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A Compact Networks for Neural Policies

To obtain compact neural representations, there are three common approaches: 1) simply choose
an RNN with small number of units densely wired to each other (e.g., a long short-term memory,
LSTM, network [30], or a continuous-time network such as an ordinary differential equation, ODE, -
based network [40, 31]). 2) sparsify a large network into a smaller system (e.g., lottery ticket winners
[41], or sparse flows [42]), and 3) use neural circuit policies that are given by sparse architectures
with added complexity to their neural and synaptic representations but have a light-weighted network
architecture [3, 4, 32].

In the first approach the number of model parameters inversely affect interpretability, i.e., interpret-
ing wider and/or deeper densely wired RNNs exponentially makes the interpretation of the system
harder. Sparsity has been shown to help obtain a network with 95% less parameters compared to
the initial model. However, recent studies show that such levels of sparsity affect the robustness
of the model, thus make it more susceptible to perturbations [43]. Neural circuit policies (NCPs)
[4] on the other hand have shown great promise in achieving attractive degrees of generalizabil-
ity while maintaining robustness to environmental perturbations. This representation learning ca-
pability is rooted in their ability to capture the true cause and effect of a given task [5]. NCPs
are sparse network architectures with their nodes and edges determined by a liquid time-constant
(LTC) concept [3]. The state of a liquid network is described by the following set of ODEs [3]:

(D) _ _ [; +f(x(1),X(2), 1, 9)] Ox(t)+ f(x(),1(t), t,0) ® A. Here, x(°* D) (¢) is the hidden state
(Dx1) Dx1)

with size D, 1% (t) is an input signal, 7 is the fixed internal time-constant vector, A(
is a bias parameter, and ® is the Hadamard product. In tasks involving spatiotemporal dynamics
these networks showed significant benefit over their counterparts, both in their ODE form and in
their closed-form representation termed Closed-form continuous-time (CfC) models [4, 5, 32].

Interpretation of Neuron Responses. Compact neural representations promise to enable the in-
terpretability of decision-making by focusing post-hoc analysis on a limited number of neural re-
sponses. However, having merely a lower-dimensional space for visualization is not sufficient to
identify consistent behaviors or strategies acquired by a learning agent. Emergent behaviors may
distribute responses across numerous neurons with a high degree of entanglement. Even for models
with a small number of neurons, it can be challenging to identify and interpret the behavior corre-
lated with observed response patterns. In this paper, we hypothesize that abstraction with respect
to a type of learned strategy within a single neuron is necessary for better interpretability of neural
policies. We further desire semantic grounding of the neuron response, that is, associating neuron
response to human-readable representation. The representation space should be abstract enough to
be human-understandable and expressive enough to capture arbitrary types of emergent behaviors
or strategies. We adopt the framework of logic programs due to their simple yet effective represen-
tations of decision-making processes.

B A Motivating Perspective Of Disentangled Representation

The underlying behaviors of neural policies involves descriptions with multiple levels of abstraction,
from detailed states at every time instance to high-level strategies toward solving a task, spanning
a continuum where the details can be summarized and reduced to gradually construct their concise
counterparts. Among these descriptions of behaviors, a right amount of abstraction should be con-
cise enough for human interpretability yet being sufficiently informative of how neural policies act
locally toward solving the overall task. Relevant concepts about abstraction have been explored in
the context of state abstraction in Markov Decision Process (MDP) [44], hierarchical reinforcement
learning [45], and developmental psychology [46]. In the following, we aim to more formally define
such abstraction for interpretability of neural policies and draw connection to disentangled repre-
sentations. First, we define a MDP as a tuple {S, A, P,, R}, where at time instance ¢, s; € S is the
state, a; € A is the action, P, : § x A x § — [0, 1] is the transition function, R : § x A — R is
the reward function. The goal of policy learning in a MDP is to find a policy 7 : § x A — [0,1]
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that maximizes the expected future return (accumulated reward). The closed-loop dynamics (in
deterministic setting) can then be written as

St41 = Pa(st,at), where ap = w(ss)

Then, we construct an abstract MDP, with state presumably being the abstraction we are looking
for interpretability, as a tuple {S, A, P,, R} that follows similar definition to the above-mentioned
regular MDP. It follows the deterministic MDP homomorphism [47, 48] as follows,

VSt, St+1 € S, ay € A Pa(3t7 at) = St+1 = pa(Q(st); A(a’t)) = Q(St+1)

Vs, € S,ar € A R(sy,ar) = R(Q(s1), A(ayr))

where @ : S — S is the state embedding functionand A : A4 — A is the action embedding function.
The state embedding function can also be seen as an action-equivariant map that precisely satisfies
the MDP homomorphism [48]. Next, we start to draw connection to disentangled representation
from one of its formalism using symmetries and group theory [49]. Informally, disentanglement
refers to the level of decomposition in representation that reflects the factor of variation. For ex-
ample, one dimension of vector representations corresponds to color and the other corresponds to
shape. In [49], these factor of variations are formally defined as symmetries of world state (S in our
case). Given group G, binary operator o : G x G — G, group decomposition into a direct product of
subgroups G = G X Gg x ..., and group action - x : G x X — X with X as a set which the group
action act upon, the idea is to “commute” symmetries from one set X to the other X’. Suppose there
is a group G of geometries acting on the world state S via action -s : G x § — S, we would like
to find a corresponding action acting on representation -z : G X Z — Z that reflects the symmetric
structure of S in Z (in our case neuron response z; € Z). This entails the equivariance condition,

9z Essz(st) = Es»z(9 s St)

where Es-z commutes action across S and Z, and can be called a G-morphism or equivariant map.

GxS —=58

idg X ES%ZJ/ J/ES%‘Z

A more concrete connection of group action to MDP can be seen in the analogy of agent-
environment interaction [50],

g-s 5t = 8¢11 = Pa(st,at)
It is worth emphasizing the distinction of group action -s and regular action a;: not all regular action
a exhibit symmetry, as pointed out in [50]. And the group action upon neural state - ; can be viewed
as the transition dynamics of neural policies,

G-z %2t = 241 = T2(2) = Te(Pa(5¢, 0 (21))

where 7 = m, o, Mg 1 £ — A, 75 : S — Z is simply the decomposition of neural policies to
explicitly extract neuron responses z; and 7, : Z — Z is the transition function of neural states
(note that this does not necessarily require recurrence structure of neural policies; instead this is
more of a convenient notation here). Following the definition of [49], an agent’s representation Z is
disentangled with respect to the decomposition G = G x G X ... if

1. There is a group action -z : G X Z — Z.
2. The map Es+z : S — Z is equivariant between the group actions on S and Z.
3. There is a decomposition Z = Z; X Zs X ... such that each Z; is fixed by the actions of

all G;, j # 7 and affected only by G;.

For the first condition, We already define -z in the above. For the second condition, we show that
the equivariant map can follow the definition Essz = 7, o 7, i.e., 2t41 = Fssz(s¢). This follows
the proof as,

9z ES%Z(St) =9z Zt+1 = ﬂ'z(Zt+1) = 7Tz(71's(5t+1)) = (7Tz o 7Ts)(5t+1) = ES»Z(Q S St)

13



525
526
527

528

530
531
532
533

534
535
536
537
538

540
541
542
543
544
545
546

547

548
549

550
551
552

553

Next, extending the formalism of disentangled representation in [49] with the above-mentioned
MDP homomorphism [47], we define the equivariance condition between the regular MDP
{S, A, P,, R} and the abstract MDP {S, A, P,, R},

g-s ES»s(gt) = ES»S(g 'S 8t)
where E ¢, g commutes action across Sand S , and can be defined with MDP homomorphism,

St41 = Q(5¢41)
Pa(§t7dt) = Q(Pu(st, at))
955 =Q(9 s 5t)
Q Mg-¢5)=9-sQ " (3)
Eg,s = Q™
Note that theoretically the state embedding function () may not have an inverse mapping since
going from S to S is supposed to be more abstract (and thus concise with equal or less information).
However, this does not matter since we don’t necessarily require this recipe to tell us how exactly

group actions in S commute to S. Overall, we establish the following group homomorphism across
set S, S, and Z,

ideESASJ{ Eass
GxS--24 8

idg X Esazl lEs%Z
GxZ--%25 7

This connects the right amount of abstraction for interpretability discussed in the beginning, then
associated with MDP homomorphism, to factor of variation in disentangled representation, which is
formalized by symmetry and group theory. Disentanglement in Z can then be lifted to symmetries
in abstract state space S. In [49], disentanglement of representation is lifted up to the symmetries
in the world state space S, e.g., a factor of group decomposition G; can be color of an object.
However, this is not sufficient to describe the behavior of policies since S lacks task structure.
Hence, we further go from S to S with MDP homomorphism to capture the essence of solving
a task. The factor of group decomposition GG; can then be task-related, e.g., relative pose to a
target object (which may be of high interest for tasks like object tracjing, and less so for tasks
like locomotion). Overall, this provides a motivation to cast the problem of searching for proper
description of the behavior of neural policies (for interpretability) to searching for disentanglement
in neuron responses. In this paper, we therefore study how to measure interpretability of compact
neural policies with disentangled representation.

C Calibration Of Mutual Information

Lemma C.1. The calibration term I[27; Py| — I[27; Py; Pyi| in both MIG (5) and Modularity (6)
metrics, for j # i*, without loss of generality has the following lower bound:

I[27: Py] — I[27; Pr; Pri] > max(0, I[z7; Py] — I[Py; Prs]) (7
Lemma C.1 is necessary because to compute the calibration term, we need access to the conditional
distribution of the random variable (P} |27), which is normally inaccessible. Hence, we derive a

lower bound for the calibrated mutual information.

