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ABSTRACT

While diffusion models are powerful in generating high-quality, diverse synthetic
data for object-centric tasks, existing methods struggle with scene-aware tasks
such as Visual Question Answering (VQA) and Human-Object Interaction (HOI)
Reasoning, where it is critical to preserve scene attributes in generated images
consistent with a multimodal context, i.e. a reference image with accompany-
ing text guidance query. To address this, we introduce Hummingbird, the first
diffusion-based image generator which, given a multimodal context, generates
highly diverse images w.r.t. the reference image while ensuring high fidelity by
accurately preserving scene attributes, such as object interactions and spatial re-
lationships from the text guidance. Hummingbird employs a novel Multimodal
Context Evaluator that simultaneously optimizes our formulated Global Semantic
and Fine-grained Consistency Rewards to ensure generated images preserve the
scene attributes of reference images in relation to the text guidance while main-
taining diversity. As the first model to address the task of maintaining both diver-
sity and fidelity given a multimodal context, we introduce a new benchmark for-
mulation incorporating MME Perception and Bongard HOI datasets. Benchmark
experiments show Hummingbird outperforms all existing methods by achieving
superior fidelity while maintaining diversity, validating Hummingbird’s potential
as a robust multimodal context-aligned image generator in complex visual tasks.
Project page: https://roar-ai.github.io/hummingbird

1 INTRODUCTION

In recent years, diffusion models (Ho et al., 2020; Rombach et al., 2022) have emerged as power-
ful tools for image generation, offering impressive capabilities in creating high-quality and diverse
synthetic data. This synthetic data has proven valuable in various applications, particularly for
object-centric image classification tasks (Shu et al., 2022; Feng et al., 2023). However, for scene-
aware tasks like Visual Question Answering (VQA) (Goyal et al., 2017; Antol et al., 2015) and
Human-Object Interaction (HOI) Reasoning (Jiang et al., 2022; Ulutan et al., 2020), it is essential
that the generated images accurately preserve scene attributes relevant to the task, as specified by the
accompanying text queries. These attributes may include numerical attributes (e.g., object count),
physical properties (e.g., color), spatial relationships (e.g., relative positions of objects), object in-
teractions (e.g., how objects interact with each other), or scene-level details. Although defining an
all-exhaustive list of such attributes is intractable, tasks like VQA and HOI, through their open-ended
questions (Antol et al., 2015), enable to capture the relevant semantic attributes effectively.

While existing image generation methods have made great strides in improving the diversity (defined
as how different the generated images are from a given reference image and from each other), they
often fall short in maintaining high fidelity. Given a text query as guidance pertaining to scene
attributes in relation to a given reference image (together referred to as multimodal context), we
define fidelity as how truthfully the image generator can preserve those attributes in the generated
image. Existing methods, including state-of-the-art (SOTA) diffusion models like Stable Diffusion
XL (SDXL) (Podell et al., 2024), Image Translation techniques like Boomerang (Luzi et al., 2024),
Textual Inversion (Gal et al., 2023; Trabucco et al., 2024), and Image Variation (Xu et al., 2023),

⋆Equal contribution. This work was done as Minh-Quan’s internship project at Microsoft.
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Is there a bottle?

(c)  Object Existence

Is there a red hat?

(b)  Physical Attribute (Color)

Is the dog under the pool?

(d)  Spatial Relationship

Are there six people?

(a)  Numerical Attribute

Reference [Ans: Yes] Generated [Ans: Yes]

(e)  Visual Attribute (Scene)

Is this a general store outdoor?

Reference [Ans: No] Generated [Ans: No] Reference [Ans: Yes] Generated [Ans: Yes]

Reference [Ans: No] Generated [Ans: No] Reference [Ans: Yes] Generated [Ans: Yes]

Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation

Text Guidance: Is the clock above people?

Context Description from MLLM: The image shows a city street scene with a clock mounted on a building. The clock is positioned above 
the street level, where pedestrians are walking. The street is lined with shops and buildings, and there are people walking on the sidewalk. 
The clock is clearly visible and serves as a prominent feature in the image. 

✔ Diversity ✔ Fidelity✔ Diversity ✗ Fidelity ✔ Diversity ✗ Fidelity ✗ Diversity ✔ Fidelity

Textual Inversion

✔ Diversity ✗ Fidelity

(g)  Diversity/Fidelity Comparison 

Is person swinging or holding a tennis racket?
Reference [Ans: swing] Generated [Ans: swing]

(f)  Human-Object Interaction Reasoning

Text Guidance:

Text Guidance:

Figure 1: Hummingbird aligns generated image with multimodal context input (reference image +
text guidance) ensuring the synthetic image is diverse w.r.t. reference image while exhibiting high
fidelity (i.e. preserves the scene attribute from reference image in relation to text guidance). (a-f)
By doing so, for VQA and HOI Reasoning, Hummingbird enables the answer to the question in the
text guidance to remain consistent between the reference and generated images. (g) Hummingbird is
also able to preserve both diversity and fidelity without the trade-off exhibited by existing methods.

often lose fine-grained scene details as the embeddings do not have a precise control on which scene
attributes to capture. This lack of fidelity is particularly problematic in synthetic data generation for
scene-aware tasks like VQA and HOI Reasoning, where preserving scene elements in relation to
text query is critical for high performance.

To achieve high fidelity while preserving diversity in image generation w.r.t multimodal context,
we introduce Hummingbird, the first diffusion-based general-purpose image generator designed to
produce high-fidelity images guided by a multimodal context while maintaining diversity. Given a
multimodal context, containing a reference image and accompanying text guidance, Hummingbird
generates highly diverse images that differ from the reference image while accurately preserving the
scene attributes referenced in the text guidance.

Hummingbird contains a novel Multimodal Context Evaluator that simultaneously maximizes our
formulated Global Semantic and Fine-grained Consistency Rewards. Given the multimodal con-
text input, Hummingbird crafts an instruction prompt to provide to a Multimodal Large Language
Model (MLLM) (Liu et al., 2024; Chen et al., 2024) to obtain a text-based Context Description con-
taining the necessary scene attributes to focus on for image generation. Hummingbird then finetunes
the SDXL diffusion model using the rewards from the Multimodal Context Evaluator based on the
alignment between the generated image and the MLLM Context Description. While SDXL enables
generating images with high diversity (i.e. visually different from the reference image), the rewards
encourage the fine-tuning process to align the generated image closely with the scene attributes pro-
vided in the multimodal context to achieve high fidelity. Unlike existing methods, Hummingbird is
able to balance both diversity and fidelity in generated images which is a prerequisite for leveraging
synthetic data for scene-aware tasks like VQA and HOI Reasoning. Figure 1 (a-f) illustrates how,
given text guidance (a question) and a reference image, the generated image remains visually diverse
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w.r.t reference image while preserving the specified scene attributes, thus ensuring that the answer
to the question in the text guidance remains consistent between the reference and generated images.

As the first approach to address the task of multimodal context-aware image generation with high
fidelity and diversity, we also introduce a new benchmark formulation to evaluate different methods
on this task. Our benchmark leverages the MME Perception benchmark (Fu et al., 2024) to perform
Test-Time Augmentation (TTA) (Shanmugam et al., 2021; Kim et al., 2020) with real and generated
synthetic images to evaluate the ability of a method to maintain fidelity on scene attributes related
to spatial existence, count, position, color, and scene. We further leverage Bongard Human-Object
Interaction (HOI) (Jiang et al., 2022) dataset to perform Test-time Prompt Tuning (TPT) (Shu et al.,
2022) to test a method’s ability to maintain fidelity when focusing on sophisticated human-object
interactions. Finally, we compute a method’s ability to maintain diversity using feature-based dis-
tance metrics between the reference and generated images. Experiments show that Hummingbird
is able to outperform all existing methods on MME Perception and Bongard HOI (i.e. provide the
best fidelity) while achieving high diversity. Hummingbird also outperforms all other methods con-
sistently on ImageNet and its OOD variants. This validates its effectiveness on large and diverse
datasets from both scene-aware and object-centric tasks. Figure 1 (g) demonstrates that Humming-
bird is able to preserve diversity and fidelity without the trade-off exhibited by existing methods.

Our contributions are as follows:

• We introduce Hummingbird, the first diffusion-based image generator to synthesize high
fidelity images guided by multimodal context of reference image and text guidance while
maintaining high diversity.

• We develop a novel Multimodal Context Evaluator that simultaneously maximizes our for-
mulated Global Semantic and Fine-grained Consistency Rewards during end-to-end fine-
tuning. This enables the diffusion model to focus on both local and global scene attributes.

• Hummingbird outperforms existing methods on MME Perception and Bongard HOI
datasets as part of a newly formulated benchmark that evaluates the ability to generate
images with both high fidelity and high diversity given a multimodal context.

2 RELATED WORK

Popular diffusion-based image generators, such as SDXL (Podell et al., 2024), have made tremen-
dous progress in producing high-quality diverse images. But these methods struggle to fully trans-
late complex scene details from text to image, especially if it involves preserving a specific scene
attribute w.r.t. a reference image. We can observe this limitation in Figure 1(g) where the image
generated based on a text description of a reference image (image-to-text-to-image (I2T2I)) cannot
preserve the scene elements from reference image (poor fidelity).

