widetilde{\operatorname{pir}}(Q,m) = \operatorname{pir}(Q,\mathcal{B})\right\} =$$

$$= \Pr\left\{\operatorname{pir}(Q,\mathcal{B}) - \frac{1}{2} < \frac{\ell}{m} \left(\sum_{i=1}^{m/2} y_i - \sum_{i=m/2+1}^m y_i\right) < \operatorname{pir}(Q,\mathcal{B}) + \frac{1}{2}\right\}$$

$$\geq \Pr\left\{|\xi - \mu| \le n\delta\right\}$$

$$\geq 1 - 2\exp\left(-\Omega(m\ell^{-2})\right).$$

This yields that $\widetilde{\text{pir}}(Q,m)$ is a correct estimate of $\text{pir}(Q,\mathcal{B})$ with probability $1 - \exp(-\Omega(m\ell^{-2}))$.

A.2 Proof of Lemma 2

Proof. By Lemma 1, one value $z(Q_i, H_B)$ can be correctly estimated with probability 1 - 1/(nm) by asking $q', q' = O(\ell^2 \log(nm))$, queries provided that a fraction of the erroneous responses to these queries is at most $1/(16\ell)$. We ask q = mq' queries and try to estimate all values $\{z(Q_i, H_B), i \in [m]\}$. Recall that the total number of erroneous responses is bounded by τq . By the union bound, with probability 1 - 1/n, the number of incorrect estimates is at most $\frac{\tau q}{q'/(16\ell)} = 16\ell\tau m$. This completes the proof.

A.3 Proof of Lemma 6

Proof. We shall make use of the random coding with expurgation technique. Let $r := \alpha m$. Consider a random binary matrix X of size $m \times n$ whose entries are i.i.d. Bernoulli random variables which take the value 1 with probability $p = \frac{c}{c+f}$ and the value 0 with probability 1 - p. Let \mathcal{E}_t denote the event that the t-th column of X is bad, i.e., there exist some disjoint subsets $U \subseteq [n]$, $t \in U$, |U| = c, and $W \subseteq [n]$, |W| = f, and less than 2r + 1 rows $i \in [m]$ such that $X_{i,j} = 1$ for all $j \in U$ and $X_{i,j} = 0$ for all $j \in W$. Let ν be a Binomial random variable with parameters m and $\overline{p} := p^c (1-p)^f$. It is clear that ν describes the number of rows in X that separate two sets of columns U and W. By the union bound, we obtain

$$\Pr \left\{ \mathcal{E}_t \right\} \leq \sum_{\substack{U, W \subseteq [n], \ t \in U \\ |U| = c, |W| = f, \ U \cap W = \emptyset}} \Pr \left\{ \nu \leq 2r \right\}$$
$$\leq \binom{n-1}{c+f-1} \binom{c+f-1}{f} \sum_{i=0}^{2r} \binom{m}{i} \overline{p}^i (1-\overline{p})^{m-i}.$$

Note that the property on α in the statement of this lemma implies that $2r \leq \overline{p}m$. Applying the monotonicity property of the Binomial distribution, we obtain

$$\Pr\{\mathcal{E}_t\} \le (2r+1)n^{c+f-1} \binom{m}{2r} (1-\overline{p})^{m-2r} \overline{p}^{2r}.$$

If the above probability is bounded above by 1/2, then X contains on average at most n/2 bad columns. This would imply the existence of an (c, f, α) -robust-cover-free matrix of size $m \times n/2$. In order to have $\Pr{\{\mathcal{E}_t\} \leq 1/2}$, it suffices to take m satisfying

$$(c+f-1)\log n + mH_2(2\alpha) + m(1-2\alpha)\log(1-\overline{p}) + 2\alpha m\log\overline{p} \le o(m).$$

Thus, a required matrix exists if it holds that

$$m \ge \frac{(c+f-1)\log n}{(2\alpha-1)\log(1-\overline{p}) - 2\alpha\log\overline{p} - H_2(2\alpha)}(1+o(1)).$$

A.4 Proof of Lemma 9

Proof. To make everything work, we indeed need to use some assumptions regarding the support of vectors and the magnitude of all the entries: (a) the support of any vector from \mathcal{B} is not fully included to the support of any other vector from \mathcal{B} , (b) the absolute value of each non-zero entry of $\beta^{(i)}$ is bounded below by c_l and above by c_u .

Under Assumption 1, for $j \neq i$ and large enough Inf, it holds that

$$s_{ij} := \operatorname{sign}(\langle \operatorname{Inf}^{(i)}(\boldsymbol{g}), \boldsymbol{\beta}^{(j)} \rangle) = \operatorname{sign}(\langle \operatorname{Inf}^{(i)}(\boldsymbol{0}), \boldsymbol{\beta}^{(j)} \rangle),$$

since the contribution of entries indexed by elements of $\operatorname{supp}(\beta^{(i)})$ to both inner products is negligible as $\operatorname{Inf} \to \infty$. We also note that

$$\begin{aligned} \operatorname{sign}(\langle \operatorname{Inf}^{(i)}(\mathbf{0}), \boldsymbol{\beta}^{(i)} \rangle) &= \operatorname{sign}(\langle \mathbf{0}, \boldsymbol{\beta}^{(i)} \rangle) = 1, \\ \operatorname{sign}(\langle \operatorname{Inf}^{(i)}(\boldsymbol{g}), \boldsymbol{\beta}^{(i)} \rangle) &= \operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle), \end{aligned}$$

Set $\xi = \sum_{j=1}^{m/2} y_j - \sum_{j=m/2+1}^m y_j$. Then $\mu = \mathbf{E}[\xi] = \frac{m}{2\ell} (\operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle) - 1)$. By applying Proposition 1, we obtain

$$\Pr\left\{ \operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle) - \frac{1}{2} < \frac{2\ell}{m} \xi + 1 < \operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle) + \frac{1}{2} \right\}$$
$$= \Pr\left\{ \frac{m}{2\ell} \left(\operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle) - \frac{1}{2} \right) < \xi + \frac{m}{2\ell} < \frac{m}{2\ell} \left(\operatorname{sign}(\langle \boldsymbol{g}, \boldsymbol{\beta}^{(i)} \rangle) + \frac{1}{2} \right) \right\}$$
$$= \Pr\left\{ |\xi - \mu| < \frac{m}{4\ell} \right\}$$
$$\geq 1 - 2 \exp\left(-\Omega(\ell^{-2}m) \right).$$

This yields the required statement.