Proof. In the main paper, we adapting Mutual Information Gap (MIG) [20] to our framework as,

K
1 1 . ‘ |
_ § i, . j. B ;. . ‘
K & H[P4] (I[z s P max 1275 Py — Iz ,Pk,pk]])
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and Modularity score [28] as,

1 - D kne (L1255 Pr] — I[2"5 Pr; Pre])?

7 (K — 1)I[2%; Py~]?

i€T
Both involve the computation of I[27; Py,; Py, ]. Without loss of generality for both cases (and with
the notation of MIG), we simplify the calibration term for j # i* as follows,
11273 Py] = I[27; Pr; Pha)
I[275Pr] = (I3 Pu] = 1[275 Pr|Pis])
1273 Py| Prs]
127 Pi] + H[Pps|27] + H[Pps |Pr] — H[Pys |27, Pr] — H[Pys]
1]
1]

23 Py] — (H[Prs] = H[Pys|Pr)) + (H[Prs|2] = H[Pys|27, Ps])
2 Pi] = I[Pr; Prs] + I[Py |27 Py
max (0, I[z7; Py] — I[Py; Pri)

v

Most steps simply follow identities of mutual information and entropy. The last step requires access
to the conditional distribution of random variable (P |27), which is normally inaccessible. Hence,
we introduce an approximation that serves as a lower bound for the calibrated mutual information
in our implementation. ]

D Other Quantitative Measures

Decision Path Accuracy. During deployment, we use an inverse proxy qg4: for the decision tree
Ty: and hence we compute the approximation error by measuring the accuracy of a state-grounded
decision path inferred from the neuron response with g4: compared to true states,

1 1 1 j

T mn > o L Wisel (8)
€T dt (st,zé)EDm qul t neqd)i(zi)
j=g(n)

where 1 is an indicator function, gg4i(2}) is the inferred decision path with norm as number of
decision rules. The condition s{ < ¢y, validates if the current state s{ complies with the inferred rule
defined by ¢,, (which is from T}:). Since the discrepancy is computed at the decision rule level, it
captures not only the error of the classifier model g4: but also how accurately [ parses 2.

Cross-neuron Logic Conflict. When interpreting a neural policy as a whole instead of inspecting
individual neuron response, it is straightforward to find the intersection across logic programs ex-
tracted from different neurons I; = reduce(A;ez %), where reduce summarizes and reduces logic
programs to a more compact one. Intuitively, the neuron-wise logic program should summarize the
operational domain of the strategy currently executed by the neuron, where intersection describes
the domain of a joint strategy across neurons. However, the reduction of intersection can be invalid
if there is conflict in the logical formulae across neurons, e.g., a < 3 from the first neuron and
a > 4 from the second neuron. The conflict may imply, under the same configuration of fg, that (1)
the policy fails to learn compatible strategies across neurons or (2) there is an error induced by the
interpreter due to insufficient or ambiguous connection between the logic program and the neuron
response, which implicitly indicates lack of interpretability.

Experimental Results. For classical control, we verify in Table 7 that all models achieve compara-
ble performance when learning toward target -500 episode reward. For locomotion, in Table 8, most
models achieve comparable task performance except for GRU and ODE-RNN being slightly worse.
For end-to-end visual servoing, in Table 9, all models achieve good performance (> 0.9) except for
ODE-RNN, which fails to learn a good policy within maximal training iterations.
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Table 7: Other quantitative results of classical control.

Network Decision Path Logic Performance 1

Architecture Accuracy T Conflict |

FCs 0.3015 0.2104 -488.55
GRU 0.2504 0.2832 -559.82
LSTM 0.2392 0.5072 -467.95
ODE-RNN 0.2980 0.2506 -533.93
CfC 0.2509 0.1556 -489.28
NCP 0.4726 0.2026 -556.64

Table 8: Other quantitative results of locomotion.

Network Decision Path Logic Performance 1

Architecture Accuracy T Conflict |

FCs 0.5285 0.1035 5186.50
GRU 0.4924 0.1500 3857.21
LSTM 0.5283 0.2155 4122.74
ODE-RNN 0.4959 0.1474 3472.69
CfC 0.4841 0.1581 5195.46
NCP 0.5859 0.1105 5822.73

E Implementation Details

NCPs are designed by a four-layer structure consisting of sensory neurons (input layer), interneu-
rons, command neurons (with recurrent connections), and motor neurons (output layer). To make a
fair comparison, we augment all non-NCP models by a feed-forward layer, which is of equivalent
size to the inter-neuron layer in NCPs.

E.1 Classical Control (Pendulum)

Network Architecture. With 3-dimensional observation space and 1-dimensional action space, we
use the following network architecture for compact neural policies.

e FCs: a3 — 10 — 4 — 1 fully-connected network with fanh activation.

* GRU: a 3 — 10 fully-connected network with tanh activation followed by GRU with cell
size of 4, outputting a 1-dimensional action.

e LSTM: a 3 — 10 fully-connected network with tanh activation followed by LSTM with
hidden size of 4, outputting a 1-dimensional action. Note that this effectively gives 8 cells
by considering hidden and cell states.

* ODE-RNN: a 3 — 10 fully-connected network with fanh activation followed by a neural
ODE with recurrent component both of size 4, outputting a 1-dimensional action.

* CfC: with backbone layer = 1, backbone unit = 10, backbone activation silu, hidden size
= 4 without gate and mixed memory, outputting a 1-dimensional action.

* NCP: with 3 sensory neurons, 10 interneuron, 4 command neurons, 1 motor neuron, 4
output sensory synapses, 3 output inter-synapses, 2 recurrent command synapse, 3 motor
synapses.

For all policies, we use a 3 — 64 — 64 — 1 fully-connected networks with tanh activation as value
function. We interpret the layer of size 4 for each policy.

Training details. We use PPO with the following parameters for all models. Learning rate is 0.0003.
Train batch size (of an epoch) is 512. Mini-batch size is 64. Number of iteration within a batch is 6.
Value function clip parameter is 10.0. Discount factor of the MDP is 0.95. Generalized advantage
estimation parameter is 0.95. Initial coefficient of KL divergence is 0.2. Clip parameter is 0.3.
Training halts if reaching target average episode reward 150. Maximal training steps is 1M.
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Table 9: Other quantitative results of visual servoing.

Network Decision Path Logic Performance 1

Architecture Accuracy T Conflict |

FCs 0.5379 0.1354 1.0000
GRU 0.6160 0.1884 0.9210
LSTM 0.5174 0.4504 1.0000
ODE-RNN 0.5483 0.3786 0.4239
CfC 0.5549 0.2274 0.9922
NCP 0.5960 0.1067 1.0000

Interpreter details. For the decision tree Tp:, we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.003; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier g,4: with
maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
f&is {0, 9}, where 6 is joint angle and @ is joint angular velocity.

E.2 Locomotion (HalfCheetah)

Network Architecture. With 17-dimensional observation space and 6-dimensional action space,
we first use feature extractors of a shared architecture as a 17 — 256 fully-connected network,
which then output features to compact neural policies with the following architectures,

* FCs: a256 — 20 — 10 — 6 fully-connected network with tanh activation.

* GRU: a 256 — 20 fully-connected network with ranh activation followed by GRU with
cell size of 10, outputting a 6-dimensional action.

* LSTM: a 256 — 20 fully-connected network with fanh activation followed by LSTM with
hidden size of 10, outputting a 6-dimensional action. Note that this effectively gives 20
cells by considering hidden and cell states.

* ODE-RNN: a 256 — 20 fully-connected network with fanh activation followed by a neural
ODE with recurrent component both of size 10, outputting a 6-dimensional action.

e CfC: with backbone layer = 1, backbone unit = 20, backbone activation silu, hidden size
= 10 without gate and mixed memory.

* NCP: with 256 sensory neurons, 20 interneuron, 10 command neurons, 6 motor neuron,
4 output sensory synapses, 5 output inter-synapses, 6 recurrent command synapse, 4 input
motor synapses.

For all policies, we use a 17 — 256 — 256 — 1 fully-connected networks with fanh activation as
value function. We interpret the layer of size 10 for each policy.

Training details. We use PPO with the following parameters for all models. Learning rate is 0.0003.
Train batch size (of an epoch) is 65536. Mini-batch size is 4096. Number of iteration within a batch
is 32. Value function coefficient is 10.0. Discount factor of the MDP is 0.99. Generalized advantage
estimation parameter is 0.95. Initial coefficient of KL divergence is 1.0. Clip parameter is 0.2.
Gradient norm clip is 0.5. Training halts if reaching target average episode reward —500. Maximal
training steps is 12M.

Interpreter details. For the decision tree Tp:, we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.001; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier g,4: with
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maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
fé is {hR79R7 07.58,05.5,0r.5,07.r,05.F,0F. 7, TR, hr, Or, O1.5, 05,3, 6FB79T r 057, 0F 1},
where hp, hp are position and velocity of z-coordinate of the front tip, O, Op are angle and an-
gular velocity of the front tip, 67 g, (‘)T, p are angle and angular velocity of the thigh in the back,
0s.B, és p are angle and angular velocity of the shin in the back, 0 5, 9F p are angle and angular
Veloc1ty of the foot in the back, 01 1, HT 7 are angle and angular Velocuy of the thigh in the front,
OsT, 93 7 are angle and angular velocity of the shin in the front, 0 1, 0 F,r are angle and angular
velocity of the foot in the front, Z is the velocity of x-coordinate of the front tip.