Image Variation methods like Xu et al. (2023); Feng et al. (2023); Zhang et al. (2024); Le et al.
(2024); Graikos et al. (2024); Belagali et al. (2024), use an image encoder to extract embeddings
to condition diffusion models. While this helps to retain high-level semantics and allow changes
to style and other low-level features, these methods fail to preserve specific scene attributes of a
reference image due to a lack of precise control over which detail to emphasize. Moreover, addition
of noise during diffusion process introduces randomness which causes significant deviation from the
reference image, again resulting in poor fidelity (Figure 1 (g)).

Image Translation or Image Editing techniques, such as Boomerang (Luzi et al., 2024) and Control-
Net (Zhang et al., 2023), add noise to reference input image to create variations around the original
reference image in latent space. Since they aim to generate multiple local samples, they fail to pro-
duce sufficiently diverse images (Figure 1 (g)). Moreover, the added noise during forward diffusion
step often distorts or removes the details on specific scene attributes in the reference image.

Textual Inversion methods (Gal et al., 2023; Trabucco et al., 2024; Ahn et al., 2024; Nguyen et al.,
2024) encode new concepts as “pseudo-words” in text embedding space to guide image generation.
Although effective for style transfer, these methods struggle with tasks where a single reference
image is involved, such as TTA, to generate multiple synthetic images. When fine-tuning with just
one reference image, these methods lead to images containing irrelevant scene attributes and fail to
preserve the attributes from the original reference image (leading to poor fidelity, Figure 1 (g)).
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The image shows a group of four 
dogs running in a grassy field. 

There are two people sitting on a 
bench in the background, 

observing the dogs. The dogs are 
of different sizes and breeds 

and enjoying their time outdoors.

Reference

[INST] <image>\nProvide a 
concise description of key 
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the question: 
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appear in this image?

Answer: Yes
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Multimodal Context

Figure 2: Model Overview: Given text guidance g and reference image x (multimodal context M),
Hummingbird crafts an instruction prompt p to feed to MLLM and obtain Context Description C.
It them embeds x and C via CLIP to feed to UNet Denoiser of SDXL to generate image x̂. To
improve the fidelity of x̂ w.r.t. M while preserving diversity, Hummingbird introduced Multimodal
Context Evaluator to simultaneously maximize novel rewards – Global Semantic and Fine-Grained
Consistency Rewards – to align x̂ with scene attributes provided in M.

3 PRELIMINARIES

Latent Diffusion Models (LDM) (Podell et al., 2024; Rombach et al., 2022) operate in a com-
pressed latent space rather than directly in pixel space. Using a VAE (Kingma, 2013) encoder E ,
they encode an input image x ∼ Pdata into a lower-dimensional latent variable z0, on which the
diffusion process is applied. The model iteratively corrupts z0 with noise and learns to reverse this
process to generate new samples coherent with the original data distribution. The training objective
minimizes the error between the noisy latent sample at time t and the denoised prediction:

Lsimple = Et∼U[0,1],x∼Pdata,z0=E(x),ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t)∥2

]
, (1)

where ϵθ(zt, t) represents UNet denoiser’s (Ho et al., 2020; Rombach et al., 2022) predicted noise.

Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021) accelerate the sampling process
in diffusion models while maintaining high-quality samples. DDIM adjusts the reverse diffusion
process by directly predicting the latent variable at the next timestep using deterministic sampling,
which allows for faster convergence. The DDIM update step is defined as:

zt−1 =
√
αt−1

zt −
√
1− αtϵθ (zt, t)√

αt
+

√
1− αt−1 · ϵθ (zt, t) . (2)

4 METHOD

4.1 MODEL OVERVIEW

Figure 2 provides an overview of the end-to-end training setup of Hummingbird. Let M = {x,g}
denote the multimodal context fed as input to Hummingbird. M comprises of the reference image
x and text guidance g for Hummingbird to generate image x̂ that is visually diverse w.r.t. x while
faithfully preserves the scene attributes in relation to g. Depending on the task, g can be a question
or a set of annotations accompanying x. During training, g additionally consists of the ground truth
(such as answer to the question or correct annotation) which is unavailable during evaluation.

We feed the multimodal context M to MLLM to generate a text-based Context Description, C. For
this, we need to provide M as an instruction prompt to MLLM such that it guides the MLLM on
which scene attributes to focus on in the reference image x in relation to the text guidance g. We
devise a prompt template p : g → P to transform g ∈ M into an instruction prompt P . We then
feed P along with x as the multimodal instruction prompt to the MLLM to obtain C. Figure 2
provides a sample of one such prompt template. Please refer Appendix C for more samples.

C provides a detailed description of x, capturing the scene attributes specified by g, such as object
relationships, their interactions, or other spatial attributes. We pass C through a CLIP text encoder
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BLIP-2 QFormer as Multimodal Context Evaluator
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Figure 3: Hummingbird’s Multimodal Context Evaluator leverages pre-trained BLIP-2 QFormer.
It simultaneously maximizes our novel Global Semantic and Fine-grained Consistency Rewards to
align generated image x̂ with Content Description C corresponding to multimodal context M.

(Radford et al., 2021) to convert it into a text embedding Te. In parallel, we also encode x using a
CLIP image encoder to generate the image embedding Ie comprising the semantic features of x.

We feed the embeddings Ie and Te to the UNet denoiser ϵθ of SDXL (Podell et al., 2024) to generate
image x̂. While x̂ exhibits diversity (i.e. visually different from x), we fine-tune the denoiser via
LoRA (Hu et al., 2022) to enhance the fidelity of x̂ (i.e. preserve the scene attributes occurring in
x in relation to g). To facilitate the fine-tuning, we introduce Multimodal Context Evaluator which
simultaneously maximizes our two novel rewards – Global Semantic and Fine-Grained Consistency
Rewards – to align x̂ with the scene attributes provided in the multimodal context M (Figure 3).

4.2 FINE-TUNING WITH MULTIMODAL CONTEXT REWARDS

Multimodal Context Evaluator. We design our Multimodal Context Evaluator using the multi-
modal representation connector in pre-trained vision-language models (VLMs). Specifically, we
leverage the pre-trained QFormer from BLIP-2 (Li et al., 2023) due to its unique ability to cap-
ture both global and local alignment between image-text pairs. We use BLIP-2’s image encoder to
extract the image tokens Itokens(x̂) for the image x̂ generated by SDXL (Figure 3). In parallel,
we use BLIP-2’s BERT-based (Kenton & Toutanova, 2019) text encoder to extract the text tokens
Ttokens (including the representative token T[CLS]) for the text-based Context Description C obtained
from the MLLM. We then utilize the learned queries Qlearned from the pre-trained BLIP-2 QFormer
to extract the visual representation token sequence Z via the Cross-Attention layer as,

Z = CrossAttention (Qlearned, Itokens(x̂)) (3)

Global Semantic Reward. Using the visual representation tokens Z and the representative text
token T[CLS], we compute cosine similarity between each visual token Zi and T[CLS] and define
Global Semantic Reward, Rglobal, as the maximum of these computed cosine similarities,

Rglobal = max
i

ZT
i · T[CLS]

∥Zi∥∥T[CLS]∥
(4)

Through the above formulation, the Global Semantic Reward, Rglobal, ensures the overall scene
context in the generated image x̂ aligns with that in the textual context description C by maximizing
their global feature similarity.

Fine-Grained Consistency Reward. While Rglobal allows to align the global semantics of the gen-
erated image x̂ with that of the textual context description C, it is not sufficient to maintain optimal
fidelity as SDXL can still omit capturing key scene attributes specified in g. We therefore intro-
duce Fine-Grained Consistency Reward, Rfine-grained, that helps to complement Rglobal and captures
the multimodal context in x̂ more comprehensively in a fine-grained manner. For this, we leverage
the bi-directional self-attention along with the image-text matching (ITM) classifier of pre-trained
BLIP-2 QFormer to attend to all the visual tokens Z and Context Description text tokens Ttokens with
each other. The ITM classifier outputs two logits: one for the positive match (with index j = 1) and
one for the negative match (with index j = 0). In the training of Hummingbird, positive pairs are
defined as the generated image and its corresponding context description within the same training
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Algorithm 1 Multimodal Context Rewards Fine-tuning
Require: Pre-trained UNet denoiser ϵθ; original data distribution Pdata; context descriptor MLLM.
Ensure: ϵθ converges and minimizes Ltotal.

