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1 Appendix1

In this appendix, we provide a comprehensive description of the experimental details and environments2

in which the experiments were conducted. Additionally, we present the detailed information and3

data pertaining to the pathway search. Furthermore, we offer an explanation of the various interfaces4

of the RMechRP software, which serves as the pioneering online radical reaction predictor. Each5

section in this appendix corresponds to the section with the same title in the main article. Finally, all6

the experiments are conducted using a single NVidia Titan X GPU.7

1.1 Two Step Prediction8

This method consists of two distinct steps, within each, we trained several neural networks. Here we9

explained the parameters used during the training of these networks.10

1.1.1 Reactive Site Identification11

For the Atom Fingerprint model, we constructed a fingerprint of length 800 for each atom. This12

fingerprint includes 700 graph topological features explained in [1] and 85 atomic features including a13

one-hot vector for atom type, and chemical features of the atoms such as valance and electronegativity.14

The graph topological features are extracted using a neighborhood if size three. The extracted15

fingerprints are fed into a fully connected model with an output layer for binary classification. For the16

GNN model, we used the atomic feature for the initial representations of atoms. The model consists17

of four GNN layers with an output layer for binary classification.18

Combining both training sets presented in RMechDB [2], we extracted over 51000 atoms to train each19

of the models above. Both models are evaluated using a combination of two test sets in RMechDB20

and the topN accuracy of models are reported in Table 2 of the main article. Table 1 represents the21

parameters used for training the models.

Table 1: The parameters used for training the models for reactive site identification.
Model Batch Size Num Layers Layers Dim Act Reg Num Att Heads

Atom Fingerprint 32 3 512-256-1 GELU L2(5e-5) -
GNN 32 4 64-64-64-1 ReLU Dropout (0.3) 2

22
1.1.2 Plausibility Ranking23

For the plausibility ranking experiments, we used the following four methods for representing a24

chemical reactions:25

Feature Extraction: We use the same features explained in [1] which results in extracting a vector26

of length 3200 for each reaction.27
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reactionfp: We use the RDKit [3] implementation of reactionfp [4]. For all three fingerprint types28

(Atom Pair, Morgan2, and Toplogical Torsions), we use a fingerprint of size 2048, with a bit ratio of29

0.2. We considered non agent molecules with a weight of 0.4 and agent molecules with a weight of30

1.0.31

DRFP: We use the DRFP fingerprint [5] with a size of 2048 with a min and max radius of zero and32

four, while including the hydrogen atoms and rings.33

Feature Extraction: We use the the default tokenizer and pretrained model for the rxnfp [6] which34

results in fingerprints of length 256.35

For training, we use a combination of both training sets in RMechDB. For each sample of the training36

data (productive reaction), we generate (at most) 40 negative samples (unproductive reactions) by37

randomly sampling molecular orbitals other that the reactive MOs (m∗1,m
∗
2). This results in a data38

set of over 185000 pair of productive and unproductive reactions. To train the plausibility rankers for39

each method, we use the parameters explained in Table 2.

Table 2: The parameters used for training the models for the plausibility ranking.
Model Batch Size Num Layers Layers Dim Act Reg

Feature Extraction 32 3 512-256-1 GELU Dropout (0.5)
reactionfp 32 3 400-200-1 GELU Dropout (0.5)

DRFP 32 3 400-200-1 GELU Dropout (0.5)
rxnfp 64 2 128-1 GELU Dropout (0.5)

40

1.2 Contrastive Learning41

1.2.1 Atom Pairs and Atom Descriptor42

For the contrastive learning method using the atom pairs and atom descriptor, we use the same atomic43

feature and graph topological features above to represent one single atom. Specifically, for the graph44

topological features, we use the neighborhood of size one. These features plus the atomic features45

results in a vector of length 140 for atom representation. Using these vectors, we train a contrastive46

model depicted in Figure 2 (left) of the main article. The objective function to train this contrastive47

model is as follows:48

L = 1− σ([f(a∗1)× g(a∗2)]− [f(a′1)× g(a′2)]) (1)

Where a∗1 and a∗2 are the atoms of the reactive MOs m∗1 and m∗2, while a′i are randomly chosen atoms.49

Both f and g functions are characterized by a fully connected neural network. The first reactive atoms50

in both productive an unproductive reactions, are fed through the same network f , and similarly51

the second reactive atoms are fed through the same network g. The outputs of both f and g are52

single real-valued numbers, which, when multiplied together, yield a score for the respective reaction.53

These scores are then utilized to construct the objective function, aiming to maximize the score of54

the productive reaction compared to the unproductive reactions using the same reactant set. Figure 155

represents a schematic depiction for this contrastive model.56

We use a combination of both training sets in RMechDB to train f and g. For each productive57

reaction, we form unproductive reactions by considering at most 15 samples of (a′1, a∗2), (a
∗
1, a′2),58

and (a′1, a′2). This negative sampling results in a dataset of over 200000 pair of productive and59

unproductive atom pairs. We use this training dataset to minimize the objective function 1.60

Both f and g has similar architectures that consists of three fully connected layers with GELU61

activation function and a dropout with a rate of 0.5 applied to all layers. The dimension of the layers62

are 128, 64, 1.63

1.2.2 Rxn-Hypergraph64

We use the Rxn-Hypergraph to replace form atom descriptors that are extracted automatically for65

minimizing the objective function 1. After processing the Rxn-hypergraph for N layers, the generated66

atom descriptors are used in the same setting above for the same minimization objective. Here in67

Table 3 we describe the parameters we use for training the Rxn-Hypergraph.68
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Figure 1: The architecture of the the constrastive learning approach.