E.3 End-to-end visual servoing (Image-based Driving)

Network Architecture. With image observation space of size (200, 320, 3) and 2-dimensional ac-
tion space, we first use feature extractors of a shared architecture as a convolutional neural network
(CNN) in Table 10, which then output features to compact neural policies with the following archi-
tectures,

* FCs: a1280 — 20 — 8 — 2 fully-connected network with tanh activation.

* GRU: a 1280 — 20 fully-connected network with tanh activation followed by GRU with
cell size of 8, outputting a 2-dimensional action.

e LSTM: a 1280 — 20 fully-connected network with tanh activation followed by LSTM with
hidden size of 8, outputting a 2-dimensional action. Note that this effectively gives 20 cells
by considering hidden and cell states.

* ODE-RNN: a 1280 — 20 fully-connected network with tanh activation followed by a
neural ODE with recurrent component both of size 8, outputting a 2-dimensional action.

* CfC: with backbone layer = 1, backbone unit = 20, backbone activation silu, hidden size
= 8 without gate and mixed memory.

e NCP: with 1280 sensory neurons, 20 interneuron, 8 command neurons, 2 motor neuron,
4 output sensory synapses, 5 output inter-synapses, 6 recurrent command synapse, 4 input
motor synapses.

Training details. Batch size is 64. Sequence size is 10. Learning rate is 0.001. Number of epochs
is 10. We perform data augmentation on RGB images with randomized gamma of range [0.5, 1.5],
brightness of range [0.5, 1.5], contrast of range [0.7, 1.3], saturation of range [0.5, 1.5].

Interpreter details. For the decision tree Ty:, we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.003; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier g,4: with
maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
f&is {v,8,d, Al, u, k}, where v is vehicle speed, ¢ is heading, d is lateral deviation from the lane
center, Al is longtitudinal deviation from the lane center, y is local heading error with respect to the
lane center, k is road curvature.

F Robustness Analysis

We propose to study the interpretability of neural policies through decision trees and present several
quantitative measures of interpretability by analyzing various properties on top of neuron responses
and corresponding decision trees, including Neural-Response Variance, Mutual Information Gap,
Modularity, Decision Path Accuracy, and Logic Conflict. However, the extracted decision trees may
differ across different configurations. Hence, to validate the robustness of the proposed metrics to
hyperparameters, we compute all metrics with different decision tree parameters in classical control
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Layer \ Hyperparameters

Conv2d (3,24,5,2,2)
GroupNorm2d (16, 1e-5)
ELU -
Dropout 0.3
Conv2d (24,36,5,2,2)
GroupNorm2d (16, 1e-5)
ELU -
Dropout 0.3
Conv2d (36,48,3,2, 1)
GroupNorm2d (16, 1e-5)
ELU -
Dropout 0.3
Conv2d (48,64,3,1,1)
GroupNorm2d (16, 1e-5)
ELU -
Dropout 0.3
Conv2d (64,64,3,1, 1)
AdaptiveAvgPool2d | reduce height dimension

Table 10: Network architecture of CNN feature extractor for end-to-end visual servoing. Hyperparameters for
Conv2d are input channel, output channel, kernel size, stride, and padding; for GroupNorm2d, they are group
size and epsilon; for Dropout, it is drop probability.

environment (Pendulum). We report the averaged results with 5 random seeds in Table 11 (Neural-
Response Variance), Table 12 (Mutal Information Gap), Table 13 (Modularity), Table 14 (Decision
Path Accuracy), Table 15 (Logic Conflict). Most metrics (variance, MI-gap, decision path accuracy,
logic conflict) yield consistent top-1 results and agree with similar rankings among network archi-
tectures, except for modularity that is slightly less robust against hyperparameters yet still consistent
in the top-3 set of models. This results demonstrate the reliability of the proposed interpretability
analysis for neural policies.

Table 11: Robustness to hyperparameters for Neural-Response Variance. The results are averaged across 5
random seeds in classical control (Pendulum).

[Variance |] Network Architecture | FCs | GRU | LSTM | ODE-RNN | CfC | NCP

0.001 | 0.0232 | 0.0304 | 0.0209 0.0266 0.0254 | 0.0207

Cost Complexity Pruning 0.003 | 0.0242 | 0.0329 | 0.0216 0.0287 0.0272 | 0.0240
0.01 | 0.0261 | 0.0371 | 0.0221 0.0315 0.0267 | 0.0305

0.01 | 0.0154 | 0.0261 | 0.0138 0.0193 0.0189 | 0.0186

Minimal Leaf Sample Ratio 0.1 0.0242 | 0.0329 | 0.0216 0.0287 0.0272 | 0.0240
0.2 0.0334 | 0.0387 | 0.0284 0.0354 0.0295 | 0.0285

Table 12: Robustness to hyperparameters for Mutual Information Gap. The results are averaged across 5
random seeds in classical control (Pendulum).

[MI-Gap 1] Network Architecture | FCs | GRU | LSTM | ODE-RNN | CfC | NCP

|
0.001 | 0.0284 | 0.2686 | 0.2026 0.2891 0.2544 | 0.3403
Cost Complexity Pruning 0.003 | 0.3008 | 0.2764 | 0.2303 0.3062 0.2892 | 0.3653
0.01 | 0.3482 | 0.3065 | 0.2547 0.3142 0.3567 | 0.3664
0.01 | 0.2824 | 0.2632 | 0.2040 0.2819 0.2433 | 0.3456
Minimal Leaf Sample Ratio 0.1 0.3008 | 0.2764 | 0.2303 0.3062 0.2892 | 0.3653
0.2 0.3798 | 0.3387 | 0.2528 0.3168 0.3342 | 0.3429
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Table 13: Robustness to hyperparameters for Modularity. The results are averaged across 5 random seeds in
classical control (Pendulum).

[Modularity 1]

Network Architecture FCs GRU | LSTM | ODE-RNN CfC NCP

0.001 | 0.9519 | 0.9558 | 0.9327 0.9485 0.9228 | 0.9438
0.003 | 0.9471 | 0.9550 | 0.9402 0.9486 09116 | 0.9551
0.01 | 0.9532 | 0.9598 | 0.9445 0.9487 0.8970 | 0.9593

0.01 | 0.9638 | 0.9702 | 0.9547 0.9630 0.9333 | 0.9651
0.1 0.9471 | 0.9550 | 0.9402 0.9486 09116 | 0.9551
0.2 0.9475 | 0.9372 | 09197 0.9404 0.8755 | 0.9301

Cost Complexity Pruning

Minimal Leaf Sample Ratio

Table 14: Robustness to hyperparameters for Decision Path Accuracy. The results are averaged across 5 random
seeds in classical control (Pendulum).

[Decision Path Accuracy 1]

Network Architecture FCs GRU | LSTM | ODE-RNN CfC NCP

0.001 | 0.2815 | 0.2415 | 0.2195 0.2904 0.2250 | 0.4294
0.003 | 0.3015 | 0.2504 | 0.2392 0.2980 0.2509 | 0.4726
0.01 | 0.3074 | 0.3330 | 0.3161 0.3707 0.2864 | 0.4390

0.01 | 0.2950 | 0.2637 | 0.2270 0.2574 0.2452 | 0.4287
0.1 0.3015 | 0.2504 | 0.2392 0.2980 0.2509 | 0.4726
0.2 0.3572 | 0.3587 | 0.2794 0.3322 0.2784 | 0.4684

Cost Complexity Pruning

Minimal Leaf Sample Ratio

G Counterfactual Analysis via Removal of Neurons

There exist some neurons with logic programs that are sensible but may have little effect on task
performance. For example, in NCPs (not confined to this specific architecture but just focus on
it for discussion), we find a neuron that aligns its response purely with vehicle speed. Given the
task objective is lane following without crashing, such neuron pays attention to useful (for temporal
reasoning across frames) but relatively unnecessary (to the task) information. Furthermore, there
are neurons that don’t exhibit sufficient correlation with any of the environment state and fail to
induce decision branching. In light of these observation, we try to remove neurons that we suspect
to have little influence on the performance by inspecting their logic program. We show the results
in Table 16. Removing neurons 3, 4, 7 has a marginal impact on task performance. Among them,
neuron 3 and 4 mostly depends on vehicle speed v with a small tendency to the lateral deviation d.
Neuron 7 fails to split a tree.

H Interpretation Of Driving Maneuver

In Figure 3, we describe interpretations similar to classical control (for a neuron in NCP). While
the state space of driving is higher dimensional (5 with bicycle model for lane following), states
of interest only include local heading error x4 and lateral deviation from the lane center d in lane
following task. We compute the statistics and plot neuron response and closed-loop dynamics in
the d-p phase portrait. This specific neuron develops more fine-grained control for situations when
the vehicle is on the right of the lane center, as shown in Figure 3(a). We further show front-view
images retrieved based on neuron response in Figure 3(b).

I Logic Program from Decision Trees

Here we show the corresponding logic program of the finite set of decision path {7"(77,2)},521 for
every interpreted neuron in all network architectures. The symbols used in the logic program follow
the state grounding definition in Section E. We also briefly summarize the size of associated decision
trees by computing the number of decision rules for each model (before logic program reduction and
conflict checking).
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Table 15: Robustness to hyperparameters for Logic Conflict. The results are averaged across 5 random seeds in
classical control (Pendulum).