Activate UNet denoiser ϵθ; freeze context rewardsRglobal,Rfine-grained, context descriptor MLLM
while Ltotal not converged do

Sample multimodal context input {x,g} ∼ Pdata; t = T
P ← p(g) ▷ Create instruction prompt P from text guidance g and prompt template p
C ← MLLM(x,P) ▷ Extract context description C from MLLM
Extract image embedding Ie of reference image x
Extract text embedding Te of description C
while t > 0 do ▷ perform DDIM denoising

zt−1 ←
√
αt−1

zt−
√
1−αtϵθ(zt,Ie,Te,t)√

αt
+
√
1− αt−1 · ϵθ (zt, Ie, Te, t)

end while
x̂← D(z0) ▷ VAE Decoder decodes latent z0 to pixel space
Ltotal ← −(λ1Rglobal + λ2Rfine-grained)
Backward Ltotal and update ϵθ for last K steps.

end while

batch. We select the logit corresponding to the positive match j = 1 of the classifier as Rfine-grained,

Rfine-grained = ITM Classifier(Bidirectional SA(Z, Ttokens))j=1, (5)

Rfine-grained therefore captures the fine-grained multimodal image-text alignment between x̂ and C.

Loss Function. We combine Rglobal and Rfine-grained to compute loss Ltotal to fine-tune denoiser ϵθ,

Ltotal = −(λ1Rglobal + λ2Rfine-grained), (6)

where λ1 and λ2 are the hyperparameters balancing the contribution from the two rewards.

Training Procedure. During training, we freeze all components of Hummingbird except UNet
denoiser ϵθ in SDXL which we fine-tune using LoRA (Figure 2 and 3). Additionally, text guidance
g comprises the ground truth corresponding to the reference image in relation to the input text
query. Algorithm 1 presents an overview of the training procedure. We optimize the UNet denoiser
ϵθ in SDXL using DDIM (Song et al., 2021) scheduler, guided by the two rewards Rglobal and
Rfine-grained. For each training step, we extract the image embedding Ie of the reference image and
text embedding Te of context description C to condition the generation process. We obtain the
generated image x̂ via 25-steps DDIM and VAE decoder D from latent z0 to pixel space x̂, which
we feed to Multimodal Context Evaluator along with C. Since each timestep in the denoising process
is differentiable, we compute the gradient to update parameters θ in denoiser ϵθ through chain rule,

∂L
∂θ

= −∂R
∂x̂
· ∂x̂
∂z0
·

T∏
t=0

∂
[√

αt−1
zt−

√
1−αtϵθ(zt,Ie,Te,t)√

αt
+
√
1− αt−1 · ϵθ (zt, Ie, Te, t)

]
∂θ

(7)

Evaluation. During evaluation, we remove the Multimodal Context Evaluator with final output
being the generated image x̂ (Appendix D, Figure 9). For fair evaluation, text guidance g no longer
includes the ground truth corresponding to the reference image in relation to the input text query.

5 EXPERIMENT

5.1 BENCHMARK FORMULATION

To evaluate Hummingbird’s effectiveness as a multimodal context-aligned image generator, we in-
troduce a benchmark focused on two key criteria: fidelity, which measures how accurately the gen-
erated images preserve scene attributes as per the multimodal context, and diversity, which assesses
how distinct the generate images are from each other as well as from the reference image.

For fidelity, we build our evaluation framework around three main considerations: Applicability,
ensuring generated images enhance model performance when combined with real data; Efficiency,
emphasizing computationally light and resource-efficient protocols; and Fairness, promoting stan-
dardized test-time evaluation to mitigate biases caused by varying training processes.

Based on these principles, we adopt two evaluation settings: (1) VQA Benchmark for MLLMs using
Test-Time Augmentation (TTA) (Shanmugam et al., 2021), and (2) Human-Object Interaction (HOI)
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Reasoning using Test-time Prompt Tuning (TPT) from Shu et al. (2022). Both settings leverage real
and synthetic data to boost performance while allowing computational efficiency. TTA uses pre-
trained MLLMs without requiring additional training for fair comparison, while TPT fine-tunes
prompt embeddings for quick convergence.

For diversity, we conduct two experiments using CLIP ViT-G/14 (Radford et al., 2021) features.
First, we compute the Euclidean distance between the generated and reference images to quantify
how distinct the generated images are from their reference counterparts. Second, we generate images
using 20 different random seeds and compute the average pairwise Euclidean distance across all
generated images, providing a measure of intra-set diversity.

Datasets and Metrics. For the VQA benchmark, we fine-tune Hummingbird on VQAv2 (Goyal
et al., 2017) and GQA (Hudson & Manning, 2019), then evaluate using TTA on MME Perception
(Fu et al., 2024), a common benchmark for assessing SOTA MLLMs. Our benchmark covers MME
Perception tasks related to Existence, Count, Position, Color, and Scene (more discussion on this in
Appendix A). We generate synthetic images using the test image as a reference and pair them with
corresponding questions as text guidance. We then feed the real (reference) and generated images
to MLLMs along with yes/no questions to extract the logit for the next token [yes]/[no]. We
determine the final predicted token by averaging the logits and comparing it to the ground truth
(yes/no). Using the paired yes and no questions for each test image, we report Accuracy (ACC),
which measures the correctness of individual question predictions, and Accuracy+ (ACC+), which
measures the joint correctness of the question pair.

For HOI Reasoning, we fine-tune Hummingbird on Bongard-HOI (Jiang et al., 2022) training set and
evaluate on associated test sets using TPT from Shu et al. (2022). Following the setup, given a query
test image with support sets of positive (e.g., riding bicycle) and negative (e.g., not riding bicycle)
images, we generate synthetic images for support set images as reference using corresponding label
as text guidance. We then use the augmented support sets to optimize a pair of prompt embeddings
that contrast each other and predict the human-object interaction in query image by comparing its
feature similarity to the two optimized prompts. Please refer to Shu et al. (2022) for more details. We
use Accuracy as a measure of model’s ability to correctly predict these human-object interactions.

Method Comparisons. We compare Hummingbird against representative techniques from four
groups of SOTA image generation techniques (covered in Section 2): (1) customized T2I diffusion
models (referred to as I2T2I SDXL), (2) Image Variation, (3) Image Translation/Editing, and (4)
Textual Inversion, as well as data augmentation methods like RandAugment (Cubuk et al., 2020).

Object-Centric Benchmark. In addition to scene-aware tasks like VQA and HOI Reasoning, we
also evaluate Hummingbird on an object-centric benchmark to demonstrate its versatility. Specifi-
cally, we fine-tune the UNet denoiser on the ImageNet training set (Deng et al., 2009), and perform
TPT (Shu et al., 2022) using real and generated images on the ImageNet test set and four out-of-
distribution (OOD) datasets: ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2 (Recht et al.,
2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019). This en-
ables us to assess the robustness of Hummingbird under natural distribution shifts. We use Top-1
accuracy which measures the correctness of classifying test images.

5.2 IMPLEMENTATION DETAILS

For Hummingbird, we use SDXL Base 1.0 which is a standard pre-trained diffusion-based image
generation model. We further employ CLIP ViT-G/14 as the image encoder and both CLIP-L/14
& CLIP-G/14 as the text encoders (Radford et al., 2021). We perform LoRA fine-tuning with 11M
trainable parameters (≈ 0.46% of total 2.6B parameters) on 8 NVIDIA A100 80GB GPUs using
AdamW (Loshchilov & Hutter, 2019) optimizer, learning rate of 5e-6, and gradient accumulation
steps of 8. Please refer to Appendix Q for more details.

5.3 COMPARISON WITH EXISTING METHODS ON THE BENCHMARK FORMULATION

VQA benchmark. To evaluate Hummingbird for VQA using MME Perception, we experiment
with SOTA MLLMs including LLaVA v1.6 (Liu et al., 2024) and InternVL 2.0 (Chen et al., 2024).
Table 1 shows that Hummingbird significantly improves both ACC and ACC+ compared to all ex-
isting methods on both LLaVA v1.6 and InternVL 2.0 consistently across all tasks. The ability of
Hummingbird’s generated images to enhance MLLM performance on complex VQA tasks validates
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Table 1: Comparison for VQA benchmark on MME Perception using Test-Time Augmenta-
tion (TTA). Hummingbird outperforms SOTA image generation and augmentation techniques con-
sistently across all MME tasks, when evaluating with different MLLMs.