1.3 Text Representation and Sequence to Sequence Models69

In order to develop a text-based radical reaction predictor, we utilize the pretrained molecular trans-70

former which was trained using the USPTO_MIT_mixed dataset. We also used the tokenizer devel-71

oped by molecular transformer. This tokenizer yields 523 distinct tokens for the USPTO_MIT_mixed72

dataset. There are nine tokens from the RMechDB dataset that do not match the 573 tokens of the73

USPTO. Therefore, we used the unknown token to represent these nine tokens.74

For the fine-tuning the pretrained model, we used the combination of both RMechDB training sets.75

We fine-tune the model using a simple data augmentation described in Section 4.5 for 10 epochs.76

Finally, for the evaluation of the text-based models, we considered all the generated unknown token77

as correct tokens.78

1.4 Pathway Search79

In the Pathway Search section, we conducted an experiment involving the execution of the pathway80

search for 100 specific reactants. Each of these reactants was associated with a desired target molecule,81

which was expected to be found within the mechanistic pathway tree. Additionally, a set of distinct82

parameters was assigned to each reactant to guide the pathway search process.83

To provide detailed information and facilitate reproducibility, we have included supplementary84

materials accompanying the paper. Among these materials, you will find a file named pathways.csv.85

This file contains the reactants, corresponding targets, the provided context (if any), and the anticipated86

depth at which the target molecule is expected to appear within the mechanistic pathway tree.87

Furthermore, we have included another file titled pathway_results.txt in the supplementary materials.88

This file comprises the identified pathways leading to the specified target molecules. It presents the89

discovered pathways that were found during the experiment.90

It is worth noting that the 100 pathways and their results will be published alongside the paper, subject91

to acceptance. These materials serve to provide comprehensive insights into the pathway search92

process and its outcomes, enabling readers to reproduce and further explore the obtained results.93

1.5 RMechRP Software94

In addition to the methods and results presented in the main article, we have developed an online95

web server that enables users to utilize the trained models for predicting the outcomes of mechanistic96

Table 3: The parameters used for training the Rxn-Hypergraph for the contrastive model.
Batch Size Num Layers Layers Dim Act Reg Num Att Heads Learning Rate

32 5 all 64 GELU L2(5e-5) 2 0.001
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radical reactions with the highest levels of interpretability of the outcome. RMechRP (Radical97

Mechanistic Reaction Predictor) accessible via the anonymized link http://128.195.8.137:98

8081/rrp/. RMechRP offers two interfaces: Single-step prediction and Pathway search.99

Single-Step Prediction predicts the outcome if a mechanistic reaction with a single transition state.100

Users have the option to either input the reactants in written form or draw them using a drawing tool101

provided on the web server. Additionally, users can specify the reaction conditions, with the current102

option being standard temperature and pressure. The number of reactive molecular orbitals (MOs) to103

be considered can also be specified by the user.104

To ensure flexibility, users can choose to filter out reactions that violate specific chemical rules,105

such as Bredt’s rule [7]. Once the input and conditions are set, the user can click the predict button.106

The system will then run the two-step prediction model, as described above, to generate and rank107

the potential products. These predicted products will be displayed, accompanied by additional108

information such as arrow codes, reactive MOs, and the mass of the products. The single step109

predictor is accessible via the anonymized link http://128.195.8.137:8081/rrp/singlestep.110

Figure 2 shows the single step interface and the displayed predictions for a simple reaction.

Figure 2: The single step interface with the predictions of a simple reaction. Left: the input panel.
Right: the table displaying the ranked predictions.

111

Pathway Search forms the tree of the mechanistic pathways up to a given depth and breadth.112

Users have the option to either input the reactants in written form or draw them using a drawing tool113

provided on the web server. Users must also input a set of targets (either mass or chemical structure)114

to look for within the expanded tree of the mechanistic pathways. users have the ability to provide a115

context for the reactions. The context consists of a set of molecules along with their corresponding116

frequencies of appearance within the mechanistic pathway tree. When a molecule from the context117

is consumed in a reaction, the system can automatically reintroduce that molecule back into the118

pathway tree. The frequency of appearance indicates how many times a molecule can be added to the119

mechanistic pathway tree.120

In addition to the context, there are several additional parameters that can be specified by the user.121

These parameters include:122

Depth of Pathway Search: Users can define the depth of the pathway search, which determines how123

many reaction steps will be explored in the mechanistic pathway tree.124

Breadth (Branching Factor) of Pathway Search: This parameter controls the branching factor of the125

pathway search, influencing the number of alternative reaction pathways that will be considered.126

Application of Chemistry Rules: Users have the option to apply certain chemistry rules during the127

pathway search. These rules can be used to filter out reactions that violate specific chemical principles128

or constraints.129
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Score Threshold: Users can set a threshold value to consider only reactions with scores higher than130

the specified threshold. This helps narrow down the focus to more favorable or promising reactions.131

These additional parameters allow users to customize their pathway search and refine the results based132

on their specific requirements and preferences. By leveraging these features, users can gain deeper133

insights into the mechanistic pathways and explore a wider range of possible reaction outcomes.134

The pathway search interface is accessible via the anonymized link http://128.195.8.137:135

8081/rrp/pathway. Figure 3 shows the pathway interface and the required parameters.136

Figure 3: The pathway search interface.
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