[Logic Conflict |]

Network Architecture FCs GRU | LSTM | ODE-RNN CfC NCP

0.001 | 0.2451 | 0.3348 | 0.5240 0.2641 0.2048 | 0.3159
0.003 | 0.2104 | 0.2832 | 0.5072 0.2506 0.1556 | 0.2026
0.01 | 0.1766 | 0.1877 | 0.4325 0.1401 0.1121 | 0.2924

0.01 | 0.2672 | 0.4298 | 0.6791 0.3575 0.2654 | 0.2607
0.1 0.2104 | 0.2832 | 0.5072 0.2506 0.1556 | 0.2026
0.2 0.1796 | 0.1664 | 0.3842 0.2001 0.1089 | 0.1111

Cost Complexity Pruning

Minimal Leaf Sample Ratio

Table 16: Removing a single neuron based on explanation.
RemoveNeuron | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Performance + | 0.24 | 0.07 | 0.09 | 1.00 | 0.969 | 0.29 | 0.03 | 1.00

—— All neurons
0.6 - —— Remove neuron 3

0.4 -

Lateral error d/m
°
N

| | j ] | ] ) ] 1
0 25 50 75 100 125 150 175 200
Progress s/m

—— All neurons

Remove neurons 3 and 7

AL A

—0:2 - ‘7 \\_/

Lateral error d/m
o
o

100
Progress s/m

i |
25 50

Figure 4: Driving profile when removing neurons according to decision tree interpretation.

In classical control (Pendulum), the extracted logic program are shown in Table 17 (FC; of size 39),
Table 18 (GRU; of size 54), Table 19 (LSTM; of size 43), Table 20 (ODE-RNN; of size 40), Table 21
(CfC; of size 20), Table 22 (NCP; of size 26).

In locomotion (HalfCheetah), the extracted logic program are shown in Table 23 (FC; of size 171),
Table 24 (GRU; of size 158), Table 25 (LSTM; of size 148), Table 26 (ODE-RNN; of size 156),
Table 27 (CfC; of size 149), Table 28 (NCP; of size 81).

In end-to-end visual servoing (Image-based Driving), the extracted logic program are shown in
Table 29 (FC; of size 92), Table 30 (GRU; of size 60), Table 31 (LSTM; of size 70), Table 32
(ODE-RNN; of size 94), Table 33 (CfC; of size 107), Table 34 (NCP; of size 66).

In a logic program, “conflict” indicates there are conflict between predicates within the logic pro-
gram as elaborated in Section 3.2.
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Model | Neuron | Logic Program

0: (6 <= 0.69) A (6 <= —2.18)
1: (0 > 0.69) A (0 <= —2.18)
0 2: (conflict)
3:(0 <= 2.41) A (0 > —2.18)
4: (0 > 2.41)
0: (6 <= —1.16) A (0 <= —0.34)
1: (0 <=1.7T3) A (0 > —1.16) A (6 <= —0.34)
. 2: (0> 1.73) A (6 <= —0.34)
3: (0 <= 2.03) A (0 > —0.34)
4: (0 <= 2.62) A (6 > 2.03)
5: (0 > 2.62)
FC -
0: (0 <= —1.54) A (0 <= —1.68)
1: (0 <=1.47) A (0 > —1.54) A (6 <= —1.68)
5 2:(6 > 1.47) A (0 <= —1.68)
3: (conflict)
4: (0 <= 2.48) A (0 > —1.68)
5: (0 > 2.48)
0: (0 <= —2.76)
3 1: (conflict)
- 2: (6 <= 0.05) A (0 > —2.76)
3: (6 > 0.05)

Table 17: Logic program of FC in classical control (Pendulum).

Model | Neuron | Logic Program

0: (9 <= —0.06)
1: (conflict)

0 2: (6 <= —0.30) A (6 > —0.06)
3: (0 <= 1.75) A (§ > —0.30) A (8 > —0.06)
4: (6 > 1.75) A (6 > —0.06)
0: (6 <= —2.30) A (0 <= —1.27)
1: (0 <=1.83) A (6 > —2.30) A (0 <= —1.27)

. 2: (6 <= —0.37) A (0 > —1.27)
3:(0 <=1.83) A (0 > —0.37) A (0 > —1.27)
4: (6 <=3.10) A ( > 1.83)
5: (6 > 3.10)

GRU 0: (6 <= —0.11) A (6 <= —0.05)

1: (0 <= —0.11) A (§ > —0.05)
2: (conflict) A (0 > —0.05)

2 3:(6 > —0.11) A (6 <= —2.09)
4:(0 > —0.11) A (6 <= 0.41) A (6 > —2.09)
5:(0 <= 1.61) A (6 > —0.11) A (0 > 0.41)
6: (6 > 1.61) A (0 > 0.41)
0: (6 <= —2.61)
1: (0 <=2.44) A (0 <= 0.21) A (0 > —2.61)

3 2:(6 > 2.44) A (0 <=0.21) A (0 > —2.61)
3:(6 <= —1.76) A (6 > 0.21)
4: (0 <=0.39) A (6 > —1.76) A (8 > 0.21)
5:(0 > 0.39) A (6 > 0.21)

Table 18: Logic program of GRU in classical control (Pendulum).
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Model | Neuron |

Logic Program

LSTM

0: (6 <= —2.16)
1: (conflict)
2: (6 <= 0.01) A (6 > —2.16)
0 3:(6 <= 0.48) A (0 > 0.01)
4: (§ <=3.00) A (6 > 0.48) A (§ > 0.01)
5: (6 > 3.00) A (6 > 0.01)
0: (6 <= —2.57)
1: (conflict)
1 2: (6 > —2.57) A ( <= 0.35)
3:(0 > —2.57) A (0 <= 2.03) A (6 > 0.35)
4: (6 > —2.57) A (6 > 2.03)
0: (0 <= 4.79) A (0 <= —2.31)
1: (6 <= 4.79) A (6 <= 1.72) A (6 > —2.31)
2 2:(6 <= —3.13) A (6 > 1.72)
3:(0 <=4.79) A (§ > —3.13) A (8 > 1.72)
4: (6 > 4.79)
0: (6 <= —2.32)
1: (0 <= 0.93) A (§ > —2.32)
3 2: (6 <= —3.98) A (6 > 0.93)
3:(0 > —3.98) A (8 <= 2.04) A (8 > 0.93)
4: (6 > —3.98) A (6 > 2.04)

Table 19: Logic program of LSTM in classical control (Pendulum).

Model

| Neuron |

Logic Program

ODE-RNN

0: (0 <= —1.48) A (0 <= —0.02)
1: (0 <= —1.48) A (6 > —0.02)
2: (6 > —1.48)

0: (0 <= —0.08) A (6 <= —1.45)

1: (6 > —0.08) A (6 <= —1.45)

2: (0 <= 2.05) A (0 > —1.45)

3: (6 <= 2.50) A (6 > 2.05)

4: (6 <= —0.40) A (8 > 2.50)

5:(6 <= 0.03) A (6 > —0.40) A (0 > 2.50)
6: (6 > 0.03) A (0 > 2.50)

0: (6 <= —0.56)

1: (6 > —0.56) A (0 <= —2.16)

2: (6 > —0.56) A (0 <= 2.44) A (0 > —2.16)
3: (conflict) A (6 > 2.44)

4: (6 > —0.56) A (6 > 2.44)

0: (0 <= —2.18)

1: (0 <= 0.04) A (8 > —2.18)
2: (6 <= 2.65) A (6 > 0.04)
3:(6 <= —0.21) A (6 > 2.65)
4: (6 > —0.21) A (6 > 2.65)

Table 20: Logic program of ODE-RNN in classical control (Pendulum).
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Model | Neuron | Logic Program

0 <= —0.03)
: (conflict)
: (conflict)

CfC

2

0.24) A (0
2.14) A (0

= —0.12)
= 2
2.14)

>
> 0.24)

Table 21: Logic program of CfC in classical control (Pendulum).

9>044)/\(9<_144)/\(9>—131)
6> 0.44) A (0 > 1.44)

Model | Neuron | Logic Program
o 0: (§ <= 0.33)
1: (6 > 0.33)
0: (6 <= —0.07)
1 1: (conflict)
2: (0 <= 0.27) A (0 > —0.07)
3: (6 > 0.27)
NCP 0: (§ <= 4.80) A (6 <= —1.27)
5 1(9< 4.80) A (0 <=1.66) A (0 > —1.27)
2: (6 <= 4.80) A (0 > 1.66)
3: (6 > 4.80)
0: (§ <= —0.33)
1: (0 <= 0.44) A (6 > —0.33)
3 2(9>044)/\(0<_—131)
3:(
4 (

Table 22: Logic program of NCP in classical control (Pendulum).
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Model Neuron ‘ Logic Program
0:(0r <= —0.22) A (b7, p <= —3.26)
L:(0p > —0.22) A (67 F <= —3.26)

0 2 (67, F <= 6.46) A (01, p > —3.26) A (O, p <= —0.50)
3 (0, <= 6.46) A (01, F > —3.26) A (0, p > —0.50)
4: (6, F > 6.46) A (hp <= 0.05)

5. (6, > 6.46) A (hg > 0.05)

0: (0p, g <= —0.05) A (05, <= 0.61) A (07,5 <= 0.05)
1 (0p, g <= —0.05) A (85, > 0.61) A (07, 5 <= 0.05)

2 (O, p <= —11.24) A (0p,p > —0.05) A (07,5 <= 0.05)

. 3 (Op,F > —11.24) A (0p, g > —0.05) A (07,5 <= 0.05)
4 (07,5 > 0.05) A (7, <= 0.40)

5. (0, g > 0.05) A (0, <= 0.62) A (0, > 0.40)

6: (0, g <=2.08) A (97,5 > 0.05) A (O, F > 0.62)

7: (01,5 > 2.08) A (0, g > 0.05) A (01, F > 0.62)

0: (0, p <= —12.45) A (8p, g <= 0.06)