MLLM Method Existence Count Position Color Scene
Name ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

LLaVA
v1.6 7B

(Liu et al., 2024)

Real only 95.00 90.00 81.67 66.67 76.67 53.33 93.33 86.67 86.00 72.50

Real + RandAugment 93.33 86.67 78.33 60.00 78.33 56.67 91.67 83.33 85.50 72.00
(Cubuk et al., 2020) ↓ 1.67 ↓ 3.33 ↓ 3.34 ↓ 6.67 ↑ 1.66 ↑ 3.34 ↓ 1.66 ↓ 3.34 ↓ 0.50 ↓ 0.50

Real + Image Variation 88.33 76.67 71.67 46.67 76.67 56.67 85.00 73.33 86.50 73.00
(Xu et al., 2023) ↓ 6.67 ↓ 13.33 ↓ 10.00 ↓ 20.00 - ↑ 3.34 ↓ 8.33 ↓ 13.34 ↑ 0.50 ↑ 0.50

Real + Image Translation 93.33 86.67 78.33 60.00 80.00 60.00 93.33 86.67 86.75 73.00
(Luzi et al., 2024) ↓ 1.67 ↓ 3.33 ↓ 3.34 ↓ 6.67 ↑ 3.33 ↑ 6.67 - - ↑ 0.75 ↑ 0.50

Real + Textual Inversion 86.67 73.33 71.67 43.33 73.33 50.00 85.00 70.00 85.25 71.00
(Gal et al., 2023) ↓ 8.33 ↓ 16.67 ↓ 10.00 ↓ 23.34 ↓ 3.34 ↓ 3.33 ↓ 8.33 ↓ 16.67 ↓ 0.75 ↓ 1.50

Real + I2T2I SDXL 96.67 93.33 81.67 66.67 75.00 50.00 88.33 76.67 85.50 72.50
(Podell et al., 2024) ↑ 1.67 ↑ 3.33 - - ↓ 1.67 ↓ 3.33 ↓ 5.00 ↓ 10.00 ↓ 0.50 -

Real + Hummingbird 96.67 93.33 83.33 70.00 81.67 66.67 95.00 93.33 87.75 74.00
↑ 1.67 ↑ 3.33 ↑ 1.66 ↑ 3.33 ↑ 5.00 ↑ 13.34 ↑ 1.67 ↑ 6.66 ↑ 1.75 ↑ 1.50

InternVL
2.0 8B

(Chen et al., 2024)

Real only 96.67 93.33 73.33 50.00 76.67 60.00 91.67 83.33 85.00 70.00

Real + RandAugment 95.00 90.00 76.67 66.67 76.67 60.00 88.33 76.67 84.75 69.50
(Cubuk et al., 2020) ↓ 1.67 ↓ 3.33 ↑ 3.34 ↑ 16.67 - - ↓ 3.34 ↓ 6.66 ↓ 0.25 ↓ 0.50

Real + Image Variation 91.67 83.33 73.33 53.33 70.00 46.67 78.33 60.00 85.25 70.50
(Xu et al., 2023) ↓ 5.00 ↓ 10.00 - ↑ 3.33 ↓ 6.67 ↓ 13.33 ↓ 13.34 ↓ 23.33 ↑ 0.25 ↑ 0.50

Real + Image Translation 85.00 70.00 75.00 50.00 78.33 63.33 90.00 80.00 85.50 70.50
(Luzi et al., 2024) ↓ 11.67 ↓ 23.33 ↑ 1.67 - ↑ 1.66 ↑ 3.33 ↓ 1.67 ↓ 3.33 ↑ 0.50 ↑ 0.50

Real + Textual Inversion 83.33 66.67 70.00 46.67 61.67 40.00 75.00 56.67 84.25 68.50
(Gal et al., 2023) ↓ 13.34 ↓ 26.66 ↓ 3.33 ↓ 3.33 ↓ 15.00 ↓ 20.00 ↓ 16.67 ↓ 26.66 ↓ 0.75 ↓ 1.50

Real + I2T2I SDXL 93.33 86.67 78.33 56.67 65.00 43.33 95.00 90.00 84.75 70.50
(Podell et al., 2024) ↓ 3.34 ↓ 6.66 ↑ 5.00 ↑ 6.67 ↓ 11.67 ↓ 16.67 ↑ 3.33 ↑ 6.67 ↓ 0.25 ↑ 0.50

Real + Hummingbird 98.33 96.67 86.67 73.33 78.33 63.33 98.33 96.67 86.25 71.00
↑ 1.66 ↑ 3.34 ↑ 13.34 ↑ 23.33 ↑ 1.66 ↑ 3.33 ↑ 6.66 ↑ 13.34 ↑ 1.25 ↑ 1.00

Table 2: Comparison on Human-Object Interaction (HOI) Reasoning using Test-time Prompt Tun-
ing (TPT). Hummingbird outperforms SOTA methods on all 4 test splits of Bongard-HOI dataset.

Method
Test Splits

Averageseen act., unseen act., seen act., unseen act.,
seen obj. seen obj. unseen obj. unseen obj.

RandAugment (Cubuk et al., 2020) 66.39 68.50 65.98 65.48 66.59
Image Variation (Xu et al., 2023) 57.86 ↓ 8.53 59.71 ↓ 8.79 56.07 ↓ 9.91 55.58 ↓ 9.90 57.31 ↓ 9.28
Image Translation (Luzi et al., 2024) 66.22 ↓ 0.17 68.13 ↓ 0.37 66.09 ↑ 0.11 66.12 ↑ 0.64 66.64 ↑ 0.05
Textual Inversion (Gal et al., 2023) 55.18 ↓ 11.21 59.16 ↓ 9.34 55.30 ↓ 10.68 54.16 ↓ 11.32 55.95 ↓ 10.64
I2T2I SDXL (Podell et al., 2024) 67.26 ↑ 0.87 69.25 ↑ 0.75 67.23 ↑ 1.25 65.76 ↑ 0.28 67.38 ↑ 0.79
Hummingbird 68.14 ↑ 1.75 70.95 ↑ 2.45 68.28 ↑ 2.30 67.56 ↑ 2.08 68.73 ↑ 2.14

that Hummingbird can generate images faithful to the input multimodal context. The improvement
is particularly prominent for tasks needing a fine-grained understanding of the scene as in Count and
Position. For LLaVA v1.6, Hummingbird boosts Position ACC by 5% and ACC+ by 13.34%, while
for InternVL 2.0, it significantly improves both Count ACC and Color ACC+ by 13.34% and Count
ACC+ by 23.33%. This also highlights Hummingbird’s generalizability across different MLLMs.

HOI Reasoning. We experiment with CLIP-ResNet50 (Radford et al., 2021) to evaluate Hum-
mingbird on Bongard-HOI using TPT. Table 2 shows that Hummingbird outperforms all existing
augmentation/image generation methods consistently across all test splits, achieving the highest av-
erage accuracy of 68.73% (+2.14% over data augmentation-based baseline). While VQA on MME
Perception helps to demonstrate Hummingbird’s effectiveness on spatial scene attributes, Hum-
mingbird’s superior performance on Bongard-HOI demonstrates the method’s ability to generate
high-fidelity augmentations also for novel interaction-based scene attributes.

Object-Centric benchmarks. Table 3 shows the evaluation of Hummingbird on object-centric
benchmarks, including ImageNet and its OOD variants (ImageNet-A, ImageNet-V2, ImageNet-R,
and ImageNet-Sketch) using TPT. We can observe that Hummingbird consistently outperforms all
other image generation/augmentation methods across all object-centric benchmarks. This validates
Hummingbird’s versatility by being effective on both scene-aware and object-centric tasks.

Qualitative Study. Figure 4 provides qualitative comparison between Hummingbird and other im-
age generation methods across different scene-aware tasks from MME Perception and HOI Rea-
soning benchmarks. Hummingbird consistently surpasses all other approaches, achieving higher
fidelity w.r.t. the input multimodal context (reference image along with text guidance) while main-
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Table 3: Hummingbird outperforms SOTA generation/augmentation methods on object-centric
datasets including out-of-distribution (OOD) variants showing its robustness to distribution shifts.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sk. Average OOD Avg.

Real only 58.10 22.81 53.00 53.90 33.50 42.26 40.80
Real + RandAugment 59.40 ↑ 1.30 27.34 ↑ 4.53 55.20 ↑ 2.20 56.80 ↑ 2.90 34.50 ↑ 1.00 46.65 ↑ 4.39 43.46 ↑ 2.66
Real + Image Variation 60.80 ↑ 2.70 31.06 ↑ 8.25 55.80 ↑ 2.80 58.80 ↑ 4.90 37.10 ↑ 3.60 48.71 ↑ 6.45 45.69 ↑ 4.89
Real + Image Translation 61.90 ↑ 3.80 32.14 ↑ 9.33 56.20 ↑ 3.20 59.60 ↑ 5.70 37.20 ↑ 3.70 49.41 ↑ 7.15 46.29 ↑ 5.49
Real + Textual Inversion 60.10 ↑ 3.00 30.85 ↑ 8.04 55.50 ↑ 2.50 57.40 ↑ 3.50 35.50 ↑ 2.00 47.87 ↑ 5.61 44.81 ↑ 4.01
Real + I2T2I SDXL 61.20 ↑ 3.10 31.56 ↑ 8.75 56.20 ↑ 3.20 58.50 ↑ 4.60 38.10 ↑ 4.60 49.11 ↑ 6.85 46.09 ↑ 5.29
Real + Hummingbird 62.60 ↑ 4.50 32.85 ↑ 10.04 56.50 ↑ 3.50 60.20 ↑ 6.30 38.80 ↑ 5.30 50.19 ↑ 7.93 47.09 ↑ 6.29

Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation

Text Guidance: Are there four people in the image? [Count / Ans: Yes]

Textual Inversion

Text Guidance: Is the TV on the left of the lamp? [Position / Ans: Yes]

Text Guidance: Is person holding or swinging a tennis racket? [HOI Reasoning / Ans: holding] 

Figure 4: Generated image comparison between Hummingbird and SOTA methods on MME Percep-
tion and HOI Reasoning. Hummingbird achieves highest fidelity while maintaining high diversity.
Table 4: Euclidean distance (diversity) between features of real and generated images, and among
generated images with varying random seeds. Higher is better. Bold denotes best and underline is
second best. While achieving best fidelity (Table 1-3), Hummingbird provides second best diversity.
Comparison Type RandAugment I2T2I SDXL Image Variation Image Translation Textual Inversion Hummingbird

✗ fine-tuning ✓ fine-tuning

Reference (real) vs generated 15.80 37.22 36.37 21.89 36.84 36.10 36.94
Among generated 18.51 27.14 25.85 20.39 26.46 26.08 26.67

taining high diversity w.r.t the reference image. For example, in Figure 4 (Row 1), the reference
image depicts 4 people, and Hummingbird successfully maintains this count in the generated image.
In contrast, I2T2I SDXL, Image Translation, and Textual Inversion generate images with 6, 5, and
2 people, respectively. Image Variation struggles even with image quality, with an estimated people
count ranging between 3 and 7. Please refer to Appendix R for more qualitative results.

5.4 ABLATION STUDY

Diversity Analysis. Table 4 shows that Hummingbird (after fine-tuning) achieves the second-
highest Euclidean distance score, both w.r.t the reference image and among generated images,
slightly behind I2T2I SDXL, while securing the highest fidelity as shown in Tables 1 and 2. Fig-
ure 5 illustrates Hummingbird’s high diversity in generated images across different random seeds,
validating its ability to provide high fidelity w.r.t multimodal context while preserving diversity.

Effectiveness of Multimodal Context Rewards. Table 5 shows an ablation to evaluate the impact
of Global Semantic Rglobal and Fine-Grained Consistency Reward Rfine-grained of Hummingbird. We
use LLaVA 1.6 7B for evaluation while considering both LLaVA 1.6 7B and InternVL 2.0 8B as
MLLM for Context Description. Table 5 (Row 1 and 5) show that Hummingbird achieves the best
performance when both rewards are applied. Performance reduces in absence of either reward,
especially on tasks requiring detailed multimodal context preservation (e.g. for Position and Count).

Impact of MLLM as Context Descriptor. Table 5 also helps to analyze the effect of using dif-
ferent MLLMs to obtain Context Description C. We consider LLaVA 1.6 7B and InternVL 2.0

9



Published as a conference paper at ICLR 2025

Table 5: Ablation on Multimodal Context Rewards, MLLM Context Descriptor, and Fine-tuning.
Bold is overall best, blue is best per Context Descriptor, gray is baseline without fine-tuning.

MLLM Context Reward Existence Count Position Color Scene
Name Descriptor Rglobal Rfine-grained ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

LLaVA
v1.6 7B

LLaVA v1.6 7B
(Liu et al., 2024)

✓ ✓ 96.67 93.33 83.33 70.00 81.67 66.67 95.00 93.33 87.75 74.00
✗ ✓ 96.67 93.33 83.33 70.00 80.00 63.33 95.00 93.33 87.25 73.50
✓ ✗ 96.67 93.33 81.67 66.67 81.67 66.67 93.33 90.00 87.50 74.00
✗ ✗ 96.67 93.33 81.67 66.67 78.33 56.67 90.00 83.33 86.75 73.50

InternVL 2.0 8B
(Chen et al., 2024)

✓ ✓ 98.33 96.67 85.00 70.00 80.00 63.33 95.00 93.33 87.25 73.50
✗ ✓ 98.33 96.67 85.00 70.00 78.33 60.00 95.00 93.33 87.00 73.00
✓ ✗ 98.33 96.67 83.33 66.67 78.33 60.00 91.67 90.00 86.75 73.00
✗ ✗ 96.67 93.33 81.67 66.67 76.67 56.67 90.00 86.67 86.50 72.50

Reference Image Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

Text Guidance: Are there three giraffes? [Count / Ans: No]

Text Guidance: Is there a skateboard with red wheels? [Color / Ans: Yes]

Figure 5: Hummingbird exhibits high diversity across different random seeds while producing high-
fidelity images each time w.r.t multimodal context (reference image + text guidance).

Reference Image No training Iter 45k Iter 48k Iter 50k

Count: 6 Count: 7 ✗ Count: 8 ✗ Count: 6 ✔ Count: 6 ✔

Text Guidance: Are there six people appear in this image?

Figure 6: Fine-tuning with Multimodal Context Rewards improves fidelity in generated images.
8B for evaluation. Table 5 (Row 1 and 5) show that training Hummingbird with C obtained from
LLaVA performs better than that from InternVL for Position and Scene tasks while C from InternVL
achieves better accuracy on Existence and Count tasks. This experiment emphasizes the importance
of choosing a strong MLLM to get Context Description to fine-tune Hummingbird.

Effectiveness of Fine-tuning. Table 5 shows that fine-tuning SDXL in Hummingbird leads to better
performance consistently across all tasks compared to the baseline without finetuning ( gray-shaded
Rows 4, 8). Figure 6 further illustrates how fine-tuning improves fidelity while preserving diver-
sity (with reference image having 6 people and text guidance referencing Count attribute, generated
image also has 6 people after fine-tuning while remaining visually diverse w.r.t. reference image).

6 CONCLUSION

We introduce Hummingbird, a novel diffusion-based image generation algorithm that provides both
high fidelity and diversity when generating images guided by multimodal context, consisting of a
reference image and accompanying text guidance. By incorporating a Multimodal Context Evaluator
and leveraging Global Semantic and Fine-Grained Consistency Rewards, Hummingbird ensures that
the generated images accurately preserve specified scene attributes, such as object interactions and
spatial relationships, while maintaining visual diversity. Our comprehensive experiments demon-
strate that Hummingbird outperforms SOTA methods across multiple benchmarks, including VQA
and HOI Reasoning, as well as object-centric benchmarks. The results validate Hummingbird’s
ability to generate high-fidelity, multimodal context-aligned images that improve scene-aware task
performance while maintaining diversity of generated images. Hummingbird sets a new standard
for scene-aware image generation, with potential applications for a wide range of multimodal tasks.
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APPENDIX

A DISCUSSION: SCOPE AND ETHICS

In this work, we evaluate our method on six core scene-aware tasks: existence, count, position, color,
scene, and HOI reasoning. We select these tasks as they represent core aspects of multimodal un-
derstanding which are essential for many applications. Meanwhile, we do not extend our evaluation
to more complex reasoning tasks, such as numerical calculations or code generation, because SOTA
diffusion models like SDXL are not yet capable of handling these tasks effectively. Fine-tuning
alone cannot overcome the fundamental limitations of these models in generating images that re-
quire symbolic logic or complex reasoning. Additionally, we avoid tasks with ethical concerns, such
as generating images of specific individuals (e.g., for celebrity recognition task), to mitigate risks
related to privacy and misuse. Our goal was to ensure that our approach focuses on technically feasi-
ble and responsible AI applications. Expanding to other tasks will require significant advancements
in diffusion model capabilities and careful consideration of ethical implications.

B LIMITATIONS AND FUTURE WORK

While our Multimodal Context Evaluator proves effective in enhancing the fidelity of generated
images and maintaining diversity, Hummingbird is built using pre-trained diffusion models such as
SDXL and MLLMs like LLaVA, it inherently shares the limitations of these foundation models.
Hummingbird still faces challenges with complex reasoning tasks such as numerical calculations
or code generation due to the symbolic logic limitations inherent to SDXL. Additionally, during
inference, the MLLM context descriptor occasionally generates incorrect information or ambiguous
descriptions initially, which can lead to lower fidelity in the generated images. Figure 7 further
illustrates these observations.

Hummingbird currently focuses on single attributes like count, position, and color as part of the
multimodal context. This is because this task alone poses significant challenges to existing methods,
which Hummingbird effectively addresses. A potential direction for future work is to broaden the
applicability of Hummingbird to synthesize images with multiple scene attributes in the multimodal
context as part of compositional reasoning tasks.

Reference Image Hummingbird

Text Guidance: Are there three remotes in this image?

Context Description from MLLM: The image shows a bed 
with two remote controls placed on it. The remotes are 
white and appear to be for controlling electronic devices, 
possibly a television or a sound system. The bed has a 
white mattress and a visible label that reads "sleep 
number 7000." The remotes are positioned on the bed, 
with one on the left side and the other on the right side.

Reference Image Hummingbird

Text Guidance: Is the spoon in the bowl?

Context Description from MLLM: The image shows a 
bowl of broccoli salad with apple slices, placed on a 
table with a striped tablecloth. The salad is garnished 
with lemon wedges and a sprinkle of nuts. The spoon is 
resting on the edge of the bowl, ready for use.

(b)  Failure due to MLLM’s context description (c) Failure due to ambiguous context description

Reference Image Hummingbird

Text Guidance: Is the area of the right triangle in the 
picture equal to 24?