1:(0p,p > —12.45) A (Op, g <= 0.06) A (05, <= 0.65)

) 2 (p,p > —12.45) A (0, p <= 0.06) A (65, > 0.65)
3 (0p,p <= 6.33) A (0,5 > 0.06) A (07, <= 0.33)
4:(bp, g <=6.33) A (0, g > 0.06) A (07, F > 0.33)

5: (01,5 > 6.33) A (0, 5 > 0.06)
0: (0p, g <= 0.38) A (05, <= 0.17) A (07, <= 0.58)
1:(0p, 5 <= 0.38) A (05, <= 0.17) A (61,F > 0.58)
3 2 (0p,p <=0.38) A (05,F > 0.17) A (07,5 <= 0.07)
3 (0p,p <= 0.38) A (0s,F > 0.17) A (6,5 > 0.07)
4: (0, g > 0.38)
0: (0s,5 <=1.79) A (Og <= 0.19) A (07,5 <= 0.06)
1: (05,5 > 1.79) A (0 <= 0.19) A (67,5 <= 0.06)
2 (0p,F <= 9.07) A (O > 0.19) A (07,5 <= 0.06)
4 3 (0p,F > 9.07) A (O > 0.19) A (07, 5 <= 0.06)
FC 4 (0g <= —0.03) A (0,5 > 0.06)
5:(0r > —0.03) A (0p, p <= —0.49) A (67,5 > 0.06)
6:(6g > —0.03) A (0p,p > —0.49) A (67,5 > 0.06)
0: (0, p <=1.10) A (b7, <= —6.72) A (07, <= 0.67)
1:(0r, g <= 1.10) A (87, F > —6.72) A (01, <= 0.67)
2 (p, 5 <= 1.10) A (61,5 > 0.67)

5 3 (p,p > 1.10) A (hg <= —0.33) A (§r <= 0.29)
4:(0p g > 1.10) A (hg > —0.33) A (0 <= 0.29)
5:(0p,p > 1.10) A (hg <= —0.48) A (8 > 0.29)

6: (61,5 > 1.10) A (hg > —0.48) A (6 > 0.29)
0:(0r <= —0.83) A (8p, g <= 4.65) A (O, <= —0.07)
11 (6r <= —0.83) A (Bp, g > 4.65) A (§p, p <= —0.07)

p 2 (6 > —0.83) A (b, p <= —0.07) A (65, <= —0.33)
3:(0r > —0.83) A (0, <= —0.07) A (65, B > —0.33)
4:(0p,p > —0.07) A (g <= 0.52)

5 (0p,F > —0.07) A (0 > 0.52)
0: (0p, p <= —0.36) A (§r <= 0.33) A (5, <= 0.56)
I (0p p <= —0.36) A (g > 0.33) A (05, <= 0.56)

; 2 (67, <= —0.36) A (65,7 > 0.56)
3 (0p,p <= 6.91) A (b7, F > —0.36) A (05,5 <= 0.09)
4 (0p F > 6.91) A (05,5 <= 0.09)
5. (6, > —0.36) A (05,5 > 0.09)
0: (0p <= —0.10) A (67, 5 <= —3.31)
1: (g > —0.10) A (7 p <= —3.31)

e 2 (67, p <= 0.97) A (67,3 > —3.31)
3 (87,5 > 0.97) A (05,5 <= —0.35)
4: (6, g > 0.97) A (Bp <= 0.20) A (05,5 > —0.35)
5: (01,5 > 0.97) A (Br > 0.20) A (05,5 > —0.35)
0: (0, 5 <= 0.63) A (8s,F <= 3.07)
1:(0p, B <=0.63) A (8s,F > 3.07) A (§g <= 0.46)
2 (0p,p <= 0.63) A (05, F > 3.07) A (B > 0.46)

9 3 (0p,p > 0.63) A (0 p <=5.96) A (hg <= 0.03)
4:(0p,p > 0.63) A (07, <= 5.96) A (hg > 0.03)
5:(0p,5 > 0.63) A (0, > 5.96) A (07, <= 0.38)

6: (0p, 5 > 0.63) A (b, > 5.96) A (07, > 0.38)

Table 23: Logic program of FC in locomotion (HalfCheetah).
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Model Neuron ‘ Logic Program

((0r <= 1.54) A (07,5 <= —2.33) A (O <= 0.52)
1(0r > 1.54) A (7,5 <= —2.33) A (§g <= 0.52)
(1, > —2.33) A (0 <= 0.11)

(1, > —2.33) A (0 <= 0.52) A (§g > 0.11)
(O, p <= —7.48) A (Or > 0.52)

(01, p > —T.48) A (0 <= 0.97) A (O > 0.52)
(0, p > —T.48) A (Or > 0.97)

DA W = O

=)

(s, <= 10.33) A (g <= 0.50) A (0p, g <= —0.41)
(s, <= 10.33) A (g <= 0.50) A (0p, g > —0.41)
(s, <= 10.33) A (hg <= —0.07) A (8g > 0.50)
(s, <= 10.33) A (hg > —0.07) A (8 > 0.50)
(b5, B > 10.33)

AW = O

:(0r, g <= 3.33) A (0 <= 0.12)

(01, B > 3.33) A (B <= 0.12)

(01, B <= 6.59) A (Or > 0.12) A (01, p <= 0.70)
(1, <= 6.59) A (Or > 0.12) A (07, F > 0.70)
:(r,B > 6.59) A (0 <= 0.54) A (O > 0.12)
(61,5 > 6.59) A (O > 0.54)

DR WN = O

:(Or <= —0.78) A (07, F <= 0.17)

1(0r > —0.78) A (B <= 0.68) A (07, <= 0.17)
:(0r > —0.78) A (B > 0.68) A (0, <= 0.17)
((hp <=0.64) A (07, g <= —0.14) A (01 F > 0.17)
1(hr <=0.64) A (07,5 > —0.14) A (61, F > 0.17)
:(hgr > 0.64) A (07, F > 0.17)

L N T N ]

(05, <= 1.92) A (85, p <= 0.02)

1(0s,B > 1.92) A (05, p <= 0.02)

1(6s,B <=6.10) A (85, p <=T7.21) A (05,F > 0.02)
1(0s,B <=6.10) A (85, > 7.21) A (05, F > 0.02)
(65,5 > 6.10) A (85, > 0.02)

GRU

IS
AW =

(01,5 <= 2.59) A (0F, 5 <= 0.10) A (07,5 <= —0.16)
(01, <=2.59) A (0F, 5 <= 0.10) A (07,5 > —0.16)
261, B > 2.59) A (0, g <= 0.10)

(01, <=1.45) A (07 F <= 6.43) A (O, 5 > 0.10)
(1, p > 1.45) A (07, <= 6.43) A (0p, 5 > 0.10)

: (conflict) A (6, g > 0.10)

(1, F > 6.43) A (0,5 > 0.10)

W= O

2 (0r <=0.17) A (0p, p <= —0.12)

1(0r <=0.62) A (Og > 0.17) A (0, <= —0.12)
((0p, B <=6.66) A (g <= 0.62) A (0p, 5 > —0.12)
:(0p,p > 6.66) A (0r <= 0.62) A (0p, 5 > —0.12)
(1, <= —5.47) A (Or > 0.62)

(1, > —5.4T) A (0 <= 0.89) A (O > 0.62)
(61, B > —5.47) A (O > 0.89)

DV E LN —O|ow s

:(hg <= —0.27) A (6 p <= 0.20)

(1, <= —0.25) A (hg > —0.27) A (61, <= 0.20)
(1, > —0.25) A (hg > —0.27) A (07, p <= 0.20)
t(hp <=0.12) A (0 <= 0.77) A (O, F > 0.20)

i(hgr <=0.12) A (g > 0.77) A (07, F > 0.20)

:(hgr > 0.12) A (07, F > 0.20)

[ N =]

i (hr <=0.13) A (0p, g <= —0.16) A (hp <= 0.07)
i(hgp <=0.13) A (0p, g > —0.16) A (hp <= 0.07)
:(hr <= 0.13) A (hg > 0.07)

i(hg <= 1.11) A (hg > 0.13) A (hg <= 0.08)
:(hg > 1.11) A (hg <= 0.08)

:(hg > 0.13) A (hg > 0.08)

[ N T N

(01, p <=0.51) A (05, <= —0.07)

((0p,F <=3.81) A (67, F <= 0.51) A (05, > —0.07)
:(0p,F > 3.81) A (61, <= 0.51) A (65,7 > —0.07)
(1, > 0.51) A (0, g <= 0.34)

((0r <= —1.78) A (67, F > 0.51) A (0,5 > 0.34)
:(6r > —1.78) A (7, > 0.51) A (0, > 0.34)

W= O

[N

Table 24: Logic program of GRU in locomotion (HalfCheetah).
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Model | Neuron | Logic Program

((6r <=2.01) A (05,5 <= 0.53) A (01, p <= —0.28)
((6p <=2.01) A (05,5 <= 0.53) A (67, > —0.28)
:(6r > 2.01) A (85,5 <= 0.53)

:(0s,B > 0.53)

((0p,F <= 0.02) A (07, <= —0.35)

((0p,F <=1.23) A (0p,F <= 0.02) A (07, F > —0.35)
((0p,F > 1.23) A (Op,F <= 0.02) A (07 F > —0.35)
(0p,F > 0.02) A (07, p <= —0.07)

(0p,F <=0.95) A (0p F > 0.02) A (67 F > —0.07)
:(0p,F > 0.95) A (0p,F > 0.02) A (01, > —0.07)

DALY~ WN —~ o

c (0, <= —0.46) A (hgr <= —0.07)