Context Description from MLLM: The image shows a 
hand-drawn right triangle with sides labeled as 8 and 6. 
The area of a right triangle can be calculated using the 
formula: Area = (base * height) / 2. In this case, the base 
is 8 and the height is 6. Plugging these values into the 
formula, we get: Area = (8 * 6) / 2 = 24. Therefore, the 
area of the right triangle in the picture is equal to 24.

(a)  Failure due to SDXL’s symbolic logic limitations

Figure 7: Failure cases of Hummingbird. (a) Our method fails due to the symbolic logic limitation
of existing pre-trained SDXL. (b) Initially incorrect descriptions generated by MLLMs lead to low
fidelity of generated images. (c) Context description generated by MLLMs is ambiguous and does
not directly relate to the text guidance, the spoon can be both inside or outside the bowl.

C PROMPT TEMPLATES

Figure 8 (a-c) showcases the prompt templates used by Hummingbird to fine-tune diffusion models
specifically on each task including VQA, HOI Reasoning, and Object-Centric benchmarks. It’s
worth noting that we designed the prompt such that it provides detailed instruction to MLLMs on
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which scene attributes to focus. We also evaluate the effectiveness of our designed prompt templates
by fine-tuning Hummingbird with a generic prompt as illustrated in Figure 8 (d). Table 6 indicates
that without using our designed prompt template, the MLLM is not properly instructed to generate
specific context description thus leading to reduced performance after fine-tuning on MME tasks.
We believe that when using a generic prompt, MLLM is not able to receive sufficient grounding
about the multimodal context leading to information loss on key scene attributes.

Table 6: Effectiveness of the prompt template on fine-tuning Hummingbird on MME Perception.
MLLM Hummingbird Existence Count Position Color Scene
Name ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

LLaVA
v1.6 7B

(Liu et al., 2024)

w/ prompt template 96.67 93.33 83.33 70.00 81.67 66.67 95.00 93.33 87.75 74.00

w/ generic prompt 91.67 83.33 75.00 56.67 81.67 63.33 91.67 83.33 87.25 73.00
↓ 5.00 ↓ 10.00 ↓ 8.33 ↓ 13.33 - ↓ 3.34 ↓ 3.33 ↓ 10.00 ↓ 0.50 ↓ 1.00

InternVL
2.0 8B

(Chen et al., 2024)

w/ prompt template 98.33 96.67 86.67 73.33 78.33 63.33 98.33 96.67 86.25 71.00

w/ generic prompt 91.67 83.33 80.00 60.00 71.67 50.00 91.67 83.33 84.50 69.00
↓ 6.66 ↓ 13.34 ↓ 6.67 ↓ 13.33 ↓ 6.66 ↓ 13.33 ↓ 6.66 ↓ 13.34 ↓ 1.75 ↓ 2.00

Prompt Template 𝑝

[INST] <image>\nProvide a concise description of key elements and context of the image to directly answer the question: 
{Question}

The answer is {Answer}. 

Ensure the description is clear, concise, and directly related to the question being asked. [/INST]

Question: 
Are there four dogs 
appear in this image?

Answer: Yes 

Text Guidance 𝐠
a) VQA

Prompt Template 𝑝

[INST] <image>\Provide a concise description of key elements and context of the image to focus on the interaction 
between {Subject} and {Object} 

The answer is {Subject} {Action} {Object} . 

Ensure the description is clear, concise, and directly related to the question being asked. [/INST]

Subject: person
Object: tennis racket

Action: swing

Text Guidance 𝐠
b) HOI Reasoning

Prompt Template 𝑝

[INST] <image>\Provide a concise description of the main object in the image to directly answer the question: 
{Question}

The answer is {Answer}. 

Ensure the description is clear, concise, and directly related to the question being asked. [/INST]

Question: What is it?
Answer: American 
chameleon, anole, 
Anolis carolinensis

Text Guidance 𝐠
c) Object-Centric

[INST] <image>\nGiven the image, generate a caption which captures all the key aspects of the image. It should not 
contain anything that is not present in the image. A key aspect can be a count of entities present, entities that are 

noteworthy, relationships between objects or informative descriptions of the presented image. [/INST]

d) Generic prompt

Figure 8: Prompt templates (a-c) used by Hummingbird to fine-tune the diffusion model on each
task including VQA, HOI Reasoning, and Object Centric benchmarks. The generic prompt (d) is
also included to evaluate the effectiveness of prompt template.

D INFERENCE PIPELINE

In the inference pipeline of Hummingbird (Figure 9), the text guidance g includes only the question
corresponding to the reference image x. The answer is excluded for fair evaluation. Moreover, we
remove Multimodal Context Evaluator, and the generated image x̂ is the final output.
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Context Description

UNet
Denoiser 𝝐!

MLLM

CLIP Image 
Encoder

CLIP Text 
Encoder

Generated

Image Embedding

Text Embedding

Prompt Template 𝑝

The image shows a group of dogs 
running in a grassy field. There 
are at least four dogs visible in 

the image. The dogs are of 
different sizes and breeds, and 

they appear to be enjoying 
themselves as they run around. 
In the background, there are 
two people sitting on a bench, 

watching the dogs play. 

Reference

[INST] <image>\nProvide a 
concise description of key 

elements and context of the 
image to directly answer 

the question: 
{Question}

Ensure the description is 
clear, concise, and directly 

related to the question 
being asked. [/INST]

Question: 
Are there four dogs 
appear in this image?

Text Guidance 𝐠
Multimodal Context

Figure 9: Inference pipeline of Hummingbird

Reference Image Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

Are there three giraffes?

Context Description from MLLM: The image shows two giraffes standing in a grassy area within a fenced enclosure. The giraffes 
are positioned near a tree and a rock formation. The enclosure appears to be a part of a zoo or wildlife park, as indicated by the 
presence of a fence and the man-made structures.

Is there a skateboard with red wheels?

Context Description from MLLM: The image shows a man riding a skateboard with red wheels. He is wearing a red shirt and jeans, 
and appears to be in a food court or market area, as there are food stands and people walking around in the background. The man 
is also holding a cell phone in his hand.

Figure 10: Examples of context description from MLLM in the inference pipeline where answers
are not included in text guidance.

E ABLATION STUDY ON BLIP-2 QFORMER

Our design choice to leverage BLIP-2 QFormer in Hummingbird as the multimodal context evaluator
facilitates the formulation of our novel Global Semantic and Fine-grained Consistency Rewards.
These rewards enable Hummingbird to be effective across all tasks as seen in Table 7. On replace
with a less powerful multimodal context encoder such as CLIP ViT-G/14, we can only implement
the global semantic reward as the cosine similarity between the text features and generated image
features. As a result, while the setting can maintain performance on coarse-level tasks such as Scene
and Existence, there is a noticeable decline on fine-grained tasks like Count and Position. This
demonstrates the effectiveness of our design choices in Hummingbird and shows that using less
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powerful alternatives, without the ability to provide both global and fine-grained alignment, affects
the fidelity of generated images.

Table 7: Effectiveness of the prompt template on fine-tuning Hummingbird on MME Perception.
MLLM Hummingbird Existence Count Position Color Scene
Name ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

LLaVA
v1.6 7B

(Liu et al., 2024)

w/ our Evaluator 96.67 93.33 83.33 70.00 81.67 66.67 95.00 93.33 87.75 74.00

w/ CLIP 96.67 93.33 81.67 66.67 80.00 63.33 95.00 90.00 87.75 73.50
- - ↓ 1.66 ↓ 3.33 ↓ 1.67 ↓ 3.34 - ↓ 3.33 - ↓ 0.50

InternVL
2.0 8B

(Chen et al., 2024)

w/ our Evaluator 98.33 96.67 86.67 73.33 78.33 63.33 98.33 96.67 86.25 71.00

w/ CLIP 98.33 96.67 81.67 70.00 76.67 60.00 96.67 93.33 86.00 71.00
- - ↓ 5.00 ↓ 3.33 ↓ 1.66 ↓ 3.33 ↓ 1.66 ↓ 3.34 ↓ 0.25 -

F ADDITIONAL EVALUATION ON MME ARTWORK

To explore the method’s ability to work on tasks involving more nuanced or abstract text guidance
beyond factual scene attributes, we evaluate Hummingbird on an additional task of MME Artwork.
This task focuses on image style attributes that are more nuanced/abstract such as the following
question-answer pair – Question: “Does this artwork exist in the form of mosaic?”, Answer: “No”.

Table 8 summarizes the evaluation. We can observe that Hummingbird outperforms all existing
methods on both ACC and ACC+, implying its higher effectiveness in generating images with high
fidelity (in this case, image style preservation) compared to existing methods. This provides evi-
dence that Hummingbird can generalize to tasks involving abstract/nuanced attributes such as image
style. Figure 11 further shows qualitative comparison between image generation methods on the
MME Artwork task.

Table 8: Comparison on Artwork benchmark and Visual Reasoning task. Hummingbird outperforms
SOTA image generation and augmentation techniques.
Method Real only RandAugment Image Variation Image Translation Textual Inversion I2T2I SDXL Hummingbird
Artwork ACC 69.50 69.25 69.00 67.00 66.75 68.00 70.25
Artwork ACC+ 41.00 41.00 40.00 38.00 37.50 38.00 41.50
Reasoning ACC 69.29 67.86 69.29 69.29 67.14 72.14 72.86
Reasoning ACC+ 42.86 40.00 41.40 40.00 37.14 47.14 48.57

Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation/Editing

Text Guidance: Does this artwork exist in the form of sculpture?

Context Description from MLLM: The image depicts a relief sculpture, which is a form of art that is carved into a flat surface, such as a wall or a panel. 
The sculpture features a group of figures, including a woman and a man, who are interacting with each other. The figures are depicted in a realistic 
style, with attention to detail in their clothing and expressions.

Textual Inversion

Figure 11: Qualitative comparison on the Artwork task between image generation method. Hum-
mingbird can preserve both diversity and fidelity of the reference image in a more abstract domain.

G ADDITIONAL EVALUATION ON MME COMMONSENSE REASONING

We have additionally performed our evaluation to more complex tasks such as Visual Reasoning
using the MME Commonsense Reasoning benchmark. Results in Table 8 highlight Hummingbird’s
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ability to generalize effectively across diverse domains and complex reasoning tasks, demonstrating
its broader applicability. Figure 12 further shows qualitative comparison between image generation
methods on the MME Commonsense Reasoning task.

Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation/Editing

Text Guidance: This is a toilet guide sign. I am a man. Should I go to the toilet on the left?

Context Description from MLLM: The image shows a sign with a male and female symbol, indicating the presence of restrooms. The sign is mounted on a 
wall, and the male symbol is on the left side of the sign. The context suggests that the sign is providing guidance for restrooms, with the male symbol 
pointing to the left. Therefore, if you are a man, you should go to the toilet on the left.

✔ Diversity ✔ Fidelity✔ Diversity ✗ Fidelity ✔ Diversity ✗ Fidelity ✗ Diversity ✔ Fidelity

Textual Inversion

✔ Diversity ✗ Fidelity

Figure 12: Qualitative comparison on the Commonsense Reasoning task between image generation
method. Hummingbird can preserve both diversity and fidelity of the reference image in a more
abstract domain.

H FID SCORES

We compute FID scores for Hummingbird and the different baselines (traditional augmentation and
image generation methods) and tabulate the numbers in Table 9. FID is a valuable metric for assess-
ing the quality of generated images and how closely the distribution of generated images matches
the real distribution. However, FID does not account for the diversity among the generated images,
which is a critical aspect of the task our work targets (i.e., how can we generate high fidelity images,
preserving certain scene attributes, while still maintaining high diversity?). We also illustrate the
shortcomings of FID for the task in Figure 13 where we compare generated images across methods.
We observe that RandAugment and Image Translation achieve lower FID scores than Humming-
bird (w/ finetuning) because they compromise on diversity by only minimally changing the input
image, allowing their generated image distribution to be much closer to the real distribution. While
Hummingbird has a higher FID score than RandAugment and Image Translation, Figure 13 shows
that it is able to preserve the scene attribute w.r.t. multimodal context while generating an image that
is significantly different from than original input image. Therefore, it accomplishes the targeted task
more effectively, with both high fidelity and high diversity.

Table 9: FID scores of traditional augmentation and image generation methods. Lower is better.
Method RandAugment I2T2I SDXL Image Variation Image Translation Textual Inversion Hummingbird

✗ fine-tuning ✓ fine-tuning

FID score ↓ 15.93 18.35 17.66 16.29 20.84 17.78 16.55

Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation/Editing

✔ Diversity ✔ Fidelity✔ Diversity ✗ Fidelity ✔ Diversity ✗ Fidelity ✗ Diversity ✔ Fidelity

Textual Inversion

✔ Diversity ✗ Fidelity

RandAugment

✗ Diversity ✔ Fidelity

Figure 13: While RandAugment and Image Translation achieve lower FID scores, Hummingbird
balances fidelity and diversity effectively.
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I USER STUDY

We conduct a user study where we create a survey form with 50 questions (10 questions per MME
Perception task). In each survey question, we show users a reference image, a related question, and
a generated image each from two different methods (baseline I2T2I SDXL vs Hummingbird). We
ask users to select the generated images(s) (either one or both or neither of them) that preserve the
attribute referred to by the question in relation to the reference image. If an image is selected, it
denotes high fidelity in generation. We collect form responses from 70 people for this study. We
compute the percentage of total generated images for each method that were selected by the users
as a measure of fidelity. Table 10 summarizes the results and shows that Hummingbird significantly
outperforms I2T2I SDXL in terms of fidelity across all tasks on the MME Perception benchmark.
We have some examples of survey questions in Figure 14.

Table 10: User study on MME tasks to evaluate the fidelity of generated images by I2T2I SDXL vs.
Hummingbird.

Method Existence Count Position Color Scene Average
I2T2I SDXL 63.71 44.43 40.00 46.86 87.86 56.57
Hummingbird 81.29 72.29 59.57 77.14 90.00 76.06

Figure 14: Some examples of our survey questions to evaluate the fidelity of generated images from
I2T2I SDXL and Hummingbird.

J TRAINING PERFORMANCE ON BONGARD HOI DATASET

Following the existing method (Shu et al., 2022), we conduct an additional experiment by training
a ResNet50 (He et al., 2016) model on the Bongard-HOI (Jiang et al., 2022) training set with tradi-
tional augmentation and Hummingbird generated images. We compare the performance with other
image generation methods, using the same number of training iterations. As shown in Table 11,
Hummingbird consistently outperforms all the baselines across all test splits. In the paper, as dis-
cussed in Section 5.1, we focus primarily on test-time evaluation because it eliminates the variability
introduced by model training due to multiple external variables such as model architecture, data dis-
tribution, and training configurations, and allows for a fairer comparison where the evaluation setup
remains fixed.

K RANDOM SEEDS SELECTION ANALYSIS

We conduct an additional experiment, varying the number of random seeds from 10 to 100. The
results are presented in the boxplot in Figure 15, which shows the distribution of the mean L2
distances of generated image features from Hummingbird across different numbers of seeds.

The figure demonstrates that the difference in the distribution of the diversity (L2) scores across the
different numbers of random seeds is statistically insignificant. So while it is helpful to increase
the number of seeds for improved confidence, we observe that it stabilizes at 20 random seeds.
This analysis suggests that using 20 random seeds also suffices to capture the diversity of generated
images without significantly affecting the robustness of the analysis.
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Table 11: Comparison on Human-Object Interaction (HOI) Reasoning by training a CNN-baseline
ResNet50 with image augmentation and generation methods. Hummingbird outperforms SOTA
methods on all 4 test splits of Bongard-HOI dataset.

Method
Test Splits

Averageseen act., unseen act., seen act., unseen act.,
seen obj. seen obj. unseen obj. unseen obj.

CNN-baseline (ResNet50) 50.03 49.89 49.77 50.01 49.92
RandAugment (Cubuk et al., 2020) 51.07 ↑ 1.04 51.14 ↑ 1.25 51.79 ↑ 2.02 51.73 ↑ 1.72 51.43 ↑ 1.51
Image Variation (Xu et al., 2023) 41.78 ↓ 8.25 41.29 ↓ 8.60 41.15 ↓ 8.62 41.25 ↓ 8.76 41.37 ↓ 8.55
Image Translation (Luzi et al., 2024) 46.60 ↓ 3.43 46.94 ↓ 2.95 46.38 ↓ 3.39 46.50 ↓ 3.51 46.61 ↓ 3.31
Textual Inversion (Gal et al., 2023) 37.67 ↓ 12.36 37.52 ↓ 12.37 38.12 ↓ 11.65 38.06 ↓ 11.95 37.84 ↓ 12.08
I2T2I SDXL (Podell et al., 2024) 51.92 ↑ 1.89 52.18 ↑ 2.29 52.25 ↑ 2.48 52.15 ↑ 2.14 52.13 ↑ 2.21
Hummingbird 53.71 ↑ 3.68 53.55 ↑ 3.66 53.69 ↑ 3.92 53.41 ↑ 3.40 53.59 ↑ 3.67
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Diversity Analysis Across Random Seeds

Figure 15: Diversity analysis across varying numbers of random seeds (10 to 100) using mean L2
distances of generated image features from Hummingbird. The box plot demonstrates consistent
diversity scores as the number of seeds increases, indicating that performance stabilizes around 20
random seeds.

L FURTHER EXPLANATION OF MULTIMODAL CONTEXT EVALUATOR

The Global Semantic Reward, Rglobal, ensures alignment between the global semantic features of
the generated image x̂ and the textual context description C. This reward leverages cosine similar-
ity to measure the directional alignment between two feature vectors, which can be interpreted as
maximizing the mutual information I(x̂, C) between the generated image x̂ and the context descrip-
tion C. Mutual information quantifies the dependency between the joint distribution pθ(x̂, C) and
the marginal distributions. In conditional diffusion models, the likelihood pθ(x̂|C) of generating x̂
given C is proportional to the joint distribution:

pθ(x̂|C) =
pθ(x̂, C)
p(C)

∝ pθ(x̂, C),

where p(C) is the marginal probability of the context description, treated as a constant during opti-
mization. By maximizing Rglobal, which aligns global semantic features, the model indirectly max-
imizes the mutual information I(x̂, C), thereby enhancing the likelihood pθ(x̂|C) in the conditional
diffusion model.