((0p,p <= —4.76) A (Op,F > —0.46) A (hg <= —0.07)
c(0p,p > —4.76) A (0p, F > —0.46) A (hg <= —0.07)
:(6r <= 0.11) A (hg > —0.07)

:(6g > 0.11) A (hg > —0.07)

[N}
AL = O

:(0s,5 <= 0.14) A (01, <= —0.01) A (hg <= —0.11)
1(0s,5 <=0.14) A (07, F > —0.01) A (hg <= —0.11)
1(6s,B > 0.14) A (05,5 <= 0.42) A (hg <= —0.11)
1(6s,B > 0.14) A (65,5 > 0.42) A (hg <= —0.11)

1 (07,5 <= 0.27) A (hg > —0.11)

(07, <=0.53) A (67, > 0.27) A (hg > —0.11)

2 (07, > 0.53) A (hgp > —0.11)

: (0, F <= —0.00)

: (conflict)

1 (0r <=0.12) A (Op,F <= 0.39) A (6 F > —0.00)
:(0p > 0.12) A (0p, p <= 0.39) A (6p, p > —0.00)

1 (0r <= —0.51) A (0p,F > 0.39)

:(6r > —0.51) A (0p, F > 0.39)

LSTM

LMEWLUN—D [ OURELN —~O

1 (0r <= 0.07) A (0p,p <= —0.05)

1(0r <=0.07) A (0p,p <= 0.35) A (0p,F > —0.05)
:(0r > 0.07) A (OF,F <= 0.35) A (hg <= —0.18)
:(0r > 0.07) A (Op,F <= 0.35) A (hg > —0.18)

1 (0s,5 <= —2.15) A (0, > 0.35)

1(6s,5 > —2.15) A (0p,F > 0.35)

[ N =

:(0p,p <=1.81) A (hg <= —1.08) A (07, <= —0.14)
((0r,p <=1.81) A (hg > —1.08) A (07, <= —0.14)
c(0p,p > 1.81) A (07, p <= —0.14)

i(hg <= —0.47) A (07, p > —0.14)

(O, <= —1.89) A (hg > —0.47) A (07, F > —0.14)
((br,p > —1.89) A (hp > —0.47) A (07, p > —0.14)

[ O =

((0p,F <= —0.07) A (07, <= 0.36)

((0p,F <= —0.07) A (6, F > 0.36)

((2p <=4.14) A (0p,p > —0.07) A (O, g <= 0.34)
((2gp > 4.14) A (Op p > —0.07) A (0, g <= 0.34)
c(br,Fp <= —2.37T) A (0p,F > —0.07) A (67, > 0.34)
c(br,Fp > —2.37) A (0p,F > —0.07) A (67,5 > 0.34)

N
[ N S

c(0p,p <= 11.09) A (Bp, p <= 1.05) A (07, <= —0.46)
((0p, B <=11.09) A (F F <= 1.05) A (O, F > —0.46)
t(0p, B > 11.09) A (F, p <= 1.05)

:(6p,F > 1.05) A (07, p <= —11.38)

:(6p,F > 1.05) A (01, > —11.38) A (§g <= 0.16)
:(6p,F > 1.05) A (O, > —11.38) A (O > 0.16)

:(0p,p <= —0.40) A (65, B <= —0.33)

((0p p <= —0.40) A (65,5 > —0.33)

(6, F <= —10.21) A (hg <= —0.80) A (0, F > —0.40)
:(bp,p > —10.21) A (hg <= —0.80) A (0, > —0.40)
:(hp > —0.80) A (05, g <= —0.14) A (0p, F > —0.40)
:(hp > —0.80) A (0p,p > —0.14) A (Op,F > —0.40)

NE LN~ ALY —O

Table 25: Logic program of LSTM in locomotion (HalfCheetah).
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Model Neuron ‘ Logic Program

hp <= —0.27) A (05,5 <= —0.49)

hr > —0.27) A (0g,5 <= —0.49)

hp <= —0.00) A (0p, F <= —0.22) A (65,5 > —0.49)
hp <= —0.00) A (0, F > —0.22) A (05,5 > —0.49)
hg > —0.00) A (05,5 > —0.49) A (67,5 <= 0.22)
hr > —0.00) A (65,5 > —0.49) A (67,5 > 0.22)

RARF A S o s

Op, g <= —2.91) A (0p, g <= —0.39)
0r,B > —2.91) A (hg <= —0.21) A (0, g <= —0.39)

6p <= —0.00) A (6, g > —0.39)
6p > —0.00) A (g <= —0.04) A (8p,p > —0.39)
6p > —0.00) A (8g > —0.04) A (6, g > —0.39)

RAREE A

6r <=0.02) A (67 p <= —0.16)

0.02) A (0. > —0.16) A (hg <= 0.00)
.02) A (07 g > —0.16) A (hp > 0.00)
2) A (hg <= —0.02)

2) A (conflict)
02) A (hg > —0.02)

(
(
(
(
(
(
(
(
(b, > —2.91) A (hg > —0.21) A (05, p <= —0.39)
(
(
(
(
(
(
(
(

AR > ol
cocoll ll
oooo

55) A (0p <= 0.08) A (0, p <= 0.42)
55) A (0 <= 0.08) A (61, p <= 0.42)
.08) A (85,5 <= 0.16) A (675 > 0.42)
.08) A (85,5 > 0.16) A (6.5 > 0.42)
08) A (87 p <= 0.42) A (hg <= —0.05)
08) A (87 p <= 0.42) A (hg > —0.05)
08) A (67 > 0.42)

VVVAAVA|VVVAA
ooo\l “o\l
oo

w
AR S =]
D
By

coooo

(01,5 <= —3.83) A (07 F <= —0.87)

(br,p <= —3.83) A (§p,p > —0.87) A (hp <= —0.08)
(61,5 <= —3.83) A (bp F > —0.87) A (hg > —0.08)
(e'T,B > —3.83) A (8g,B <= —0.11) A (hg <= —0.09)
(67,5 > —3.83) A (05,5 > —0.11) A (hg <= —0.09)
(61,5 > —3.83) A (07,5 <= —0.33) A (hg > —0.09)
(67,5 > —3.83) A (07,5 > —0.33) A (hg > —0.09)

W w

ODE-RNN

(ip <= 3.31)

(ér > 3.31) A (85,5 <= 0.01) A (07, <= 0.57)
(ér > 3.31) A (85,5 > 0.01) A (01, F <= 0.57)
(&g > 3.31) A (61, > 0.57)

Rl e e A O i el =

(61,5 <=1.22) A (05,5 <= —0.54)

(61,5 > 1.22) A (05,5 <= —0.54)

(éT <= —3.70) A (05,5 > —0.54) A (61,5 <= 0.16)
3: (e‘T <= —3.70) A (65, > —0.54) A (67, g > 0.16)
4: (éT’B > —3.70) A (conflict)

5:(0p,5 > —3.70) A (05,5 > —0.54)

»ee

0: (hg <=0.02) A (5, p <= —0.19) A (07,5 <= 0.53)
1: (hg <= 0.02) A (85, <= —0.19) A (07,5 > 0.53)
2 (hg > 0.02) A (65, p <= —0.19)

, <= 0.53) A (05,7 <= 0.16) A (05, F > —0.19)
<=0.53) A (05,7 > 0.16)

> 0.53) A (0g,F > —0.19)

(S ]

GT B <= —0.39) A (07, B <= —0.37)

9T B <= —0.39) A (05, <= 0.04) A (67, > —0.37)
9T B <= —0.39) A (05, > 0.04) A (7, > —0.37)
OT B > —0.39) A (07, p <= 0.55) A (07, <= 0.09)

OTB>—039)/\(0TB>055)

Or,p <= —0.24)

OT F <= —6.60) A (conflict)

GT F > —6.60) A (conflict)

07 ¢ > —0.24) A (hgp <= —0.11)

OT F <=0.32) A (07 F > —0.24) A (hg > —0.11)
Op p > 0.32) A (hg > —0.11)

:(Or
:(0r
((0r
- (
(
(
(
(01, p > —0.39) A (07,5 <= 0.55) A (87, F > 0.09)
(
- (
(
(
(
(
(

Table 26: Logic program of ODE-RNN in locomotion (HalfCheetah).
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Model Neuron ‘ Logic Program