The Fine-Grained Consistency Reward, Rfine-grained, captures detailed multimodal alignment be-
tween the generated image x̂ and the textual context description C. It operates at a token level,
leveraging bidirectional self-attention and cross-attention mechanisms in the BLIP-2 QFormer, fol-
lowed by the Image-Text Matching (ITM) classifier to maximize the alignment score.
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Self-Attention on Text Tokens: Text tokens Ttokens undergo self-attention, allowing interactions
among words to capture intra-text dependencies:

Tattn = SelfAttention(Ttokens) (8)

Self-Attention on Image Tokens: Image tokens Z are derived from visual features of the generated
image x̂ using a cross-attention mechanism:

Z = CrossAttention(Qlearned, Itokens(x̂)) (9)

These tokens then pass through self-attention to extract intra-image relationships:

Zattn = SelfAttention(Z) (10)

Cross-Attention between Text and Image Tokens: The text tokens Tattn and image tokens Zattn

interact through cross-attention to focus on multimodal correlations:

F = CrossAttention(Tattn,Zattn) (11)

ITM Classifier for Alignment: The resulting multimodal features F are fed into the ITM classifier,
which outputs two logits: one for positive match (j = 1) and one for negative match (j = 0). The
positive class (j = 1) indicates strong alignment between the image-text pair, while the negative
class (j = 0) indicates misalignment:

Rfine-grained = ITM Classifier(F)j=1 (12)

The ITM classifier predicts whether the generated image and the textual context description match.
Maximizing the logit for the positive class j = 1 corresponds to maximizing the log probability
log p(x̂, C) of the joint distribution of image and text. This process aligns the fine-grained details in
x̂ with C, increasing the mutual information between the generated image and the text features.

Improving fine-grained relationships of CLIP. While the CLIP Text Encoder, at times, struggles
to accurately capture spatial features when processing longer sentences in the Multimodal Con-
text Description, Hummingbird addresses this limitation by distilling the global semantic and fine-
grained semantic rewards from BLIP-2 QFormer into a specific set of UNet denoiser layers, as men-
tioned in the implementation details under Appendix Q (i.e., Q, V transformation layers including
to q, to v, query, value). This strengthens the alignment between the generated image tokens (Q)
and input text tokens from the Multimodal Context Description (K, V) in the cross-attention mech-
anism of the UNet denoiser. As a result, we obtain generated images with improved fidelity, partic-
ularly w.r.t. spatial relationships, thereby helping to mitigate the shortcomings of vanilla CLIP Text
Encoder in processing the long sentences of the Multimodal Context Description.

To illustrate further, a Context Description like “the dog under the pool” is processed in three steps:
(1) self-attention is applied to the text tokens (K, V), enabling spatial terms like “dog,” “under,” and
“pool” to interact; (2) self-attention is applied to visual features represented by the generated image
tokens (Q) to extract intra-image relationships (3) cross-attention aligns this text features with visual
features. The resulting alignment scores are used to compute the mean and select the positive class
for the reward. Our approach to distill this reward into the cross-attention layers therefore ensures
that spatial relationships and other fine-grained attributes are effectively captured, improving the
fidelity of generated images.

M THE CHOICE OF TEXT ENCODER IN SDXL AND BLIP-2 QFORMER

The choice of text encoder in our pipeline is to leverage pre-trained models for their respective
strengths. SDXL inherently uses the CLIP Text Encoder for its generative pipeline, as it is designed
to process text embeddings aligned with the CLIP Image Encoder. In the Multimodal Context Eval-
uator, we use the BLIP-2 QFormer, which is pre-trained with a BERT-based text encoder.

N TEXTUAL INVERSION FOR DATA AUGMENTATION

In our experiments, we applied Textual Inversion for data augmentation as follows: given a reference
image, Textual Inversion learns a new text embedding that captures the context of the reference
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image (denoted as <context>). This embedding is then used to generate multiple augmented images
by employing the prompt: “a photo of <context>”. This approach allows Textual Inversion to create
context-relevant augmentations for comparison in our experiments.

O CONVERGENCE CURVE

To evaluate convergence, we monitor the training process using the Global Semantic Reward and
Fine-Grained Consistency Reward as criteria. Specifically, we observe the stabilization of these
rewards over training iterations. Figure 16 presents the convergence curves for both rewards, il-
lustrating their gradual increase followed by stabilization around 50k iterations. This steady state
indicates that the model has learned to effectively align the generated images with the multimodal
context.

Figure 16: Convergence curves of Global Semantic and Fine-Grained Consistency Rewards

P FIDELITY EVALUATION USING GPT-4O

In addition to the results above, we compute additional metrics for fidelity, which measure how well
the model preserves scene attributes when generating new images from a reference image. For this,
we use GPT-4o (model version: 2024-05-13) as the MLLM oracle for a VQA task on the MME
Perception benchmark (Fu et al., 2024). We evaluate Hummingbird with and without fine-tuning
process.

The MME dataset consists of Yes/No questions, with a positive and a negative question for every
reference image. To measure fidelity, we measure the rate at which the oracle’s answer remains
consistent across the reference and the generated image for every image in the dataset. We run the
experiment multiple times and report the average numbers in Table 12. We see that fine-tuning the
base SDXL with our novel rewards results in an average increase of 2.99% in fidelity.

Table 12: Fidelity between reference and generated images from Hummingbird with and without
fine-tuning.

MLLM Oracle Hummingbird Fidelity on “Yes” Fidelity on “No” Overall Fidelity

GPT-4o
Ver: 2024-05-13

w/o fine-tuning 68.33 70.55 71.18

w/ fine-tuning 69.72 ↑ 1.39 73.61 ↑ 3.06 74.17 ↑ 2.99

Q IMPLEMENTATION DETAILS

We implement Hummingbird using PyTorch (Paszke et al., 2019) and HuggingFace diffusers (Face,
2023) libraries. For the generative model, we utilize the SDXL Base 1.0 which is a standard and
commonly used pre-trained diffusion model in natural images domain. In the pipeline, we employ
CLIP ViT-G/14 as image encoder and both CLIP-L/14 & CLIP-G/14 as text encoders (Radford et al.,
2021). We perform LoRA fine-tuning on the following modules of SDXL UNet denoiser includ-
ing Q, V transformation layers, fully-connected layers (to q, to v, query, value, ff.net.0.proj)
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with rank parameter r = 8, which results in 11M trainable parameters ≈ 0.46% of total 2.6B pa-
rameters. The fine-tuning is done on 8 NVIDIA A100 80GB GPUs using AdamW (Loshchilov &
Hutter, 2019) optimizer, a learning rate of 5e-6, and gradient accumulation steps of 8.

R ADDITIONAL QUALITATIVE RESULTS

Figure 10 showcases two examples of context description from MLLM in the inference pipeline
where answers are not included in text guidance. Figure 17 illustrates additional qualitative results
highlighting the diversity and multimodal context fidelity between reference and synthetic images,
as well as across images generated by Hummingbird with different random seeds. Figure 18 shows
additional qualitative comparisons between Hummingbird and SOTA image generation methods on
VQA and HOI Reasoning tasks.

23



Published as a conference paper at ICLR 2025

Reference Image Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

Are there three giraffes? [Count / Ans: No]

Is there a skateboard with red wheels? [Color / Ans: Yes]

Is there a green hat in the image? [Color / Ans: Yes]

Is the refrigerator on the right side of the picture? [Position / Ans: No]

Is there a bottle in this image? [Existence / Ans: Yes]

Is this picture captured in a place of desert sand? [Scene / Ans: Yes]

Is there only one bottle in the image? [Count / Ans: Yes]

Is the dog under the pool in the image? [Position / Ans: No]

Figure 17: Diversity and multimodal context fidelity between reference and synthetic image and
across generated ones from Hummingbird with different random seeds.
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Reference Image HummingbirdI2T2I SDXL Image Variation Image Translation/Editing

Are there only three people in the image? [Count / Ans: No]

Textual Inversion

Is there a white bird in the image? [Color / Ans: Yes]

Is the TV on the right of the lamp? [Position / Ans: No]

Is there a car in this image? [Existence / Ans: Yes] 

Is this picture captured in a place of elevator shaft? [Scene / Ans: Yes] 

Is person feeding or shearing a sheep? [HOI Reasoning / Ans: shearing] 

Is person holding or swinging a tennis racket? [HOI Reasoning / Ans: holding] 

Are there four dogs appear in this image? [Count / Ans: Yes] 

Figure 18: Qualitative comparison between Hummingbird and other image generation methods on
MME Perception and HOI Reasoning benchmarks.
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