0: (§p, p <= —9.40)
L (6p,p > —9.40) A (Op, 3 <= —1.68) A (0p p <= 0.23)
0 2(0p,F > —9.40) A (b, g > —1.68) A (6p, 5 <= 0.23)
3 (0p,F > —9.40) A (b, p <= —5.69) A (0p,F > 0.23)
4 (0p,F > —9.40) A (b1, > —5.69) A (0F, > 0.23)
0: (0r <= 0.06) A (07, F <= —0.46)
1: (0r > 0.06) A (07, <= —0.46)
1 2:(0r <= 0.02) A (07, F > —0.46)
3: (0r > 0.02) A (conflict)
4:(0r > 0.02) A (07, F > —0.46)
0: (0, p <=1.92) A (07, p <= —0.59) A (hp <= 0.43)
1 (0p,p <=1.92) A (07 p > —0.59) A (hg <= 0.43)
2 (07, p > 1.92) A (§p, p <= 5.02) A (hp <= 0.43)
2 3:(6p,p > 1.92) A (O, > 5.02) A (hp <= 0.43)
4 (s, <=13.53) A (hg > 0.43) A (6, 3 <= —0.01)
5: (s, <=13.53) A (hg > 0.43) A (6p, 3 > —0.01)
6: (05,7 > 13.53) A (hg > 0.43)
0: (9T,F <=8.70) A (65, <= 0.53) A (hg <= —0.09)
I (0p, p <=8.70) A (05,F <= 0.53) A (hg > —0.09)
3 2 (0, p <= 8.70) A (05,F > 0.53)
3: (0, > 8.70) A (0 <= 0.20)
4: (0, F > 8.70) A (O > 0.20)
0: (01, p <= —0.51) A (hg <= —0.04)
1 (0p, p <= —0.51) A (hg > —0.04)
. 2 (07, p <= 0.58) A (0, p <= 0.50) A (6 p > —0.51)
cfe 3: (6, <= 0.58) A (07, > 0.50)
4: (07, g > 0.58) A (hp <= —0.44) A (01, > —0.51)
5:(0r,p > 0.58) A (hg > —0.44) A (67, p > —0.51)
0: (01, <=2.61) A (05, <= 0.08) A (hg <= 0.03)
I: (67, B <= 2.61) A (85, F <= 0.08) A (hg > 0.03)
5 2 (§p <=0.63) A (6, p <= 2.61) A (65, > 0.08)
3:(fr > 0.63) A (GT,B <=2.61) A (05, > 0.08)
4 (0, p > 2.61) A (07, <= —0.13)
5:(0r,p > 2.61) A (07, > —0.13)
0: (01,5 <= —0.60) A (95, p <= —0.11)
1:(6r, g > —0.60) A (0p, p <= —0.11) A (hg <= —0.09)
p 2 (67, > —0.60) A (6p,p <= —0.11) A (hg > —0.09)
3:(0s,F <=11.48) A (0, F > —0.11) A (67, B <= —0.10)
4 (0s,p <=11.48) A (0p,F > —0.11) A (61,5 > —0.10)
5:(0s,F > 11.48) A (0, > —0.11)
0: (01,7 <= —8.38) A (hr <= 0.45) A (O, F <= 0.47)
1: (0r,F > —8.38) A (hg <= 0.45) A (61, F <= 0.47)
7 2:(hg > 0.45) A (0p,F <= 0.14) A (67, <= 0.47)
3:(hgr > 0.45) A (0p, F > 0.14) A (67, <= 0.47)
4 (01, p <= 0.69) A (61,5 > 0.47)
5: (07, F > 0.69)
0: (01, <= —6.34) A (hg <= —0.02)
1: (0r,p > —6.34) A (hg <= —0.02)
s 2: (6, p > —6.34) A (conflict)
3: (0, p <= 10.03) A (65, F <= 0.50) A (hg > —0.02)
4: (0, > 10.03) A (05, p <= 0.50) A (hg > —0.02)
5:(0s,F > 0.50) A (hg > —0.02)
0: (0,5 <=1.14) A (95,5 <= —0.06) A (05, <= 0.46)
1 (0r,p <=1.14) A (05,5 > —0.06) A (05, F <= 0.46)
9 2 (0p,p <=1.14) A (05, F > 0.46)
3:(0p, B > 1.14) A (07, <= 0.56) A (hg <= —0.10)
4 (0r,p > 1.14) A (97, <= 0.56) A (hg > —0.10)
5. (6,5 > 1.14) A (O, > 0.56)

Table 27: Logic program of CfC in locomotion (HalfCheetah).
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Model | Neuron |

Logic Program

NCP

‘ 0 ‘ 0: (0F, 5 <= —0.05)
1: (Op,5 > —0.05)
‘ 1 ‘ 0: (0r,B <= —0.04)
1: (9}7‘13 > —0.04)
‘ ) ‘ 0: (07, <= —0.29)
1: (07,5 > —0.29)
0: (67 F <= —6.91) A (hgr <= —0.08)
5 1: (B, r <= —6.91) A (hr > —0.08)
2: (OT,F > —6.91) A (GF,F <= —0.13)
3:(Op,p > —6.91) A (0p, 7 > —0.13)
0: (0, <= —6.37) A (07, <= —0.36)
1: (0p,3 > —6.37) A (00,5 <= —0.36)
4 2: (hr <= —0.59) A (67,5 <= 0.59) A (61,5 > —0.36)
3: (hg > —0.59) A (07,5 <= 0.59) A (07,5 > —0.36)
4 (0p,p <= 0.64) A (01,5 > 0.59)
5:(0p, B > 0.64) A (01,5 > 0.59)
0: (F, g <= —0.02) A (61,8 <= —0.40)
5 I: (0p, 5 <= —0.02) A (97,5 > —0.40)
2: (GF,B > 70.02)
0: (0p,r <= —3.61) A (0, <= —0.06)
1: (6p,p > —3.61) A (Ap. g <= —0.06)
6 2: (hr <= 0.51) A (85,5 > —0.06) A (81,7 <= —0.70)
3: (hr <= 0.51) A (85,5 > —0.06) A (81,7 > —0.70)
4: (hg > 0.51) A (0p, 5 > —0.06)
0: (07,5 <= —0.27)
1: (conflict)
2: (Bs,p <= —8.45) A (hgr <= 0.18) A (87,5 > —0.27)
7 3: (0s.p <= —8.45) A (hp > 0.18) A (87,5 > —0.27)
4: (0s,F > —8.45) A (Bp, 5 <= 0.22) A (67,5 > —0.27)
5:(0s,F > —8.45) A (0,5 > 0.22) A (01,5 > —0.27)
0: (épﬁB <=6.33) A (éT,F <=12.79) A (s, <= —0.04)
8 1: (0p, B > 6.33) A (0, <= 12.79) A (05,5 <= —0.04)
2: (b, <=12.79) A (85,8 > —0.04)
3: (b, F > 12.79)
0: (0, <=6.97) A (hr <= —0.12)
1: (0p,5 <= 6.97) A (0p, 7 <= 0.15) A (hg > —0.12)
9 2:(0p,p <=6.97) A (Op,r > 0.15) A (hg > —0.12)
3:(0p.p > 6.97) A (05,5 <= —8.53)
4: (0p, g > 6.97) A (05,3 > —8.53)

Table 28: Logic program of NCP in locomotion (HalfCheetah).
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Model | Neuron | Logic Program

0: (k <= 0.00) A (v <= 7.40)
1: (k <= 0.00) A (v <= T7.71) A (v > 7.40)

0 2: (k > 0.00) A (v <= 7.71)

3: (k <=0.00) A (d <= 0.12) A (v > 7.71)
4: (k <=0.00) A (d > 0.12) A (v > 7.71)
5:(k > 0.00) A (v > 7.71)

0: (v <= 7.30)

1: (6 <=0.00) A (d <= 0.19) A (v > 7.30)

1 2: (6 <=0.00) A (d > 0.19) A (v > 7.30)
3:(6 > 0.00) A (d <= 0.29) A (v > 7.30)
4: (6 > 0.00) A (d > 0.29) A (v > 7.30)

0: (6 <= —0.02) A (kK <= 0.02) A (np <= 0.01)

5 1: (6 > —0.02) A (k <= 0.02) A (up <= 0.01)
2: (k> 0.02) A (p <= 0.01)

3: (p > 0.01)
0: (k <= —0.00
1: (k > —0.00) A (u <= 0.01) A (d <= 0.07)

3 2: (k > —0.00) A (p <= 0.01) A (d > 0.07)

3: (k> —0.00) A (p <= 0.02) A (> 0.01)
FC 4: (k > —0.00) A (u > 0.02)

0: (k <= 0.00) A (n <= 0.01) A (v <= T7.66)

I: (k <=0.00) A (u <= 0.01) A (v > 7.66)

4 2: (k <=0.00) A (p > 0.01)

3: (k > 0.00) A (p <= —0.02)

4: (k > 0.00) A (p <= 0.01) A (1 > —0.02)

5:(k > 0.00) A (n > 0.01)

0: (b <= 0.01) A (v <= 7.49)

1: (6 <= —0.02) A (u <= 0.01) A (v > 7.49)

5 2: (6 > —0.02) A (0 <= 0.01) A (v > 7.49)
3: (p <= 0.02) A (> 0.01)

4: (n > 0.02)
0: (k <= —0.01)

6 1: (0 <= —0.01) A (k > —0.01) A (n <= 0.01)
2:(6 > —0.01) A (k > —0.01) A (np <= 0.01)
3:(k > —0.01) A (. > 0.01)

0: (u <= —0.02)

7 1: (6 <=0.02) A (u <= 0.01) A (. > —0.02)
2: (6 > 0.02) A (p <= 0.01) A (. > —0.02)
3:(p > 0.01)

Table 29: Logic program of FC in end-to-end visual servoing (Image-based Driving).
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Model | Neuron | Logic Program

0: (d <= —0.06)
0 1: (d <= 0.11) A (d > —0.06)
2:(d > 0.11)
0: (n <=0.04)
1 I: (p <= 0.09) A (1 > 0.04)
2: (u > 0.09)
0: (u <= 0.04)
2 I: (p <= 0.10) A (. > 0.04)
2: (u > 0.10)
0: (v <= 5.26)
I: (u <=0.01) A (v <= 6.88) A (v > 5.26)
3 2: (> 0.01) A (v <= 6.88) A (v > 5.26)
3: (v <=7.34) A (v > 6.88)
4: (v > 7.34)
GRU | 4 | 0:None
0: (v <= 5.26)
I: (u <= —0.01) A (d <= 0.20) A (v > 5.26)
5 2: (p <= —0.01) A (d > 0.20) A (v > 5.26)
3: (> —0.01) A (v <= 6.81) A (v > 5.26)
4: (p > —0.01) A (v > 6.81)
0: (6 <= —0.04)
1: (6 <=0.05) A (6 > —0.04) A (v <=T7.81)
6 2: (6 <=0.05) A (6 > —0.04) A (v > 7.81)
3: (6 <=0.09) A (6§ > 0.05)
4: (6 > 0.09)
0: (k <= 0.02) A (p <= —0.05) A (d <= 0.61)
I: (k <= 0.02) A (. > —0.05) A (d <= 0.61)
. 2: (k> 0.02) A (d <= 0.61)
3: (0 <=0.06) A (u <= —0.04) A (d > 0.61)
4: (6 <=0.06) A (> —0.04) A (d > 0.61)
5:(6 > 0.06) A (d > 0.61)

Table 30: Logic program of GRU in end-to-end visual servoing (Image-based Driving).
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Model | Neuron |

Logic Program

> 0.02) A (d <= 0.01) A (v > 7.39)

0: (k <= 0.00) A (d <= 0.07)
1: (k <= 0.00) A (d > 0.07)
0 2: (k <= 0.00) A (k > 0.00)
3: (k> 0.00) A (v <= 7.58)
4: (k> 0.00) A (v > 7.58)
0: (d <= —0.08) A (v <= 7.54)
1: (d <= 0.04) A (d > —0.08) A (v <= T7.54)
I 2:(d <= 0.04) A (v <= T7.68) A (v > 7.54)
3:(d <= 0.04) A (v > 7.68)
4: (d <= 0.30) A (d > 0.04)
5: (d > 0.30)
0: (k <= 0.00) A (d <= —0.11)
1: (k> 0.00) A (d <= —0.11)
5 2:(d <= 0.03) A (d > —0.11) A (v <= 7.50)
3:(d <= 0.03) A (d > —0.11) A (v > 7.50)
4:(d <= 0.29) A (d > 0.03)
5 (d > 0.29)
LSTM 0: (v <= 7.25)
1: (d <= 0.03) A (v <= 7.66) A (v > 7.25)
3 2:(d > 0.03) A (v <= 7.66) A (v > 7.25)
3: (6 <= 0.00) A (v > 7.66)
4: (5 > 0.00) A (v > 7.66)
0: (5§ <= 0.05) A (1 <= 0.00) A (d <= 0.23)
. 1: (6 <= 0.05) A (k > 0.00) A (d <= 0.23)
2: (6 <= 0.05) A (d > 0.23)
3: (6 > 0.05)
‘ 5 ‘ 0: (5 <= 0.04)
1: (5 > 0.04)
| 6 | 0:None
0: (6 <= —0.01) A (v <= 7.39)
1: (6 > —0.01) A (v <= 7.39)
7 2: (k <= 0.02) A (d <= 0.01) A (v > 7.39)
3 (k
4: (d

> 0.01) A (v > 7.39)

Table 31: Logic program of LSTM in end-to-end visual servoing (Image-based Driving).
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Model | Neuron | Logic Program

0: (6 <= —0.03) A (n <= 0.02)
1: (6 > —0.03) A (u <= —0.00)
0 2: (6 > —0.03) A (p <= 0.02) A (> —0.00)
3:(p > 0.02) A (v <= 6.79)
4: (p > 0.02) A (v > 6.79)
0: (u <= —0.05)
| 1: (6 <= —0.03) A (n > —0.05)
2: (6 > —0.03) A (k <= 0.00) A (1 > —0.05)
3:(6 > —0.03) A (k > 0.00) A (> —0.05)
0: (p <= 0.02) A (d <= 0.12) A (v <= 7.23)
I: (p <=0.02) A (d <= 0.12) A (v > 7.23)
5 2: (u <=0.00) A (d > 0.12)
3: (p <= 0.02) A (> 0.00) A (d > 0.12)
4: (p > 0.02) A (v <= 6.79)
5: (> 0.02) A (v > 6.79)
0: (6 <= —0.04)
3 1: (conflict)
2: (6 > —0.04) A (d <= 0.16)
3: (6 > —0.04) A (d > 0.16)
0: (k <= 0.00) A (n <= —0.00)
CfC I: (k > 0.00) A (p <= —0.00)
4 2: (p <= 0.02) A (u > —0.00) A (d <= 0.40)
3: (p <= 0.02) A (> —0.00) A (d > 0.40)
4: (p > 0.02) A (v <= 6.87)
5:(p > 0.02) A (v > 6.87)
0: (v <= 6.41)
I: (u <= 0.00) A (v <=T7.15) A (v > 6.41)
5 2: (p <= 0.00) A (v > 7.15)
3:(p > 0.00) A (d <= 0.51) A (v > 6.41)
4: (u > 0.00) A (d > 0.51) A (v > 6.41)
0: (6 <= —0.00)
1: (conflict)
6 2: (6 <=10.04) A (6 > —0.00) A (v <= 7.18)
3: (6 <=10.04) A (6 > —0.00) A (v > 7.18)
4: (6 <=0.07) A (6 > 0.04)
5:(6 > 0.07)
0: (6 <= —0.02) A (v <= 7.26)
1: (6 > —0.02) A (v <= 6.56)
7 2: (6 > —0.02) A (v <= 7.26) A (v > 6.56)
3: (6 <=0.00) A (v <= 7.55) A (v > 7.26)
4: (8 > 0.00) A (v <= 7.55) A (v > 7.26)
5: (v > 7.55)

Table 32: Logic program of ODE-RNN in end-to-end visual servoing (Image-based Driving).
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0: (d <= —0.04) A (v <= 5.48)
I: (d <= —0.04) A (v <= T7.46) A (v > 5.48)
2: (u <=0.02) A (d > —0.04) A (v <= 7.46)
0 3: (u > 0.02) A (d > —0.04) A (v <= T7.46)
4: (6 <=0.05) A (v <= T7.84) A (v > 7.46)
5:(6 <=0.05) A (v > 7.84)
6: (6 > 0.05) A (v > 7.46)
0: (d <= —0.72)
1 1: (d > —0.72) A (v <= 5.80)
2: (6 <= —0.00) A (d > —0.72) A (v > 5.80)
3: (6 > —0.00) A (d > —0.72) A (v > 5.80)
0: (v <= 5.00)
1: (6 <=0.09) A (v <= 6.99) A (v > 5.00)
2 2: (6 <=10.09) A (v > 6.99)
3: (6 > 0.09) A (v <= 6.98) A (v > 5.00)
4: (86 > 0.09) A (v > 6.98)
0: (d <= —0.04)
1: (d <= 0.04) A (d > —0.04)
3 2: (p <= —0.11) A (d > 0.04)
3: (> —0.11) A (d <= 0.92) A (d > 0.04)
4: (p > —0.11) A (d > 0.92)
0: (u <=0.02) A (d <=0.60) A (v <= T7.04)
ODE-RNN 1: (p <= 0.02) A (d > 0.60) A (v <= 7.04)
2: (p > 0.02) A (d <= —0.43) A (v <= 7.04)
4 3:(p > 0.02) A (d > —0.43) A (v <= 7.04)
4: (v <=T7.53) A (v > 7.04)
5:(d <= 0.38) A (v > 7.53)
6: (d > 0.38) A (v > 7.53)
0: (v <= 5.38)
1: (6 <= —0.03) A (d <= 0.10) A (v > 5.38)
5 2: (6 > —0.03) A (d <= 0.10) A (v > 5.38)
3: (6 <= —0.02) A (d > 0.10 )/\(v>038)
4: (6 > —0.02) A (d > 0.10) A (v > 5.38)
0: (p <=0.01) A (d <= 0.18)
I: (p <=0.01) A (d <= 0.47) A (d > 0.18)
2: (6 <=10.10) A (1 > 0.01) A (d <= 0.47)
6 3:(6 > 0.10) A (& > 0.01) A (d <= 0.47)
4: (d > 0.47) A (v <= 6.60)
5: (p <= —0.00) A (d > 0.47) A (v > 6.60)
6: (> —0.00) A (d > 0.47) A (v > 6.60)
0: (v <= 5.15)
7 I: (p <= 0.12) A (d <= —0.08) A (v > 5.15)
2: (p <=0.12) A (d > —0.08) A (v > 5.15)
3:(p > 0.12) A (v > 5.15)

Table 33: Logic program of CfC in end-to-end visual servoing (Image-based Driving).
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<= —0.05)

<=0.02) A (6 > —0.05) A (p <= —0.01)
<=0.02) A (6 > —0.05) A (1 > —0.01)
<=0.09) A (6§ > 0.02) A (p <= —0.01)
<=0.09) A (6§ > 0.02) A (x> —0.01)

> 0.09)

v< 772)/\(v>741)
d<——002)/\(v>772)

d <=0.10) A (d > —0.02) A (v > 7.72)
d>010)/\(v< 8.05) A (v > 7.72)
:(d > 0.10) A (v > 8.05)

v <= 7.45)

v <=T.78) A (v > 7.45)

v <=8.08) A (v > 7.78)
> 8.08)

d <= —0.15) A (v <= 7.65)

d <= —0.15) A (v > 7.65)

pw <= 0.06) A (d <= 0.04) A (d > —0.15)
1 <= 0.06) A (d > 0.04)
o
5
5

NCP

N~~~

> 0.06) A (d > —0.15)

<= —0.03) A (v <= 7.73)

<= —0.03) A (v > 7.73)

6 > —0.03) A (n <= 0.07) A (d <= 0.02)
4 > —0.03) A (u <= 0.07) A (d > 0.02)
6 > —0.03) A (u > 0.07)

(
o
(
(v
(
(
(
3:(
(
(
(
(
3:(
(

=

Table 34: Logic program of NCP in end-to-end visual servoing (Image-based Driving).
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